Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Gitter chat Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are two aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. More details on these performance improvements in form of benchmarks can be found here

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++14 capable compiler.

git clone https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparision between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparision I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

Benchmark extractOne

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-1.4.0.tar.gz (298.9 kB view details)

Uploaded Source

Built Distributions

rapidfuzz-1.4.0-pp37-pypy37_pp73-win32.whl (324.8 kB view details)

Uploaded PyPy Windows x86

rapidfuzz-1.4.0-pp37-pypy37_pp73-manylinux2010_x86_64.whl (719.1 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

rapidfuzz-1.4.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (515.4 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-1.4.0-pp36-pypy36_pp73-win32.whl (324.8 kB view details)

Uploaded PyPy Windows x86

rapidfuzz-1.4.0-pp36-pypy36_pp73-manylinux2010_x86_64.whl (719.1 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

rapidfuzz-1.4.0-pp36-pypy36_pp73-macosx_10_9_x86_64.whl (515.4 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-1.4.0-cp39-cp39-win_amd64.whl (429.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-1.4.0-cp39-cp39-win32.whl (335.8 kB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-1.4.0-cp39-cp39-manylinux2014_s390x.whl (711.9 kB view details)

Uploaded CPython 3.9

rapidfuzz-1.4.0-cp39-cp39-manylinux2014_ppc64le.whl (722.8 kB view details)

Uploaded CPython 3.9

rapidfuzz-1.4.0-cp39-cp39-manylinux2014_aarch64.whl (648.2 kB view details)

Uploaded CPython 3.9

rapidfuzz-1.4.0-cp39-cp39-manylinux2010_x86_64.whl (748.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

rapidfuzz-1.4.0-cp39-cp39-manylinux2010_i686.whl (759.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

rapidfuzz-1.4.0-cp39-cp39-manylinux1_x86_64.whl (748.2 kB view details)

Uploaded CPython 3.9

rapidfuzz-1.4.0-cp39-cp39-manylinux1_i686.whl (759.9 kB view details)

Uploaded CPython 3.9

rapidfuzz-1.4.0-cp39-cp39-macosx_11_0_arm64.whl (428.6 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-1.4.0-cp39-cp39-macosx_10_9_x86_64.whl (545.2 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-1.4.0-cp39-cp39-macosx_10_9_universal2.whl (968.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-1.4.0-cp38-cp38-win_amd64.whl (430.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-1.4.0-cp38-cp38-win32.whl (336.0 kB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-1.4.0-cp38-cp38-manylinux2014_s390x.whl (713.3 kB view details)

Uploaded CPython 3.8

rapidfuzz-1.4.0-cp38-cp38-manylinux2014_ppc64le.whl (721.8 kB view details)

Uploaded CPython 3.8

rapidfuzz-1.4.0-cp38-cp38-manylinux2014_aarch64.whl (649.0 kB view details)

Uploaded CPython 3.8

rapidfuzz-1.4.0-cp38-cp38-manylinux2010_x86_64.whl (749.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

rapidfuzz-1.4.0-cp38-cp38-manylinux2010_i686.whl (758.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

rapidfuzz-1.4.0-cp38-cp38-manylinux1_x86_64.whl (749.8 kB view details)

Uploaded CPython 3.8

rapidfuzz-1.4.0-cp38-cp38-manylinux1_i686.whl (758.6 kB view details)

Uploaded CPython 3.8

rapidfuzz-1.4.0-cp38-cp38-macosx_10_9_x86_64.whl (545.0 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-1.4.0-cp37-cp37m-win_amd64.whl (433.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-1.4.0-cp37-cp37m-win32.whl (340.3 kB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-1.4.0-cp37-cp37m-manylinux2014_s390x.whl (715.4 kB view details)

Uploaded CPython 3.7m

rapidfuzz-1.4.0-cp37-cp37m-manylinux2014_ppc64le.whl (727.5 kB view details)

