Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are two aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. More details on these performance improvements in form of benchmarks can be found here

⚠️ This library fixes partial_ratio from FuzzyWuzzy, so the results are different in some cases.

FuzzyWuzzy relies on an incorrect implementation of get_matching_blocks() in python-Levenshtein (see this issue). For RapidFuzz I decided to use:

  • The implementation of get_matching_blocks() from difflib for the optimal alignment
  • The Levenshtein distance (same as in python-Levenshtein) for the normalized edit distance

To get the same results from FuzzyWuzzy (albeit at a large performance penalty), you can use

import Levenshtein
from difflib import SequenceMatcher

class StringMatcher:
    def __init__(self, isjunk=None, seq1='', seq2=''):
        self._str1, self._str2 = seq1, seq2

    def get_matching_blocks(self):
        return SequenceMatcher(None, self._str1, self._str2, False).get_matching_blocks()

    def ratio(self):
        return Levenshtein.ratio(self._str1, self._str2)

from fuzzywuzzy import fuzz
fuzz.SequenceMatcher = StringMatcher

This is a common question, for more details see my comments here, here, and here.

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++11 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparision between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparision I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

Benchmark extractOne

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

This version

1.5.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-1.5.1.tar.gz (383.8 kB view details)

Uploaded Source

Built Distributions

rapidfuzz-1.5.1-pp37-pypy37_pp73-win32.whl (523.1 kB view details)

Uploaded PyPy Windows x86

rapidfuzz-1.5.1-pp37-pypy37_pp73-manylinux2010_x86_64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

rapidfuzz-1.5.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-1.5.1-pp36-pypy36_pp73-win32.whl (523.1 kB view details)

Uploaded PyPy Windows x86

rapidfuzz-1.5.1-pp36-pypy36_pp73-manylinux2010_x86_64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

rapidfuzz-1.5.1-pp36-pypy36_pp73-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-1.5.1-cp39-cp39-win_amd64.whl (718.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-1.5.1-cp39-cp39-win32.whl (545.1 kB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-1.5.1-cp39-cp39-manylinux2014_s390x.whl (1.5 MB view details)

Uploaded CPython 3.9

rapidfuzz-1.5.1-cp39-cp39-manylinux2010_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

rapidfuzz-1.5.1-cp39-cp39-manylinux2010_i686.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

rapidfuzz-1.5.1-cp39-cp39-manylinux1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9

rapidfuzz-1.5.1-cp39-cp39-manylinux1_i686.whl (1.6 MB view details)

Uploaded CPython 3.9

rapidfuzz-1.5.1-cp39-cp39-macosx_11_0_arm64.whl (905.3 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-1.5.1-cp39-cp39-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-1.5.1-cp39-cp39-macosx_10_9_universal2.whl (2.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-1.5.1-cp38-cp38-win_amd64.whl (718.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-1.5.1-cp38-cp38-win32.whl (544.0 kB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-1.5.1-cp38-cp38-manylinux2014_s390x.whl (1.5 MB view details)

Uploaded CPython 3.8

rapidfuzz-1.5.1-cp38-cp38-manylinux2010_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

rapidfuzz-1.5.1-cp38-cp38-manylinux2010_i686.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

rapidfuzz-1.5.1-cp38-cp38-manylinux1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8

rapidfuzz-1.5.1-cp38-cp38-manylinux1_i686.whl (1.6 MB view details)

Uploaded CPython 3.8

rapidfuzz-1.5.1-cp38-cp38-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-1.5.1-cp37-cp37m-win_amd64.whl (722.4 kB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-1.5.1-cp37-cp37m-win32.whl (547.0 kB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-1.5.1-cp37-cp37m-manylinux2014_s390x.whl (1.5 MB view details)

Uploaded CPython 3.7m

rapidfuzz-1.5.1-cp37-cp37m-manylinux2014_ppc64le.whl (1.4 MB view details)

Uploaded CPython 3.7m

rapidfuzz-1.5.1-cp37-cp37m-manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.7m

rapidfuzz-1.5.1-cp37-cp37m-manylinux2010_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.5.1-cp37-cp37m-manylinux2010_i686.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

rapidfuzz-1.5.1-cp37-cp37m-manylinux1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m

rapidfuzz-1.5.1-cp37-cp37m-manylinux1_i686.whl (1.6 MB view details)

