Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are two aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. More details on these performance improvements in form of benchmarks can be found here

⚠️ This library fixes partial_ratio from FuzzyWuzzy, so the results are different in some cases.

FuzzyWuzzy relies on an incorrect implementation of get_matching_blocks() in python-Levenshtein (see this issue). For RapidFuzz I decided to use:

  • The implementation of get_matching_blocks() from difflib for the optimal alignment
  • The Levenshtein distance (same as in python-Levenshtein) for the normalized edit distance

To get the same results from FuzzyWuzzy (albeit at a large performance penalty), you can use

import Levenshtein
from difflib import SequenceMatcher

class StringMatcher:
    def __init__(self, isjunk=None, seq1='', seq2=''):
        self._str1, self._str2 = seq1, seq2

    def get_matching_blocks(self):
        return SequenceMatcher(None, self._str1, self._str2, False).get_matching_blocks()

    def ratio(self):
        return Levenshtein.ratio(self._str1, self._str2)

from fuzzywuzzy import fuzz
fuzz.SequenceMatcher = StringMatcher

This is a common question, for more details see my comments here, here, and here.

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++14 capable compiler.

git clone https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparision between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparision I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

Benchmark extractOne

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-1.5.0.tar.gz (365.7 kB view details)

Uploaded Source

Built Distributions

rapidfuzz-1.5.0-pp37-pypy37_pp73-win32.whl (521.5 kB view details)

Uploaded PyPy Windows x86

rapidfuzz-1.5.0-pp37-pypy37_pp73-manylinux2010_x86_64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

rapidfuzz-1.5.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-1.5.0-pp36-pypy36_pp73-win32.whl (521.5 kB view details)

Uploaded PyPy Windows x86

rapidfuzz-1.5.0-pp36-pypy36_pp73-manylinux2010_x86_64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

rapidfuzz-1.5.0-pp36-pypy36_pp73-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-1.5.0-cp39-cp39-win_amd64.whl (710.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-1.5.0-cp39-cp39-win32.whl (536.5 kB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-1.5.0-cp39-cp39-manylinux2014_s390x.whl (1.5 MB view details)

Uploaded CPython 3.9

rapidfuzz-1.5.0-cp39-cp39-manylinux2014_ppc64le.whl (1.4 MB view details)

Uploaded CPython 3.9

rapidfuzz-1.5.0-cp39-cp39-manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.9

rapidfuzz-1.5.0-cp39-cp39-manylinux2010_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

rapidfuzz-1.5.0-cp39-cp39-manylinux2010_i686.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

rapidfuzz-1.5.0-cp39-cp39-manylinux1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9

rapidfuzz-1.5.0-cp39-cp39-manylinux1_i686.whl (1.6 MB view details)

Uploaded CPython 3.9

rapidfuzz-1.5.0-cp39-cp39-macosx_11_0_arm64.whl (893.1 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-1.5.0-cp39-cp39-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-1.5.0-cp39-cp39-macosx_10_9_universal2.whl (2.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-1.5.0-cp38-cp38-win_amd64.whl (710.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-1.5.0-cp38-cp38-win32.whl (536.7 kB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-1.5.0-cp38-cp38-manylinux2014_s390x.whl (1.5 MB view details)

Uploaded CPython 3.8

rapidfuzz-1.5.0-cp38-cp38-manylinux2014_ppc64le.whl (1.4 MB view details)

Uploaded CPython 3.8

rapidfuzz-1.5.0-cp38-cp38-manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.8

rapidfuzz-1.5.0-cp38-cp38-manylinux2010_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

rapidfuzz-1.5.0-cp38-cp38-manylinux2010_i686.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

rapidfuzz-1.5.0-cp38-cp38-manylinux1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8

rapidfuzz-1.5.0-cp38-cp38-manylinux1_i686.whl (1.6 MB view details)

Uploaded CPython 3.8

rapidfuzz-1.5.0-cp38-cp38-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-1.5.0-cp37-cp37m-win_amd64.whl (715.5 kB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-1.5.0-cp37-cp37m-win32.whl (539.5 kB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-1.5.0-cp37-cp37m-manylinux2014_s390x.whl (1.5 MB view details)

