Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++11 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparision between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparision I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

Benchmark extractOne

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-1.6.0.tar.gz (417.2 kB view details)

Uploaded Source

Built Distributions

rapidfuzz-1.6.0-pp37-pypy37_pp73-win_amd64.whl (734.6 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-1.6.0-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

rapidfuzz-1.6.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686 manylinux: glibc 2.5+ i686

rapidfuzz-1.6.0-cp39-cp39-win_amd64.whl (761.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-1.6.0-cp39-cp39-win32.whl (581.6 kB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-1.6.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-1.6.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-1.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-1.6.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

rapidfuzz-1.6.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686 manylinux: glibc 2.5+ i686

rapidfuzz-1.6.0-cp39-cp39-macosx_11_0_arm64.whl (997.0 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-1.6.0-cp39-cp39-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-1.6.0-cp39-cp39-macosx_10_9_universal2.whl (2.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-1.6.0-cp38-cp38-win_amd64.whl (761.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-1.6.0-cp38-cp38-win32.whl (581.8 kB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-1.6.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-1.6.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-1.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-1.6.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

rapidfuzz-1.6.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686 manylinux: glibc 2.5+ i686

rapidfuzz-1.6.0-cp38-cp38-macosx_11_0_arm64.whl (996.8 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-1.6.0-cp38-cp38-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-1.6.0-cp38-cp38-macosx_10_9_universal2.whl (2.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-1.6.0-cp37-cp37m-win_amd64.whl (765.4 kB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-1.6.0-cp37-cp37m-win32.whl (584.4 kB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-1.6.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

rapidfuzz-1.6.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

rapidfuzz-1.6.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-1.6.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

rapidfuzz-1.6.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686 manylinux: glibc 2.5+ i686

rapidfuzz-1.6.0-cp37-cp37m-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-1.6.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ s390x

rapidfuzz-1.6.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ppc64le

rapidfuzz-1.6.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

rapidfuzz-1.6.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

rapidfuzz-1.6.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl (1.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686 manylinux: glibc 2.5+ i686

File details

Details for the file rapidfuzz-1.6.0.tar.gz.

File metadata

  • Download URL: rapidfuzz-1.6.0.tar.gz
  • Upload date:
  • Size: 417.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.0.tar.gz
Algorithm Hash digest
SHA256 55f40893ae996f71df8a18a1e00c9008464c26a293c19e4102cad8fc076bee2b
MD5 11e1c8082ef834d7e0712fb8fc82641f
BLAKE2b-256 d42c45e3929a815817d50ce9eb1369ca4cad1b9ec518f33d05c8a06296cba16f

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.0-pp37-pypy37_pp73-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.0-pp37-pypy37_pp73-win_amd64.whl
  • Upload date:
  • Size: 734.6 kB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.0-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 2d88bb5f3657e6791c4bb60dd375f73f4236a5c1252f1a322656d0bb0062c2c8
MD5 4ff8dfbc8c05085280cac7e32b05a61f
BLAKE2b-256 00d6be84501a4845efd0ddae0ed6fb9607a23043253333cd2dc9606a0ef8783e

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.0-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.0-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d21bf1134cdcf5a6ef055224247eafc539f81ef130b787e41862862fd0fc9ce2
MD5 2944903958cbd45274509d972ba8c438
BLAKE2b-256 50621e6e15d9b5b32854853e12c92931f9bf990371ce9c5ca80e70c16c852e54

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 f4d1d28046f8ba1c640fb60efeb25e67eee5c69746b0b926e9f2209d41bf3e27
MD5 1933b12adf3b4e6bb67f00949a115878
BLAKE2b-256 2dde8ac78c661ed7359ccb04cabc6685acc3c4ba75a319f465481ade560ea778

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 761.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9ec420d61b6fe0d286435ef872f07878226ef83ae159a6ae638f4c318719f192
MD5 6e0b90c10bb9c50896d85cc60b675744
BLAKE2b-256 2784770d495334bcd3a697d39fca72311c000a43403220c61e6e890bbcc06f64

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.6.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 581.6 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 48a2f5393ce9153c9d73ea9056a66e54c5ffa73c506b180d844042c7ce053422
MD5 782a3af576293c2b50d5277a4bff3ffe
BLAKE2b-256 6e39f4321be113623e663f2e210cce7985a565dac89a2ed4be24b889a540f062

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 701b53aed88df8d42bc14e8256d7c4dfc03a50d4177b2ca9c5398eea80907bfb
MD5 538844e5d6a98a4fd0ac447eba1b5c48
BLAKE2b-256 5b1aa3d636114fb353fcd329bed3223b0db5328c6236e36561eb700f7f81b0e6