Uploaded CPython 3.7m

rapidfuzz-1.5.1-cp37-cp37m-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-1.5.1-cp36-cp36m-win_amd64.whl (717.0 kB view details)

Uploaded CPython 3.6m Windows x86-64

rapidfuzz-1.5.1-cp36-cp36m-win32.whl (543.1 kB view details)

Uploaded CPython 3.6m Windows x86

rapidfuzz-1.5.1-cp36-cp36m-manylinux2014_s390x.whl (1.5 MB view details)

Uploaded CPython 3.6m

rapidfuzz-1.5.1-cp36-cp36m-manylinux2014_ppc64le.whl (1.4 MB view details)

Uploaded CPython 3.6m

rapidfuzz-1.5.1-cp36-cp36m-manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.6m

rapidfuzz-1.5.1-cp36-cp36m-manylinux2010_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.5.1-cp36-cp36m-manylinux2010_i686.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

rapidfuzz-1.5.1-cp36-cp36m-manylinux1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.6m

rapidfuzz-1.5.1-cp36-cp36m-manylinux1_i686.whl (1.6 MB view details)

Uploaded CPython 3.6m

rapidfuzz-1.5.1-cp36-cp36m-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

rapidfuzz-1.5.1-cp35-cp35m-win_amd64.whl (713.3 kB view details)

Uploaded CPython 3.5m Windows x86-64

rapidfuzz-1.5.1-cp35-cp35m-win32.whl (539.6 kB view details)

Uploaded CPython 3.5m Windows x86

rapidfuzz-1.5.1-cp35-cp35m-manylinux2014_s390x.whl (1.5 MB view details)

Uploaded CPython 3.5m

rapidfuzz-1.5.1-cp35-cp35m-manylinux2014_ppc64le.whl (1.4 MB view details)

Uploaded CPython 3.5m

rapidfuzz-1.5.1-cp35-cp35m-manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.5m

rapidfuzz-1.5.1-cp35-cp35m-manylinux2010_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.5.1-cp35-cp35m-manylinux2010_i686.whl (1.6 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ i686

rapidfuzz-1.5.1-cp35-cp35m-manylinux1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.5m

rapidfuzz-1.5.1-cp35-cp35m-manylinux1_i686.whl (1.6 MB view details)

Uploaded CPython 3.5m

rapidfuzz-1.5.1-cp35-cp35m-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.5m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-1.5.1.tar.gz.

File metadata

  • Download URL: rapidfuzz-1.5.1.tar.gz
  • Upload date:
  • Size: 383.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1.tar.gz
Algorithm Hash digest
SHA256 4ebbd071425ee812548c301c60661a4f8faa5e5bcc97a6f0bef5b562585a8025
MD5 460c5bd5f0d45af5c6385d3937ab4c0d
BLAKE2b-256 fb712054dc02c98190073b27bbf5e6b16acc84894e0953beaff168e2266a460b

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-pp37-pypy37_pp73-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-pp37-pypy37_pp73-win32.whl
  • Upload date:
  • Size: 523.1 kB
  • Tags: PyPy, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-pp37-pypy37_pp73-win32.whl
Algorithm Hash digest
SHA256 31d83af9ac39f47f47ce4830ee118e6fa53964cccd8161e9a478a326f2a994cf
MD5 b4924c56114a9b354093a4eccce3c455
BLAKE2b-256 807647cc0a9af59116de6d759fb96fbddc210fb866cbc0ea759283e05f7bc964

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-pp37-pypy37_pp73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-pp37-pypy37_pp73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-pp37-pypy37_pp73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f7148a53a0fd3466b82b81d94ad91aee7ce7947f37f16f9fb54319ea7df7f4af
MD5 3cef4a67c3a2a91c8e335ddc6ed093c0
BLAKE2b-256 3df52dc4a4ea83f73d1cc26a6d6236bcf1fd74f55d1c03c94a3c5fc3f34a01d6