Uploaded CPython 3.7m

rapidfuzz-1.5.0-cp37-cp37m-manylinux2014_ppc64le.whl (1.4 MB view details)

Uploaded CPython 3.7m

rapidfuzz-1.5.0-cp37-cp37m-manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.7m

rapidfuzz-1.5.0-cp37-cp37m-manylinux2010_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.5.0-cp37-cp37m-manylinux2010_i686.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

rapidfuzz-1.5.0-cp37-cp37m-manylinux1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m

rapidfuzz-1.5.0-cp37-cp37m-manylinux1_i686.whl (1.6 MB view details)

Uploaded CPython 3.7m

rapidfuzz-1.5.0-cp37-cp37m-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-1.5.0-cp36-cp36m-win_amd64.whl (710.4 kB view details)

Uploaded CPython 3.6m Windows x86-64

rapidfuzz-1.5.0-cp36-cp36m-win32.whl (534.8 kB view details)

Uploaded CPython 3.6m Windows x86

rapidfuzz-1.5.0-cp36-cp36m-manylinux2014_s390x.whl (1.5 MB view details)

Uploaded CPython 3.6m

rapidfuzz-1.5.0-cp36-cp36m-manylinux2014_ppc64le.whl (1.4 MB view details)

Uploaded CPython 3.6m

rapidfuzz-1.5.0-cp36-cp36m-manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.6m

rapidfuzz-1.5.0-cp36-cp36m-manylinux2010_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.5.0-cp36-cp36m-manylinux2010_i686.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

rapidfuzz-1.5.0-cp36-cp36m-manylinux1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.6m

rapidfuzz-1.5.0-cp36-cp36m-manylinux1_i686.whl (1.6 MB view details)

Uploaded CPython 3.6m

rapidfuzz-1.5.0-cp36-cp36m-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

rapidfuzz-1.5.0-cp35-cp35m-win_amd64.whl (706.7 kB view details)

Uploaded CPython 3.5m Windows x86-64

rapidfuzz-1.5.0-cp35-cp35m-win32.whl (532.1 kB view details)

Uploaded CPython 3.5m Windows x86

rapidfuzz-1.5.0-cp35-cp35m-manylinux2014_s390x.whl (1.5 MB view details)

Uploaded CPython 3.5m

rapidfuzz-1.5.0-cp35-cp35m-manylinux2014_ppc64le.whl (1.4 MB view details)

Uploaded CPython 3.5m

rapidfuzz-1.5.0-cp35-cp35m-manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.5m

rapidfuzz-1.5.0-cp35-cp35m-manylinux2010_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.5.0-cp35-cp35m-manylinux2010_i686.whl (1.6 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ i686

rapidfuzz-1.5.0-cp35-cp35m-manylinux1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.5m

rapidfuzz-1.5.0-cp35-cp35m-manylinux1_i686.whl (1.6 MB view details)

Uploaded CPython 3.5m

rapidfuzz-1.5.0-cp35-cp35m-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.5m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-1.5.0.tar.gz.

File metadata

  • Download URL: rapidfuzz-1.5.0.tar.gz
  • Upload date:
  • Size: 365.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0.tar.gz
Algorithm Hash digest
SHA256 141ee381c16f7e58640ef1f1dbf76beb953d248297a7165f7ba25d81ac1161c7
MD5 c0864eee49e25b3c950577d6c5b3e351
BLAKE2b-256 4b8e81a942d0b8dea2e074fbddab4a7b9fe7b5042374f1a9bb8a34df6851411d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-pp37-pypy37_pp73-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-pp37-pypy37_pp73-win32.whl
  • Upload date:
  • Size: 521.5 kB
  • Tags: PyPy, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-pp37-pypy37_pp73-win32.whl
Algorithm Hash digest
SHA256 04c4fd372e858f25e0898ba27b5bb7ed8dc528b0915b7aa02d20237e9cdd4feb
MD5 d0a483edad7e41cd2ae7dd05850fcdb5
BLAKE2b-256 fed07462593ff1be01f304303aa0c4b5c9d88ea8529a5c3ac560c67c2035d597