Uploaded CPython 3.7m

rapidfuzz-1.4.0-cp37-cp37m-manylinux2014_aarch64.whl (650.8 kB view details)

Uploaded CPython 3.7m

rapidfuzz-1.4.0-cp37-cp37m-manylinux2010_x86_64.whl (750.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.4.0-cp37-cp37m-manylinux2010_i686.whl (755.9 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

rapidfuzz-1.4.0-cp37-cp37m-manylinux1_x86_64.whl (750.1 kB view details)

Uploaded CPython 3.7m

rapidfuzz-1.4.0-cp37-cp37m-manylinux1_i686.whl (755.9 kB view details)

Uploaded CPython 3.7m

rapidfuzz-1.4.0-cp37-cp37m-macosx_10_9_x86_64.whl (546.7 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-1.4.0-cp36-cp36m-win_amd64.whl (429.1 kB view details)

Uploaded CPython 3.6m Windows x86-64

rapidfuzz-1.4.0-cp36-cp36m-win32.whl (335.1 kB view details)

Uploaded CPython 3.6m Windows x86

rapidfuzz-1.4.0-cp36-cp36m-manylinux2014_s390x.whl (700.3 kB view details)

Uploaded CPython 3.6m

rapidfuzz-1.4.0-cp36-cp36m-manylinux2014_ppc64le.whl (709.9 kB view details)

Uploaded CPython 3.6m

rapidfuzz-1.4.0-cp36-cp36m-manylinux2014_aarch64.whl (635.2 kB view details)

Uploaded CPython 3.6m

rapidfuzz-1.4.0-cp36-cp36m-manylinux2010_x86_64.whl (745.0 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.4.0-cp36-cp36m-manylinux2010_i686.whl (751.2 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

rapidfuzz-1.4.0-cp36-cp36m-manylinux1_x86_64.whl (744.9 kB view details)

Uploaded CPython 3.6m

rapidfuzz-1.4.0-cp36-cp36m-manylinux1_i686.whl (751.2 kB view details)

Uploaded CPython 3.6m

rapidfuzz-1.4.0-cp36-cp36m-macosx_10_9_x86_64.whl (541.3 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

rapidfuzz-1.4.0-cp35-cp35m-win_amd64.whl (426.1 kB view details)

Uploaded CPython 3.5m Windows x86-64

rapidfuzz-1.4.0-cp35-cp35m-win32.whl (332.5 kB view details)

Uploaded CPython 3.5m Windows x86

rapidfuzz-1.4.0-cp35-cp35m-manylinux2014_s390x.whl (693.9 kB view details)

Uploaded CPython 3.5m

rapidfuzz-1.4.0-cp35-cp35m-manylinux2014_ppc64le.whl (706.9 kB view details)

Uploaded CPython 3.5m

rapidfuzz-1.4.0-cp35-cp35m-manylinux2014_aarch64.whl (632.8 kB view details)

Uploaded CPython 3.5m

rapidfuzz-1.4.0-cp35-cp35m-manylinux2010_x86_64.whl (735.7 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.4.0-cp35-cp35m-manylinux2010_i686.whl (744.9 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ i686

rapidfuzz-1.4.0-cp35-cp35m-manylinux1_x86_64.whl (735.7 kB view details)

Uploaded CPython 3.5m

rapidfuzz-1.4.0-cp35-cp35m-manylinux1_i686.whl (744.9 kB view details)

Uploaded CPython 3.5m

rapidfuzz-1.4.0-cp35-cp35m-macosx_10_9_x86_64.whl (528.1 kB view details)

Uploaded CPython 3.5m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-1.4.0.tar.gz.