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-pp37-pypy37_pp73-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-pp37-pypy37_pp73-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: PyPy
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-pp37-pypy37_pp73-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b41c346f16cd1ee71b259106d3cfad3347bd8fff4ff20f334a12738df6736c01
MD5 ea57574fe7806feb12f0be62b84acea5
BLAKE2b-256 df608cabac6cf5b5b131d92216237d56c352ad83b71f0a772df2bd58d08bd097

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b6ff10d856fce55e2b1c681e4e7cd7da9b9eb6854571df60d6ed8904c777e64b
MD5 dc434f6dc26c1a9ca73a0d951f8e0342
BLAKE2b-256 0c02be70454368acfa8011e6767803da5db46b3bb08077f2fdd845a798696a37

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-pp36-pypy36_pp73-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-pp36-pypy36_pp73-win32.whl
  • Upload date:
  • Size: 523.1 kB
  • Tags: PyPy, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-pp36-pypy36_pp73-win32.whl
Algorithm Hash digest
SHA256 08ecef2995b6ed1187b375d8f28ba4557522f098a1515b6afb0e3b452997a3a4
MD5 23148a1780d22c904249f523256973d2
BLAKE2b-256 bab504381f2c5fb6eacc0c48a0535f9a792e43e5655e5f7cf4051b04c7919386

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-pp36-pypy36_pp73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-pp36-pypy36_pp73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-pp36-pypy36_pp73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 cb083609923bc4ac602e6f1d61be61a25b35cccfb5ee208d2aa89eb0be357c69
MD5 6a2d10bd930dd31f49b6db40cf71ad5a
BLAKE2b-256 b163db0e9838dc1b8ced6a7e24348d32f9dbb24b37275e025124d68e56ede99f

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-pp36-pypy36_pp73-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-pp36-pypy36_pp73-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: PyPy
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-pp36-pypy36_pp73-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e738ec4e680bebe4442befda5cdd18020c3721d4cd75f9bfe2fb94e78ef55618
MD5 7d4e31aa85eb8ab965d1a80ad6f9db11
BLAKE2b-256 fb612df1830f25519c0fcc0485df9e2f14f576ade07b244c9f11820af1c5b4ac

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-pp36-pypy36_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-pp36-pypy36_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-pp36-pypy36_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7fb25ee0340cc26dad0bb4a97019bf61b4cefaec67a1be64ac9dac2f98c697cd
MD5 d9790770a680efa819ffb7a4cb8c07b2
BLAKE2b-256 64814fad5dcdab689debc01ea1f3c6b718afa01d073146c4ed38b947879592d8

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 718.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 46f5931f7441e13574d0fe33e897212d00ff63f69c0db1d449afbc5e87bafd7f
MD5 df3f478ab41cba8e5a9175efcefe6f15
BLAKE2b-256 4e6ebeadb9a3bf02d81919d1141e54e0eef77d8efbda2fe380379428dbeaa02e

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 545.1 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 e933e3ce2d88b7584248493abcba2cd27240f42bf73ca040babfd1ce8036750e
MD5 375c5fe68d7f9632cb2e1d0b4c956195
BLAKE2b-256 f785e388476333848ee04bfdd3495ca9ea415a2c4b8e293cb7b5fb955ffebeff

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp39-cp39-manylinux2014_s390x.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp39-cp39-manylinux2014_s390x.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp39-cp39-manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 068404913619182739fa3fde3079c17e3402744a1117df7f60055db331095a01
MD5 65bb65cff86a8ab80c8d1ceb0a926b3d
BLAKE2b-256 9cb804d7f39057e341b8d001830d25d83908fede5a148432edc451241cb8fa8a

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp39-cp39-manylinux2014_ppc64le.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp39-cp39-manylinux2014_ppc64le.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp39-cp39-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 10e236b3ce5851f584bbf178e7fb04ae5d0fbb008f3bc580ef6185bbbb346cd1
MD5 0017a9fc012f313501660adfa0ac1f99
BLAKE2b-256 70c72b4fdbd46d44f4eb6a218c9525dc78b41a532237fd6e555a8763f0d1cc96