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-pp37-pypy37_pp73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-pp37-pypy37_pp73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-pp37-pypy37_pp73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2134ac91e8951d42c9a7de131d767580b8ac50820475221024e5bd63577a376f
MD5 f87bfbcf993655cbe3775cb230fc7699
BLAKE2b-256 8ade16fda0eb7309b4d89ba37ec49a91b5097e4c4abe52558469d5dbb4d11a67

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-pp37-pypy37_pp73-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-pp37-pypy37_pp73-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: PyPy
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-pp37-pypy37_pp73-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2fb9d47fc16a2e8f5e900c8334d823a7307148ea764321f861b876f85a880d57
MD5 60ed9abce048929a866503facc5105d1
BLAKE2b-256 d9146fdb7b329394e17d8192c07515231c1c578237dd66718585f04b045eb115

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 360415125e967d8682291f00bcea311c738101e0aee4cb90e5572d7e54483f0d
MD5 e568522574a955d9710f06057b24603e
BLAKE2b-256 af78816f96256d28dea8fdefa3299871b26fac10b765ddecee76e51c0055fb26

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-pp36-pypy36_pp73-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-pp36-pypy36_pp73-win32.whl
  • Upload date:
  • Size: 521.5 kB
  • Tags: PyPy, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-pp36-pypy36_pp73-win32.whl
Algorithm Hash digest
SHA256 8c61ced6729146e695ecad403165bf3a07e60b8e8a18df91962b3abf72aae6d5
MD5 1314c356c229d7e6d54d251ef3e65dcc
BLAKE2b-256 b9530b5906d2793eca25570090f4d38b0afcd6fe9290e9740923e911daf32fcd

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-pp36-pypy36_pp73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-pp36-pypy36_pp73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-pp36-pypy36_pp73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0e6e2f02bb67a35d75a5613509bb49f0050c0ec4471a9af14da3ad5488d6d5ff
MD5 53029091b6b1bc264ab5137c83ed413d
BLAKE2b-256 72ba992ac1b13a3b50ec39dad5f653618628378045dcda5b856b72ffd638b802

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-pp36-pypy36_pp73-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-pp36-pypy36_pp73-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: PyPy
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-pp36-pypy36_pp73-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ac9a2d5a47a4a4eab060882a162d3626889abdec69f899a59fe7b9e01ce122c9
MD5 702257b32b58a55777772464e8dac48f
BLAKE2b-256 cfb955f739d66434ec2a476891bdee46275467295de18aa0dfc03e555cfffbe6

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-pp36-pypy36_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-pp36-pypy36_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-pp36-pypy36_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a533d17d177d11b7c177c849adb728035621462f6ce2baaeb9cf1f42ba3e326c
MD5 2975caa1dfb734be05f97136e1b9a24c
BLAKE2b-256 911bc996b0a6878bf368292e137d329e13482a3c7bd7f5d56670377b41a08057

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 710.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 dec0d429d117ffd7df1661e5f6ca56bfb6806e117be0b75b5d414df43aa4b6d5
MD5 2e6f46f76c015711ca48eff6243965dd
BLAKE2b-256 f6621e018e10c3611da0a99bd9f8247f8f65c495f3f60d79a20a15079fd55ce0

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 536.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 0b77ca0dacb129e878c2583295b76e12da890bd091115417d23b4049b02c2566
MD5 50c308ea5301aca19fbcd0cfaf38051d
BLAKE2b-256 bdd7102d8861b9a517aa46f0b4046ac06803169b88ee55ab1521135d426fcde3

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp39-cp39-manylinux2014_s390x.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp39-cp39-manylinux2014_s390x.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp39-cp39-manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 2647e00e2211ed741aecb4e676461b7202ce46d536c3439ede911b088432b7a4
MD5 14fbe2de3d60bf93aca4bb9c74f99355
BLAKE2b-256 a7a80f610a7a9a9f5dc62b93f2d3d1fe7a01c20fde80fecef33d3d0d320af1b9

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp39-cp39-manylinux2014_ppc64le.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp39-cp39-manylinux2014_ppc64le.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp39-cp39-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 712a4d510c466d6ca75138dad53a1cbd8db0da4bbfa5fc431fcebb0a426e5323
MD5 c5ea6824605541e724ed9636b781f289
BLAKE2b-256 dd05ca143a05a7f4cbd511b05e1a6a908fb327ff7c7309f50932d953a94e97e7