File metadata

  • Download URL: rapidfuzz-1.4.0.tar.gz
  • Upload date:
  • Size: 298.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0.tar.gz
Algorithm Hash digest
SHA256 48c261a86da208e5cc69a952730cdc00335aeb7a5f2e72fdabe2811f6d49f6bc
MD5 64b66f6f3d1ad45eedc224ad4640cd06
BLAKE2b-256 eeb03e0d0c3bd6bf6e3a5cfdf846040a17055ccb75595999345a1acdd52f2fe1

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-pp37-pypy37_pp73-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-pp37-pypy37_pp73-win32.whl
  • Upload date:
  • Size: 324.8 kB
  • Tags: PyPy, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-pp37-pypy37_pp73-win32.whl
Algorithm Hash digest
SHA256 e9b512077f5ceae6bdb0dfaf34c911fe065c45921e0a1cb9b7d5b1e30cfeced7
MD5 905eaac9c5a2017665c3d4fcafafdc0b
BLAKE2b-256 6b74ab4ea08cb4124f4ef715a09a7266ace467462d639262217a448dd0c4ef79

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-pp37-pypy37_pp73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-pp37-pypy37_pp73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 719.1 kB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-pp37-pypy37_pp73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d44b6f3d8a62c6103fbabf568257ddb757914affbd76273ae3ba56b7c470b688
MD5 6d1a1ca32c827623e0f5f2360deb804f
BLAKE2b-256 bce1dd7199a98f584cb185dd2b72c61ca382c088e9daa5c356015508a44837d3

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-pp37-pypy37_pp73-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-pp37-pypy37_pp73-manylinux1_x86_64.whl
  • Upload date:
  • Size: 719.1 kB
  • Tags: PyPy
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-pp37-pypy37_pp73-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 fef29ead224c28c49e46385dc7999133692f8cc627a3ae8a60b56844de4e3337
MD5 c84d08351044c4fba30f9633d204b961
BLAKE2b-256 eaf44a13f624b44c8da4d3051d4945850f4c32704b9a0b003174e6cb249b16e9

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 515.4 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fee6dccd016a544eced3baf2756db17c395ea24d0a55ed9a8babaabc4a1eb27c
MD5 140106befb3a923d4804c4ed254d2d92
BLAKE2b-256 1820fc71d9cea56def98338729387c624e686b21c0d1ec533d22b69aa08d068e

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-pp36-pypy36_pp73-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-pp36-pypy36_pp73-win32.whl
  • Upload date:
  • Size: 324.8 kB
  • Tags: PyPy, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-pp36-pypy36_pp73-win32.whl
Algorithm Hash digest
SHA256 f8ed0a548943902674e67d8c76b9cafcdf97ed1dea0965ccd9361eebfd6d223e
MD5 75203d40c5cc9f3be21795aac21489ed
BLAKE2b-256 1d690fcf693011b71ecf76fd72771f6c5aeb21114af7aaad061499167f809223

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-pp36-pypy36_pp73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-pp36-pypy36_pp73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 719.1 kB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-pp36-pypy36_pp73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 14a3bafac55d7ccbb8374e3be66d6551ef74e2f83344855b74d8ce1bf0a00b37
MD5 04066bf2add2cdf04f87691b9862b6c7
BLAKE2b-256 0bc421aa431d51c8aa8d8a4c76603f9d6d37feff5ea6be79f5b27b32ab719128

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-pp36-pypy36_pp73-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-pp36-pypy36_pp73-manylinux1_x86_64.whl
  • Upload date:
  • Size: 719.1 kB
  • Tags: PyPy
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-pp36-pypy36_pp73-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8a682bc5596d663ab874a6c50a1c95e89c3ebaed8fc093cd95344b41a931dbee
MD5 cb2c7a5dc70793be889e95a90810daa4
BLAKE2b-256 70c13c15b48be9ebb7dfa8f9ca0b0a6ade10b321e8503410bc4d90390eae351e

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-pp36-pypy36_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-pp36-pypy36_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 515.4 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-pp36-pypy36_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 08d5f1b5cf1137a64d821722a97dc2e44cf44d6b5c96448c2a3121edb9850035
MD5 d831a88de2823dd44c15ee12beab57a6
BLAKE2b-256 e930b73a5bb02420c6502da409ef368c4ef72b24b220541ccae83efa71513586