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp39-cp39-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c4ee8b9baaf46447dcaed925ad1d3606d3a375dfc5c67d1f3e33c46a3008cb5a
MD5 10603c4b52bd31ec353b45372a66c9df
BLAKE2b-256 7b974a1792286e2fe28e936f901238253489901ca783b413e27a2f01b5a1aa41

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e94a6af7f0cc8ff49ab22842af255d8d927ca3b168b1a7e8e0784f1a2f49bc38
MD5 5354faa79e7157946ee7f30a27fe36ee
BLAKE2b-256 3d5c1e448a2a1f24514807ea248fb40c651ea05b6bb21333e95b03adfd190cd1

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 2e9d494ff51b942ed1504f84c13476319c89fc9bcc6379cc0816b776a7994199
MD5 cf7afb328d521cf89afcecc108be66b3
BLAKE2b-256 27d4953121134660a9f6b8a1a0585e778f3a945b238fcf2e28094584d34a8630

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2def32a4228a717c5e6a699f0742546aee4091eb1e59e79781ceacabfc54452c
MD5 497116fcd000fbf861346a9baaee46b0
BLAKE2b-256 3e07d711775d41fd091482cc242f00c22165a78dec40a160b57a4574570e3c42

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp39-cp39-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp39-cp39-manylinux1_i686.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp39-cp39-manylinux1_i686.whl
Algorithm Hash digest
SHA256 02f8b282a940cb749b1c51196baab7abb5590fcc8c065ce540c5d8414366036d
MD5 52c3078e88734e01e04f13512c0bff29
BLAKE2b-256 0c881f4cc40e50e957eaed3589d473f40c997b3ec77d68d18716719a8b8bb717

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 905.3 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4c1a75c87a2f4c9709c6e3ecdbb2317f0964ac96f845f6a331d8a437a2944d24
MD5 a93b64308d05b1ff3ecc7c0f499311a7
BLAKE2b-256 f4cd82798318600012b7ff2ca1ffcfd5d3e1ce82e81fbc5a916bb5c1873b7810

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9454f46bc4007be9148f18143bb1b615a740a99737a38cf7b9baf3c495d5d17c
MD5 cb04c139420910fae28151a3fefc6626
BLAKE2b-256 8d13c6e5e723741519f766029be1392ddc49e1a29ac19d21d7397043fa21079b

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 8b352fe56b92bd2aa4ceae550543a923996c16efecf8f981c955dd5f522d2002
MD5 84e9bc9449e50a5e5c54355a09cd125c
BLAKE2b-256 e254aba4c7fb69d17232803b418ac5b707cd2e95aaa28c8c9b89b70a1ca72ff6

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 718.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b1feec7407df54045bc9d4dce3431ce20855c1ff4dd170480fbace62164f8f9c
MD5 53934a036c8394922f6dbf99b48c8dd7
BLAKE2b-256 6fce17aae9a6e00c7e9256c510d2ab11dea83e3054ddd49c16f3458caa7de126

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 544.0 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 112ecc4825c5d362298d1e3c512d3f942c1a74f26ca69dc4b19a4f2cd95cb764
MD5 2d1f4c45a227cae2a58371b67604dbba
BLAKE2b-256 2fcef0134ffa0101108d95db6ab731fc51a91e1a5ae085bc9351299764d3020a

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp38-cp38-manylinux2014_s390x.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp38-cp38-manylinux2014_s390x.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp38-cp38-manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 0d3ae040c91f500814df6557276462c0c869b16168ef51d01c8a7da150f54513
MD5 1c3951743060932657bacacceae3dd96
BLAKE2b-256 937c154c55e1903cd9e7a29054ed9a3b7dfed9c53bf922e9848ec046a2be4d62

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp38-cp38-manylinux2014_ppc64le.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp38-cp38-manylinux2014_ppc64le.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp38-cp38-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 c52ce4b4bfe8e0c2cf102f7b71cca00fc3228113e71712597940c9c340ae31b1
MD5 72fd31b54206f981820057dddebd0ca0
BLAKE2b-256 44f9fd23e7cd087663309881a0eaeb1dd9eb5290e475442ff8f12f0d7e78d5ff