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp39-cp39-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5784c24e2de539064d8d5ce3f68756630b54fc33af31e054373a65bbed68823a
MD5 6dd8bdbe4590d4435abc8677b390c902
BLAKE2b-256 f73f78147aec430b10417a05ef9b46befae94c9ebc39c94d72ea3e3cded61934

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e00198aa7ca8408616d9821501ff90157c429c952d55a2a53987a9b064f73d49
MD5 1320cc7c79f11b9b541a58827f921517
BLAKE2b-256 288b9b9da7672eabbef3c43f24dd0db2bd975502cb6842aa1b63675cd05d45c3

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 51f9ac3316e713b4a10554a4d6b75fe6f802dd9b4073082cc98968ace6377cac
MD5 da27e930f6376fcdfd8b0282605f0d5b
BLAKE2b-256 b3dd8e8e6376c5f05d9887bcfcc061602d0307c8fd57b3cbb2e6f8458e03ef37

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 190b48ba8e3fbcb1cfc522300dbd6a007f50c13cd71002c95bd3946a63b749f6
MD5 a7137982d4067e22188e137c9841a8e1
BLAKE2b-256 e23f7aa4d852e7440765eb150a3f7fe7f4d4414d0cff6efc7956c8993a9a51ff

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp39-cp39-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp39-cp39-manylinux1_i686.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp39-cp39-manylinux1_i686.whl
Algorithm Hash digest
SHA256 b62b2a2d2532d357d1b970107a90e85305bdd8e302995dd251f67a19495033f5
MD5 8b316610a02d5a0c56a7df2aa4a7ae87
BLAKE2b-256 07fca2ffccc09ddb5775085cd96a055d2473b99818ffb333d14d06919cd6d185

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 893.1 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 68156a67d541bb4584cb31e366fb7de9326f5b77ed07f9882e9b9aaa40b2e5b8
MD5 47036b2a8514d744c6c4999e3fa5e59b
BLAKE2b-256 2c92cac999228e0e120c4c5e702c2680a43719dbc60921e95440fb46213dfbf8

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7a386fe0aad7e89b5017768492ea085d241c32f6dc5a6774b0a309d28f61e720
MD5 68e6e5935ed4238f9f63a1a515e04c81
BLAKE2b-256 e8b9ca83ee622f2efdc946b82dc8f3aa028309ddf1f020f98688f65056202ac6

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 3fa261479e3828eff1f3d0265def8d0d893f2e2f90692d5dae96b3f4ae44d69e
MD5 907903822e38319f7cbe742e4f44dd53
BLAKE2b-256 5aa7325e0e71fe2ac102fb750251a430bd008d4abad454812ea5a15224095836

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 710.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 cd6603b94e2a3d56d143a5100f8f3c1d29ad8f5416bdc2a25b079f96eee3c306
MD5 0e62e5cab3fdf3747b63e28311cae694
BLAKE2b-256 ca92258cef7a32985528170ea88a4df812c06e08e66a4fe2e1dd42a16305b0b5

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 536.7 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 575a0eceaf84632f2014fd55a42a0621e448115adf6fcbc2b0e5c7ae1c18b501
MD5 d630680933010b6ba50d0b9e4fabad79
BLAKE2b-256 9fac8d44d0528472f6ab9f698e4b0dec6b908b8a9a92430f8d0232245c66cb9b

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp38-cp38-manylinux2014_s390x.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp38-cp38-manylinux2014_s390x.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp38-cp38-manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 bbdee2e3c2cee9c59e1d1a3f351760a1b510e96379d14ba2fa2484a79f56d0ea
MD5 bd2662e24cde173f68dec33d6a4a1895
BLAKE2b-256 4fe380da3fbbe48faea2aaa933a4642475ffcdee3fd3fe118af24f9901a68467

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp38-cp38-manylinux2014_ppc64le.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp38-cp38-manylinux2014_ppc64le.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp38-cp38-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 bf5a6f4f2eb44f32271e9c2d1e46b657764dbd1b933dd84d7c0433eab48741f8
MD5 c694d7a388f215322391430ed7301bff
BLAKE2b-256 b42f200d1bf0ae0ce12e2d96fbc15540f0ce67eca92f4ec421b219f602e15c45