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 429.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5f057315e8d9aab5208e7b952c243349ff72cfd43a606203058a5e2d0b6769b6
MD5 a4cb5fc6c914231702056e6a92cf405a
BLAKE2b-256 7c27b0604764666e9bfb5c9781e52b64bb1b910072704cb185521a08927084c5

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 335.8 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 47115839343d0dfafe4c1339c93e6bfdabfb8140bab2db5332f2f944b2b4ffbc
MD5 ade1fbdb12e6289dc4b67d9c1313c25a
BLAKE2b-256 760fa553770d3bba3c0497b01f92969ca7ac8d70f5cdcfafaf273b5d097e2f26

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp39-cp39-manylinux2014_s390x.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp39-cp39-manylinux2014_s390x.whl
  • Upload date:
  • Size: 711.9 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp39-cp39-manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 f7d088e1a31391b945f79e0614bf49408ea933a9fecc2aca599f1fc5b334b3a1
MD5 da253f3b4a2437e1e17fdb1370780a5b
BLAKE2b-256 3bafe91021534ae03490870454413c01fde3aa00c7dcc1555f793f6c79943676

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp39-cp39-manylinux2014_ppc64le.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp39-cp39-manylinux2014_ppc64le.whl
  • Upload date:
  • Size: 722.8 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp39-cp39-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 fa9293465024c3af5a3a4f73e70a4ccbc268be23fff4748bcc4900199d7bc532
MD5 70d32fa37443032330aaa4b72b77cbf2
BLAKE2b-256 b1b94294e4e43cb1375b152e254ba34d12b1937edb5178b8edb2e28257d379a8

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp39-cp39-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 648.2 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ce4f9eac9c1d6528dfaa19d7ea51c7c5b31a98fd9f4a853726facde49b08471d
MD5 7ad348d052edc0e0e468afb9d50b950e
BLAKE2b-256 6ffb207f8b68e10ced9f5e4d21304b9d49c1624cb2c5feba59e0ef498ae78705

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 748.2 kB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 daa1f59a3d58bc9c2a8552d4260ab4838bc550d865ce5f1270fe4072cda48f0e
MD5 c92ee19d8bdf208035f4ef97db2380af
BLAKE2b-256 dda086ec9f7b3bebfcb805c3687097001176996f1f21ce53ae669a61f21148d8

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 759.9 kB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 520759eab887fbb96a553d06b4a52ca47314db969c98f8e70e9a9525a9835155
MD5 ae381acbcc2ce82a14d492f34c42cf65
BLAKE2b-256 07f15bf183a5c2f294965d6cef5d1ede4665cc6a0a9ca099f94875aa7a4713ba

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 748.2 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a83f334dc3f8faab57605d02df6481c17c53bba8884af4ff418055d5c6d50cff
MD5 bd99e5174347b10bf73d91a682f3dc99
BLAKE2b-256 0cd324c7160d09e85df86447adcace1767a8c56d8c1ccb8b69a74fa6e99dbc38

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp39-cp39-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp39-cp39-manylinux1_i686.whl
  • Upload date:
  • Size: 759.9 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp39-cp39-manylinux1_i686.whl
Algorithm Hash digest
SHA256 d737164d4f5116dd1d9ddb5c2bb3ef503f66b4b4178fbd48ae75da63371da2e0
MD5 abd36711d615ccb9e355025eedf36515
BLAKE2b-256 786e64c97465112d62d5be3b08c05136cf1407ab1654a91342e5f3be737c0299

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 428.6 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 14addef9c94db28b47ce9e27b71a8d9c7724a0f49e25c947184902babdd0c5fb
MD5 8163e2f1b47208494cddf80d312fa169
BLAKE2b-256 50db30b7d7457fd293ab4a71dc820dc8a220b4c7ff8f4335d38af521c1e4e11a