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp38-cp38-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0b9f76f47b6df8c6aaa02a27fdff52e6aaf64d39296683ed06d0ec9acf2515d2
MD5 5e84ae706d1f0b5f21cf90e23fd479b5
BLAKE2b-256 6186d480123c35057edd12c30f9fd46578caeb722f90035ef4f6d9792e915ef0

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 bbba42e244a0ebc1639c62ab44e4a172767d3721d2af48f2764ca00de7721479
MD5 0475250f011125a700704dae723afcb9
BLAKE2b-256 dfd2678d2b1d7edf95e5806dcde4153da336c39b3d319ebfee21fd909d736c96

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 6b0c74f60c03eed4b5d19f866df79c1d1bffc4c61f9bf31b114402c47680997f
MD5 eaec6dffa4f3eb34eee408d65e1f96bc
BLAKE2b-256 8f7b1f90159ee5b7a65cd68384d22a275881f1e1668bdd86aa10a793b172ed4b

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7bf51eb2ff342c4a0d77ab22b3d7de461ef9d2c480fd863c57fb139e7578fa7b
MD5 2d2ed8a8d0f73131d96e615b37d8c26d
BLAKE2b-256 22c8bca648bfb779b27a5c335866904251f4421ddba97112943742902c2f5426

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 c06f98bb94fbad9b773c38a3e2cf28a315466b41f862917ba4d228052bcc0966
MD5 e41cd3f65e851204bb1518ff6fc9f7eb
BLAKE2b-256 3aaf9efd64528e533f83db43d24997ccb5f3c2b9406ae431255ec96f58ccd082

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0d3cdb6ced024ed1567ba0be4b0909b17f691bd6e9e9f29626e4953ecf7cba9e
MD5 bb8aca90a3ebdad502aacc2f9e278581
BLAKE2b-256 f75b5db2118424272188b231b49b2460032a7b56f4fbd3174c33c3ce07dd19c8

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 722.4 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 5e9beeb6643d663c410ad8ccf88eafbe59ba7aa9b34eea5b51c6312976789803
MD5 782ca6a44bb30240d93d6ab18da497d0
BLAKE2b-256 0bde7987f8adf349cb489d0518c45f1430e292a1e0b6c0bbf3e688914dd66900

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 547.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 03ea226734cca3f86bc402fc04b8a38b795795e99dbf02dd834845b80bcf7588
MD5 dac16ba72da6ecaa2cadf0544b9ba5e7
BLAKE2b-256 26ffdf6e792894e82af748abe0e6d149b5dae84453fe7755f460c9a51dfef3ca

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp37-cp37m-manylinux2014_s390x.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp37-cp37m-manylinux2014_s390x.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp37-cp37m-manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 eb5e43dbef900367b91fb73a4c447efde034656b25b397844c8cf622dae84ac3
MD5 ede284c1e3373064c6010ee698e65d88
BLAKE2b-256 6e13486e0cac0b9a11de463f2f1285012972621cb1146e7734d2db541c2aa89f

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp37-cp37m-manylinux2014_ppc64le.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp37-cp37m-manylinux2014_ppc64le.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp37-cp37m-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 3d727a7e09f1a01b61452c86d687d0564bad923d5d209224549ae790408d6449
MD5 f6bb94ecb37a833ba12f6994d4c79b89
BLAKE2b-256 6af6767db0e2123f90a5086e21bb0e31d5a3e2a6eaeee6a503bbbbde87d27e58

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp37-cp37m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7a960dfedcf1acdb8435b5b00aebfc2ee8fd53b7b4f7acf613915b4c24fc0ef7
MD5 e0f8f6ef0d5c8bb802b0243830b880c4
BLAKE2b-256 c3941b8152a3cba30a5d43bebc01a27de33bbe02873df284e4de4a1711e8037c

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 59246615b819e4aff685aa57359f5bbaf02441cccc83e8899608037542a3fe36
MD5 7daebc333a405a3b0be72a7e1e1b888d
BLAKE2b-256 bf34be41dce74a46c4593aa4efab1fd4a2d3564364de62f01b749184d04de52c