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp38-cp38-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b409f0f86a316b6132253258185c7b011e779ed2170d1ad83c79515fea7d78c8
MD5 68f6181c9902b7a912457fa30f96299d
BLAKE2b-256 4f4755bb465450e6e396331108954bd7bfe5aab0c1cff82008c3b2afd946ceb7

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d2d1bea50f54387bc1e82b93f6e3a433084e0fa538a7ada8e4d4d7200bae4b83
MD5 3c75015a7a0f18602696ed1b38486293
BLAKE2b-256 e66b54d85d095883a7cd494a5511f2adac0d72a1bd006e884beef4857cd8f720

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 f44564a29e96af0925e68733859d8247a692968034e1b37407d9cfa746d3a853
MD5 ebf6cf65564bfe97f02a27073fc935da
BLAKE2b-256 c2ccf111e33e5cc9906df099c6dc247ff288f15cba12a843e5369b6a23924480

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2c1ce8e8419ac8462289a6e021b8802701ea0f111ebde7607ba3c9588c3d6f30
MD5 486ac1efe853ccbf84c1e8fc51131c50
BLAKE2b-256 a0872202d5d89511a2a2b196c23dbd39c2e972419f595707f634f9cb231706b7

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 d04a8465738363d0b9ee39abb3b289e1198d1f3cbc98bc43b8e21ec8e0b21774
MD5 dda1b59e5c59df568990bcafb489b78f
BLAKE2b-256 e8e1682e97532c7387c27950d734b63e6226c65b1ae42b2d83e9453a7631b599

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 466d9c644fa235278ef376eefb1fc4382107b07764fbc3c7280533ad9ce49bb4
MD5 ce8a222827b00bdc216713992ba2150b
BLAKE2b-256 715760b92fcc7a8ac7ccee66ca3c9b36454ef023f46a3a4a9b6fc3e5abc72488

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 715.5 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 8ae7bf62f0382d13e9b36babc897742bac5e7ee04b4e5e94cd67085bfccfd2fd
MD5 2da4b4e20066f6ce21df9da7460d58a3
BLAKE2b-256 bba56e03dc736f60024e5b55c8345ccf508b31184101b7948a87ac7b8b148aac

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 539.5 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 0e35b9b92a955018ebd09d4d9d70f8e81a0106fe1ed04bc82e3a05166cd04ea5
MD5 161469b0330a46656b595ae0bc6195ba
BLAKE2b-256 3f7e8ad8bd3f5e7a3419c8d023f3d14f8b4d510da46b5f111c1ace4f5767cbc3

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp37-cp37m-manylinux2014_s390x.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp37-cp37m-manylinux2014_s390x.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp37-cp37m-manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 a2d84fde07c32514758d283dd1227453db3ed5372a3e9eae85d0c29b2953f252
MD5 4ebb02d1b36b4ae3cc8b0ef6108f1a7b
BLAKE2b-256 6c4b4929ec87ef347b7235892464fb507ed73f2a571cd33e42cf2f1d5001e583

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp37-cp37m-manylinux2014_ppc64le.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp37-cp37m-manylinux2014_ppc64le.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp37-cp37m-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 8049a500b431724d283ddf97d67fe48aa67b4523d617a203c22fd9da3a496223
MD5 fbec4046d775ca331d7703b2ff9f01e1
BLAKE2b-256 1f11123f71786da0750d68cb67cc3a5e81dd4a400777e24a8497cf3475a5ee81

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp37-cp37m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 075b8bf76dd4bbc9ccb5177806c9867424d365898415433bf88e7b8e88dc4dfe
MD5 ae30da7aecfc44c5babfd989affb1929
BLAKE2b-256 139ff8e15778bffbb3e2b778068e904cfc8dad0141d57548e94f9b56789292c9

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c57f3b74942ae0d0869336e613cbd0760de61a462ff441095eb5fca6575cf964
MD5 52bd46bb6df8022966cd97596015b310
BLAKE2b-256 60bd9933edae6ded77c3faf2c3285e99dca6642a97a7f371908203733f73e3cb