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 545.2 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d84dc180bd233e0c7a14ae3c5abd3d38a0a50cca93039eff8f4cdc3a3f02163a
MD5 5785db296549fb002bfc3cbf7f54d4ad
BLAKE2b-256 3595072ad3eefc23fd94aebaad303cb67e7f1f58f033169b238fb48eb86e9b1f

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 968.4 kB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 67f4de91357a65fae5e41d216971f6e47cab99a225f968145febb63a7364740f
MD5 9a860b762c56c540c03ca4c5f512c536
BLAKE2b-256 abfe0969820ae08e2565fc745f5dac6d9988af711207d9e5a4630e0830330ff7

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 430.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 122891f9abbd86f002208c963a26dd25d22a45eb8199b5fedfb899e866e1b159
MD5 00339b3e9f1f9130fba0baf8d52862e1
BLAKE2b-256 6078aeece9eb2cd8f3f9e76ae48c323807750e3801e111dfb4432c7210c24e70

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 336.0 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 a9b51edb35b9717d761553c9c99d2344ca5c18aed060a5650cafb8ec5238adc2
MD5 4aec7840a72ed73dd464178e7baa5660
BLAKE2b-256 05579293051e3eb1ac3444d3e11e302f381623eca7e8208c20dcff160fe2410b

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp38-cp38-manylinux2014_s390x.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp38-cp38-manylinux2014_s390x.whl
  • Upload date:
  • Size: 713.3 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp38-cp38-manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 fd015ac584f04fd0474fd826d1227d53d7b5f7eac268bc2e720729dee13ce3df
MD5 dfcea317be21b536a34a7be33721b90b
BLAKE2b-256 50bfd1f1f653e77897ac7e6ce65d04074cbf5c8c5c4e6f0179fe746c5ac17b22

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp38-cp38-manylinux2014_ppc64le.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp38-cp38-manylinux2014_ppc64le.whl
  • Upload date:
  • Size: 721.8 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp38-cp38-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 e75b61c30cd98b9487ba4fe137ab4d4b7699b22fa3d312de3bafbbf3015f9e3c
MD5 6fe093f300f94d3b8bba0b71e0bc40eb
BLAKE2b-256 7ad6ab15f2e4f7a0fba816c084e03866420cd6f3bedb95779b0b19a93e2a6daf

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp38-cp38-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 649.0 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c24be62e8012170ff0e4a3f236239081fe6d1625093c5903724ec4a6c34a1753
MD5 d7d69437efb3de3225e774ead0853c69
BLAKE2b-256 90587fc13dee687a8a13149ec5f12bc217a7e1cc708d6dee9f17d09d300bfbaa

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 749.8 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 477a6579e0d096c7997d0d6125e8a6e4c445b9a56372602fc6d9f0febfe98d9e
MD5 11e75f4a08eef197dc86df04a136013a
BLAKE2b-256 e156e79364a8b431dab142156bce46aaa40201f03a967d7ed144bb076f9f3eba

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 758.6 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 281a4422f662b8cab1471fdac07d19c274843081315073919b1ba8f39e7445d0
MD5 dc4dbc3d2fc9ae838e9c385b36ffcfbf
BLAKE2b-256 9cbfd112b6adb1628868612686ec0f7f46b92d614e666eeae533eeadac165fcf

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 749.8 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 23c0cdfbe9324fa1095059d62cc7a0cdc9b764fe02e44f5e9724458e372b158a
MD5 e0bcba7c8f9f525a017b0b8e1d87612e
BLAKE2b-256 0c91aae16dd11079d33ba17ac945f6a9c8ea8e032f1b78edc444ee4a9fa4480c

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 758.6 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 3c249b97e663bb9f62f6b20b5c84131d07ec7e77eaf98c19607512194f967dbd
MD5 39025e6581796e44dd2fd97cc01b770e
BLAKE2b-256 0d59de2e8716a566eaec6b6d80c4386f7102bd6c0c77a898a7a269a7b7abeadb