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 eb560622d9970eb0c615d5dff26af8a8647ba541a89a927fca1eb0862898f997
MD5 0e35b05b99884a92be35126863988dbd
BLAKE2b-256 75250884c7a3390fcaa3327899589b90fe3012fd323cd2c97993946bcc703822

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6ab75111e2216a48c7e01d47d8903fc2d0c1df398e7262a6df544d86812e40c7
MD5 cd005c966c16afe69132a76a3993b65a
BLAKE2b-256 acda8d6f647774c39b892489252a2abb92a04e6d6669a68f7d8e7feedee64b1b

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 b173f8d4c9360b8b32b5ab7a669623f239cb85013e1749bdca03e1b3c297faa7
MD5 97d8aa6b14b7738ad7a0ef3621198972
BLAKE2b-256 643faf1025d55b0d8523e2b96b7fdac9598889f02ece4823cb871190609a4817

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 38e2cd05869bd50f25b6d384e0cc73f8cfd6ebb8f1e7bdf1315384e21611f091
MD5 a59fc88a826fcbc4939ad575bb5b20dc
BLAKE2b-256 66c450c909da0bff6d7b26ecedff4e63255d1713901f1ca903941ef438c160c5

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 717.0 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 09e992579c4aae59310e44db99ed848a8437ed1e8810a513d3bbab7ac7a8f215
MD5 74f9fc4f942608d15c42faf37325926b
BLAKE2b-256 ac14e80fd95a4f310a290336048005af9365497d5783e3c44f2719e263d2e718

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 543.1 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 4e1a7fb18d4a6c3d471a3ad8f820f179216de61bef74663342340cf9c685a31e
MD5 bea70be26306b734ec35b989f674f225
BLAKE2b-256 e2f600ce0b6c5e6cfb9e3934033ea41e2559000b609e43dde97e3de52a40bef6

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp36-cp36m-manylinux2014_s390x.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp36-cp36m-manylinux2014_s390x.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp36-cp36m-manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 f08773adb7f21e1f530bad2c6ababaf472f80283650bc265a7e8f614480cd49c
MD5 673b4c06b7a462910e25bd299968e883
BLAKE2b-256 89a1e7b2c46aec0bd569da87e65dfb370a658938196bae8447350859fccb200a

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp36-cp36m-manylinux2014_ppc64le.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp36-cp36m-manylinux2014_ppc64le.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp36-cp36m-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 05e8dede642af1b38ebcf8fb5e9bbfdcdf8debba660ae1aafb5c1b0e6ca3e4de
MD5 b6b0131da53302fc67afc04dc17b4464
BLAKE2b-256 b5dcf1b400b732ab3b9583726ce81113f9bd2b687d3e5784dfee887273acd64c

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp36-cp36m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp36-cp36m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp36-cp36m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9f454f79bc463e3de08c5d5c0f438fce1b1736cd4da1a1f47f72dc37da156552
MD5 eeb1d59a95645b846f923948482b182b
BLAKE2b-256 de6a33ae6116b0a10a2eb5bb4383d956d5e86d87f8c3b1f637e4ca706a00726b

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ef0cf038c910a3ed626a3224effde8eb49dd7dcda87af59fcd37bc63b78a9bd1
MD5 75c47fc91b47551661bb181264e08cc5
BLAKE2b-256 163f58fbd9f0e8d2958003b702454342f1746899debfacba36ab47d2ac9f5f1d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 00734857b412afc35b29f0ea2f1d9ee26ff93d4cd3fa5f47bb90f6aef385f2a1
MD5 93d8f7ee7aa3e396c5befc298053098f
BLAKE2b-256 5ffa9ca62b0af613ef935333916e7fe3cfcabdaa1408cc1ceeddabd6487e28b0

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 170e71f2ec36a086ce5d2667331721cc9b779370d0ef7248ef6979819cd8fb09
MD5 859c57fe0394b90c689171db49d06bdb
BLAKE2b-256 397125730007f9b5bc708120049e4fca638013aad36fc6ae57f9f996d13f376f

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 55472932a8bcf008855b2cc8e5bc47d60066b504ef02dbf8d8fd43ddd8f20a6e
MD5 f64f298a9ec5cd59c8430c98b5c8e7c4
BLAKE2b-256 bb5e7a17095b962c738a46deb41437887dabe69429cee63b798c66399228db7a