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 d627ec73d324d804af4c95909e2fa30b0e59f7efaf69264e553a0e498034404b
MD5 5f456fe03a1c3c20b5993906e17a9cec
BLAKE2b-256 b367c0b5c92693cf752690a8c95a7f3222622b49e526a4f76470ad6e01ce3cc3

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6e8c4fd87361699e0cf5cf7ff075e4cd70a2698e9f914368f0c3e198c77c755c
MD5 4a7c4c8efadc3c71c20900660d7d534a
BLAKE2b-256 19024c57e2d477c68785e40228a89d2d1b77f339c889f50d4387a52007cfb609

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 73509dbfcf556233d62683aed0e5f23282ec7138eeedc3ecda2938ad8e8c969d
MD5 703dc71f036341bb72395717c24bdceb
BLAKE2b-256 c87049f932da2a3727312ecdf90bd00bc5bdcbe76833f70e76023cfad0c34651

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 122b7c25792eb27ca59ab23623a922a7290d881d296556d0c23da63ed1691cd5
MD5 f82051eee78feb6bd34dbe6a0f3a9ee9
BLAKE2b-256 50deb8504f0883bb631c02425992974eb0cc29361d135e001a166346caa738ff

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 710.4 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 f03a5fa9fe38d7f8d566bff0b66600f488d56700469bf1e5e36078f4b58290b6
MD5 f97eeddbc86d07a49b2115e9de7a9a96
BLAKE2b-256 9086ec3dd4282b1fa69e8e926e70311f9a3ab440d514a46954a8296e4fd430e1

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 534.8 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 0a901aa223a4b051846cb828c33967a6f9c66b8fe0ba7e2a4dc70f6612006988
MD5 e591f3ef7f9c9b16f5bfd8769e85b0d2
BLAKE2b-256 a9d51c18ad7fa462a407a7410b93ac0d476d83bc988c1f72eaece4974ce9faaf

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp36-cp36m-manylinux2014_s390x.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp36-cp36m-manylinux2014_s390x.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp36-cp36m-manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 814cd474c31db0383c69eed5b457571f63521f38829955c842b141b4835f067f
MD5 191d934268187c4ce8cea18a6ccaf1bb
BLAKE2b-256 9b786579feefa278df4caced5ab3c66760edcb9cef98bd7dd0cb00bd45cca16b

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp36-cp36m-manylinux2014_ppc64le.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp36-cp36m-manylinux2014_ppc64le.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp36-cp36m-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 8b086b2f70571c9bf16ead5f65976414f8e75a1c680220a839b8ddf005743060
MD5 0386df06ba279d6bcc84dacfc50b8c48
BLAKE2b-256 d4d05095e7d7b91f1293d23627e2895c65d67e77df4f7085cb2eae8f23af8704

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp36-cp36m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp36-cp36m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp36-cp36m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f2fe161526cce52eae224c2af9ae1b9c475ae3e1001fe76024603b290bc8f719
MD5 df2c83862285da8b1bfa43c34dfa37b8
BLAKE2b-256 c9c89f98f71bc993fe5003abc2c9a72ded6acd32c1b6f6358d665de1595b73ea

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a8f3f374b4e8e80516b955a1da6364c526d480311a5c6be48264cf7dc06d2fba
MD5 85f99ed637d0b448b5dc4d4fdc322459
BLAKE2b-256 d193cc07f0bcbf3754c4a4564e6d9f7a05d5a48311a1bea4afab342b5846ce22

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 7c101bafb27436affcaa14c631e2bf99d6a7a7860a201ce17ee98447c9c0e7f4
MD5 8d6be74ec1231a6f0f0ed8c6bf3ce415
BLAKE2b-256 10af856c5cdab59ee9276a222eceb591dc6b63d6f07cfeb3ef6a597ecf2f4109

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2ba6ffe8ac66dbeae91a0b2cb50f4836ec16920f58746eaf46ff3e9c4f9c0ad8
MD5 5e2a2dd9ad4b69583c226194daeb329e
BLAKE2b-256 7b667acb2b80dc00f16cac9f3159e279b31bd5e3ea7198a6eb1d3be01aaad8e2