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 545.0 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 31f3df109d9e52382f1531a902e2af30361b6382437cd38f16fa1f0ea1dca994
MD5 4eb9702a7d1dfb35521d1d563036fd1c
BLAKE2b-256 af7e3482e38532406e7a7e5d318c29c2f1c2a9078d7578c618dd70f0f8be87ea

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 433.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 072dda8a57d3fddebc162e1160bf88b64844cf29d3b6d5f2028a9b4d1045f3e3
MD5 67bf9a62a4bd6bac3d79f7f0e79b4035
BLAKE2b-256 3eb26836c31c09a02a3a33796c3924dedf6fe682c751381558b75e5f6397cb19

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 340.3 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 fe1298387d4387bb54212dcda99f09cebf2b1782c9402def59a74310ce732acf
MD5 ab47557dafab67579ccf131d698d4bc8
BLAKE2b-256 33016da1c8868d2154d1a74357582ec0c44035f6080d1ea9e1dccfa38ca14d48

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp37-cp37m-manylinux2014_s390x.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp37-cp37m-manylinux2014_s390x.whl
  • Upload date:
  • Size: 715.4 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp37-cp37m-manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 0550eede55c7cd32805b319175b078f20db3fec2e6f51f9c191b2cd3df3c807b
MD5 519f19c996131aa5be7c97092f0fa4c7
BLAKE2b-256 3174016890f0a290f7fb2697f23cdbfbdfd2780c757cae1c811fe146f16d0581

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp37-cp37m-manylinux2014_ppc64le.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp37-cp37m-manylinux2014_ppc64le.whl
  • Upload date:
  • Size: 727.5 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp37-cp37m-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 63e8cfb69392f4232159bfc78c2ad642a3b59ed22dcaf8407e623e0d65d114d0
MD5 37f7ff448203f282c3d90864824d9b54
BLAKE2b-256 de54e13d3ed51a1236268cd4b7027d29035be7ddbf0b60bd1e2dfdf0d1839f66

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp37-cp37m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 650.8 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 05071799b5f69c6b3ba65ada08e1ef1c92aa71207aa72f413999a753f67b6213
MD5 27e3a719c4a351f008cd8bcb0a70ce2b
BLAKE2b-256 881b1b1493b3fe20adcd2ab02e319640b22f06af33ce303da180946773ef8f62

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 750.1 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 87b5f382fedbd061602654d3d57ee76c647e0228b72f0fb5ec36049b483ff272
MD5 e3451998077a23d6638c036e82d80ff8
BLAKE2b-256 b440f74aeb51887ce59140aa47f88922ed753562084897e550a840100e08b7cb

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 755.9 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 ee0a2ade1d7f456b54b9afb784ad053fcc3c917ae983aa736637f717e5d4beca
MD5 a1d372e95f5cc92a377eb1648b153d9f
BLAKE2b-256 cf95a12a3bda86b2af0769453a5ab7e407963a8350911908da22137cc5081ef6

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 750.1 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8e36574ca301a7e8103ebe7884d7409d69bf00f7def66cbc25b322d361002264
MD5 fe2703111996d420fa89d4941c9ec3b2
BLAKE2b-256 5d746a3786a90b259318dc36f3db48fc6b0217008911ba63cc3b243616b3e0aa

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 755.9 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 1cb590fe804ee70a957db3ab1737312557e44ccb0e995d5cea94b8ef20502a78
MD5 0fadc0e5b979027df2cac4c85e170c25
BLAKE2b-256 fad5cc702c1a14ab4c96f9addf4f7f2a84c27b15117771052ef1e9de2d16afb7

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 546.7 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 20c257fab51ab4097fb751825bd9a782a418b1a2c424d7ba8a7e720ad6681c79
MD5 603e29e40970f1ed79d3746533ad0cb7
BLAKE2b-256 392b6e787cf84036013a9efdeef0d6d022337dc9e0abf811e25fd3ede9d117ce