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3b3df0c1a307a64273f6fd64c0f28218e002768eda1d94b9fffdab9371e38a6a
MD5 738a7846cdde411818a4a83ea8f21054
BLAKE2b-256 44b26421bb2b208cd84f12d1541c9dea1e8ce68b52aa7b969d7a8fe74dd08323

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 713.3 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 274878c59440d6ad3efca833da61594836306af7dcdd914cc1b6ceb2d4cea23b
MD5 2d76715699960b6f40b9c7dc9bb24d3e
BLAKE2b-256 1e3e04b1d641e68828ab9f85b8646ebd9f9e7e5c7fd4ed85965fe0f1694fb8f2

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp35-cp35m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 539.6 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 95164076d8e0433f9f93e218270f19e3020a3a9b8db28a3d74143810d4243600
MD5 908ab5cc6f823e4fabaf1d8a1db6b12d
BLAKE2b-256 4edc82c41bd1bfde529e61d21f6c05f0eff849d245915c4b094f7d4c9eae3183

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp35-cp35m-manylinux2014_s390x.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp35-cp35m-manylinux2014_s390x.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp35-cp35m-manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 ba956add4c34da019fb5e8f5e1768604b05569dd68055382795ad9062b9ca55e
MD5 bde1a3df6ed48a911707f4d838b30343
BLAKE2b-256 9843901b931cb876553d4dc92d3969b7da61fc3d302f3fc6cfa6c51a9f29604e

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp35-cp35m-manylinux2014_ppc64le.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp35-cp35m-manylinux2014_ppc64le.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp35-cp35m-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 e6cd6717d87d02dde2088c080b0851bdba970b77085b68e213a7b786dee4be88
MD5 778b4926d86fb0d69d2a58ff381141db
BLAKE2b-256 0c9911f3cd1e3641df34614a77cdec7a7a47c7e2e7bd80ccd194ccd031a161f5

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp35-cp35m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp35-cp35m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp35-cp35m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 347973ddf12d66d4d06daf1aca3a096a1bffe12306bcf13b832bdfc8db6d9f4a
MD5 794a7617e251225703307eace3539ab9
BLAKE2b-256 35c5d0978deff5018721fe4ed50d74b74aa566ef77e9720dd8e2a8b931bf4d4d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c39c7f200eef49f4f9d6b808950709334e6f1c22262d570f1f77d6d3d373ad81
MD5 3c6a552dd35f5d9f6a7e7a740471112e
BLAKE2b-256 33e147761c73b3d2f24c62d32f7dfced74886f8694b7328202c6ed85f6251bf7

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp35-cp35m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp35-cp35m-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp35-cp35m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 50548b919bc7608f7b9b4780415ddad135cfc3a54135bdb4bd0bb7ff2cdf9fdf
MD5 ebc00f1f309d8448aebfeac996f6f2f9
BLAKE2b-256 4985c4bf013ef1a3d9cc0945c93aef7cf724076e1e9edf13c7402daa5ed01a42

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a834061e6d4dfb9672e89e28583486f60821796cf0d7cc559643a0d597ce33a9
MD5 f18b031e91d8bf4502a8c8454486adff
BLAKE2b-256 90656d40f88f816d4121aa941631dc43b4b37d9a249fbb4235e05db75ddef1ed

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 b64acce4f6e745417218fc0bb6ff31b26fac0d723506b82ee4b9cad448b85ebb
MD5 1faaad148e0d173aadc78175940c9d1e
BLAKE2b-256 60016eac45a555bbafd4cdfe73d82cd552afe9499db37d745b13b926ef38cc8f

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.5.1-cp35-cp35m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.5.1-cp35-cp35m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.5m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.5.1-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6a951ad31ef121bacf40bbe6fbd387740d5038400ec2bfb41d037e9fd2754ef5
MD5 467225206973ec0d01ef1e6100e5608c
BLAKE2b-256 d08c38788df87768f93930fb1565cae74388cd88ff5b63cd7670f74302d0ab54

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page