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 60ea1cee33a5a847aeac91a35865c6f7f35a87613df282bda2e7f984e91526f5
MD5 6986b5e07751f6b994c4c277a68168be
BLAKE2b-256 73064bdf375249853269e2e2225af5b67308ecd43c7b34e145aafc6377d7a2a7

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3a3ef319fd1162e7e38bf11259d86fc6ea3885d2abae6359e5b4dafad62592db
MD5 fec831213759ee181af74850684c4e0f
BLAKE2b-256 e81c50d89c7ebc5511c89dc834a376746d218274860734f06a917c144cbabc48

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 706.7 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 0679af3d85082dcb27e75ea30c5047dbcc99340f38490c7d4769ae16909c246a
MD5 96aa98326d138e51acf6c1f8f87a23fb
BLAKE2b-256 09bf15ec83f1e3f8c417f7a593ead53efacf6a01e58f711c950fadcc502bd22b

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp35-cp35m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 532.1 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 f0b7e15209208ee74bc264b97e111a3c73e19336eda7255c406e56cc6fbbd384
MD5 432cf57c5adfc242d37f1c1f7e472d40
BLAKE2b-256 99e79cb62c660ba76016e4e9563040ee9eea9db0eba1bc96a2459a7cc1760b6b

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp35-cp35m-manylinux2014_s390x.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp35-cp35m-manylinux2014_s390x.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp35-cp35m-manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 eaafa0349d47850ed2c3ae121b62e078a63daf1d533b1cd43fca0c675a85a025
MD5 41ff57957ac7e7963ae0e65f2a27ef28
BLAKE2b-256 8c6863553ad523c231231572997a096be1ad677317c83026cd46e37850f8c552

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp35-cp35m-manylinux2014_ppc64le.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp35-cp35m-manylinux2014_ppc64le.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp35-cp35m-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 03c97beb1c7ce5cb1d12bbb8eb87777e9a5fad23216dab78d6850cafdd3ecaf1
MD5 37815ee7180e6ad78fb98ff6ac425c9f
BLAKE2b-256 e4bc982f79cb1b9e64ee610fe5f858375876eb97b164d541c468345eb0176cef

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp35-cp35m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp35-cp35m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp35-cp35m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 662b4021951ac9edb9a0d026820529e891cea69c11f280188c5b80fefe6ee257
MD5 267cde5822b04f739861e6897b74ca37
BLAKE2b-256 d462794cb1535f73d73951b20a14b2429e1742fa2827f778d3d251ec10d4aea6

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 407a5c4d2af813e803b828b004f8686300baf298e9bf90b3388a568b1637a8dc
MD5 3e7802cb7b77e755a729a9809f664878
BLAKE2b-256 05cb5a00ccb2c2926f3a2296593010c1e0a94875521afab298bdce4de741503f

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp35-cp35m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp35-cp35m-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp35-cp35m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 542fbe8fb4403af36bfffd53e42cb1ff3f8d969a046208373d004804072b744c
MD5 a43c569ddd9a1521f33f4127074f060b
BLAKE2b-256 d179950e6423e8439f809bdc7a5aaa5425f26da1675fda2df225c2c4ffb51f4b

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 26cb066e79c9867d313450514bb70124d392ac457640c4ec090d29eb68b75541
MD5 5904159ff1886a94a20f7f4689885338
BLAKE2b-256 a0d9da024e3f4804e9bebf93e80b6d2927271a43e925daae01b19fa502170006

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 079afafa6e6b00ee799e16d9fc6c6522132cbd7742a7a9e78bd301321e1b5ad6
MD5 178bf626d8c2db8fdb95c9f1ac5bd5f9
BLAKE2b-256 a324e644e1546e9a5beb9fbe666e4448f8bd06e355d0a9b5be7f8de213a75dac

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.0-cp35-cp35m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.0-cp35-cp35m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.5m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for rapidfuzz-1.5.0-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 670a330e90e962de5823e01e8ae1b8903af788325fbce1ef3fd5ece4d22e0ba4
MD5 13147c409f9b61ea5f5a80186d75609b
BLAKE2b-256 aec312f6d676c35f64f8a2a30ce0368a689ded16446fbb6ed3ac3f23dfbc8371

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page