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 429.1 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 1593d8f308191f5d279173c0918f16c86e6d6b49778f46527ef9aa2d55aa8cc8
MD5 d1a0ce234a389f02ed172f5175bcd3b6
BLAKE2b-256 e34f2b4f435ad2f4e7f7f2253960ccd9f14a12dfbb776c0a950bb47d598b8eed

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 335.1 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 9d17ed2d65f65c0d71583968372a5acebb4261f4ec6302d7875fd8106d579d34
MD5 6d86dfc9d018bf939fe326756d337296
BLAKE2b-256 f6a74cee3fd391f0991d4bcacd4b0f9bf99cd45e708f1ff2959ec765e7988c03

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp36-cp36m-manylinux2014_s390x.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp36-cp36m-manylinux2014_s390x.whl
  • Upload date:
  • Size: 700.3 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp36-cp36m-manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 2d5b929c92e3e15b3bdd3373260cab46e1bfbde55dcc39b77a8d0cc4d1367e7c
MD5 18103314798cc07d65b7172109f78f4a
BLAKE2b-256 080cdba0262e53cd3c1333b74a557444c38ccb10fbf2ef2a9bb01943aefbaa48

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp36-cp36m-manylinux2014_ppc64le.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp36-cp36m-manylinux2014_ppc64le.whl
  • Upload date:
  • Size: 709.9 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp36-cp36m-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 50bf3f5eb70a05c3e0d5e571d47b21e30ce3ddf927723f4ef26638f8df20cbf4
MD5 a8b631105420a1ccf1b31853d22e2858
BLAKE2b-256 3cdae802f681217da696fb3dc7b287fd048c7dc3a607f4d8594a4484aa551c44

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp36-cp36m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp36-cp36m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 635.2 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp36-cp36m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 57e4386888be143a1ff78f1903d8d980727e25bd73c996c73bf822b9de98315e
MD5 8bd46487cb17122bca1dbaacf10baa37
BLAKE2b-256 bf32b845cf0cb9f96ca442fc88433b9f60d03ed5285968af3f0735ffac63caee

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 745.0 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a7b395104f1cc366cf2d33972c292ec6e97bd6ed851cb0ee9c8349e7d009661b
MD5 ecfcd986da4ccd9b576e17553109ca96
BLAKE2b-256 d261d9af729be5192efc1b0be1219094d303964f4064a7ca02b55c29a36d7674

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 751.2 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 b5f25af024521b08885181a13e9d00e126a4e6a6ea9262ff89bdfcf81e042dce
MD5 cce7825b0258aac302acfc8d72eaa575
BLAKE2b-256 3e89643532af2989617c137b5e123b7ce85dd26712f6e106e6e747b3a2d2319a

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 744.9 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 be8bfd20a19cf473200a4ac808b2e855a92dfc701fe4e6e9887d7a4dcc58e734
MD5 82b638cb68f6938bac44228d7bea9fb6
BLAKE2b-256 af70aa4e6b96521a82661b32ea319ee12e5c4eed0b31b8f6526e3f2bad871b5f

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 751.2 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 c3ec790bfa14ac8883d5808e2fdfc6334a7b26ec34b6da6aaec2e4e020c49edd
MD5 fab4a9285d67e8ecd1415d3089d4a2b4
BLAKE2b-256 6b1e66ab7def8d0af2fcc1e0b88b78f9c8e2fb52cc24b8155986dff8a789924e

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 541.3 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a22d3141e6f4d0c48bdb7b14abe43b64fb588d3fd2f6032bf92c4cf9a22ab528
MD5 f53106e5d5847e5caf456622d58d66b5
BLAKE2b-256 2885ecf872702acbc915747581f74d1a497af573652a011b2d9da703fe089705

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 426.1 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 2aa015e76d81dd8be9bf1227d0b8e4f813c8b15ed97fa7ac69d6b1107c17ee5d
MD5 9722d2d08c06ebcf174eb17e96833657
BLAKE2b-256 608ab8f304d6d21c3dfd7df8aefa08d6e4dda90627dbdcd031c2e8bacc61ad01

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp35-cp35m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 332.5 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 4e0a5b24804238c82aacb6a181e6e197f7ab9a4bfc6c09422093af9c66a4010d
MD5 66eb357ec52f86ac0f29793023c38f45
BLAKE2b-256 d06d95f87a6e555fd704939b381f8e33c1210fb0754d0672806108872eac2c78

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp35-cp35m-manylinux2014_s390x.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp35-cp35m-manylinux2014_s390x.whl
  • Upload date:
  • Size: 693.9 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp35-cp35m-manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 cbebc42b15fe52d81ed93125e76d0ffc9001394270a637413a5c76f19ad3508f
MD5 c27abccf4cf676028d2025df25a6bddf
BLAKE2b-256 42a6815b32d5b3ad2ff192b6f14e32b0c6301f9127407601f4940f03254e63a6

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp35-cp35m-manylinux2014_ppc64le.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp35-cp35m-manylinux2014_ppc64le.whl
  • Upload date:
  • Size: 706.9 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp35-cp35m-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 acdce94ed94f119d5f50384a6fdd7ef630264c7416d3d887c631f1023ded50fb
MD5 019a1b6798d87364127f567e21cbe48a
BLAKE2b-256 3ac3c8912b05170a100bbdc8f1704a5b55c386782055119dc3f3d86b4f26ad79

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp35-cp35m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp35-cp35m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 632.8 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp35-cp35m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 78fa7a298a431609c4e612106ed137da29df9905b8f038e84a266ebba45b794a
MD5 2291a844b979af041fdde558a9b6ca5a
BLAKE2b-256 a7ad2a219bf3efff00851ea8f88d9586779eb95e8b3079d8a1e6184f399cfb6c

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 735.7 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2563a88c7513e32035a7709f58f7c4eaf16c11dfbef0ab8f5fb8430c4acb2599
MD5 9c7a154cadf4d8a64979f55f6284235e
BLAKE2b-256 bc6c2aa39adaf146faa10b5479e469a90d664bf1880711ea92c52461b930da71

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp35-cp35m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp35-cp35m-manylinux2010_i686.whl
  • Upload date:
  • Size: 744.9 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp35-cp35m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 bf9d79f72cd959c611b5b1de539c3f36d60d4186230bafb6da77562ee8c21e68
MD5 aa836df3b468f9299037d7dafcec5b67
BLAKE2b-256 c56692031916fceacd2d19092b9a37e476ee89362f49c3c7e8327f3a4e6f8a1c

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 735.7 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 23f20db807024538851509de9d0e2231b77b1d9e50c4de8375edf8c8c579659a
MD5 4dde3ed13cc690b1a16e14da03d11552
BLAKE2b-256 86a19592d2cbf31468483bcba8e3937a9ed9d49c3a669a38796a75ecb5203a8d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 744.9 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 12e47e75d402fbba56aaa9fe33792140f6bad240bc55dafcaaa98136cbf59b8a
MD5 13d1d371e1d7b98baf95d43e019becb8
BLAKE2b-256 54ebc83cc131c099f14255456d58a904d15c7e3b10f4077731a84c35446e5a4f

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.4.0-cp35-cp35m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.4.0-cp35-cp35m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 528.1 kB
  • Tags: CPython 3.5m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.4.0-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 be3d73ee630a195e28334001d6bc8f42f5f1909f229580641470a0684c543b08
MD5 d385e75ffada7dc0d831b79ee5f0c2c2
BLAKE2b-256 c2fe4618f8b682294573bae91a0d0e7417c571604634cce6efe66a3ff0a1bf5a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page