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 8a8c629b8c8fb714dbec70c2981d3bc04d83fff69f617cbf2df39a88a57ff125
MD5 16dce36d6e730f7e045cbe94ff9fb099
BLAKE2b-256 c385481be968f4cb84d416bdf3d43e673ff799e3f1457fcc77cc5a148dee4af0

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 571a07918c8647cbd0983d47c485db68d29568c3ec4c9ad7de3ca875622de51f
MD5 c361b675e43781d9a6edd756e7390d2b
BLAKE2b-256 e631e4c2eac41f988325b5395288232604d43d54c72dfd34356aa1cdbf775190

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c2b333417313e4d60e882261bbdea390e3dac19ac302d67834f6014ce3b45c97
MD5 d186aee64548461590173ba2c3bc37c2
BLAKE2b-256 bf3533a362a75e21a2c1b7bb3ec23be17d3511fe9d64733f580c71949b52d4da

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 64e3d2b3621833da8a447c9f461ed37c97b1b3e155ccca05a612f6be67f9f3fa
MD5 dfdc1b61c45b60590f208cdebf63c83d
BLAKE2b-256 4584902fafef8890cf9bd0e5116f63cc133a30afc29b1ce36f8145ebe232abb8

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.0-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 997.0 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f2da11498b13c7d7e327acfe626a13f96addb935a744e5fe0a34d0a52c377bc2
MD5 14a40cfb2765c2615fd332a6a9b91485
BLAKE2b-256 4991c204effc5cdb02cc6c3987a2427c8fc34f074251ff9c0abc9d43e4ef0af0

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 24d20d3f4358940428dfa7e2d55fd3a987b57fc057028a1abc3b293c99685b06
MD5 2b5d3da125b511f8f496e1287049ac45
BLAKE2b-256 e5f0aab3656a3b4b004bef56dd0b1e27cbe018bb283c66c6a189601733d93629

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-1.6.0-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 1ef4ae81c4903c7245fdb7931861d753f9fcdbfdee853d471fa96a73bfbe455c
MD5 2880133d6fb9b4f13b00b0589e60b532
BLAKE2b-256 0df1b09aec4bb426b29bfe1e36d6fbf52f22c54d2afdf439f5215fa8b256062f

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 761.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 750d42d6f958ed3ee43cf92a394c17c75977ee5cbcc4ba6fe328f18dc3cbd12c
MD5 4e3d66e67c01b5027e447a95847b7552
BLAKE2b-256 7237d895d5c4154344fd02dacaba3e10d8a303c8454585db895e7b45ae778691

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.6.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 581.8 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 02f7e1e4f3c07c26766115cab683d47ed9638012b67f928b7a9ccd73ccc42e6b
MD5 22bfaeb3e2003d368278af135dfd2885
BLAKE2b-256 c5cd3c1d976f622d59a3331e6837de39850be9f3cc424bb249f863f319a74e24

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 a64ccab6cb857f26cc5a081fd843ba5eb0176bc4fe80ab40f25b4584ddd21dcb
MD5 26e39717c7f734fd6197a486c551d395
BLAKE2b-256 11ea32dc0dffee2153d7cfddca35fc0ca93bc82b09bad0aabac97130609a8628

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 a2c02750fb1361729e30466c1af0764fad4de63667b71208e59bf4935240defd
MD5 9232ae0bd83281a4716a777e9abdf03b
BLAKE2b-256 fca624799ec578519b810691b12627e46824a8a787ed3ad8d85340eadb9016ff

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c37381ce9576ea77f7a0dd9f84af8d6ba23891a58bc371198d6dea0677324646
MD5 ca47746096f1502487b76757da1bd53e
BLAKE2b-256 9ec06b3f950d3f473ea8eb2afaf5f50cfb5ac00cd4405aa9cdc99fd16f1d5352

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 859a50ea1390483e8cf34a66d86223a53ac37f083771d5552dd057fda565b500
MD5 d3aef57eb8349612bb6f265dc5ea2dc6
BLAKE2b-256 728582e887a5097eb3e724ff6bb6b430d17a26497a0d08ee7b4500ecfa1699c0

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 ec9c877db648e5a3e5727a731aafcdbb7c6327a627ce394b301264db63d72068
MD5 99c16fc7e9bdf2254f0f6742a81faccc
BLAKE2b-256 fa84ce98edf9a8680a3e2d0c8223f51be6fc7c576c4564a84640dc79dd8c3fd2

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.0-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 996.8 kB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4e9fd7da5aabc9f2067b8add9d205f221f77eb061ee1d10592a05e77488b87e8
MD5 0ccbdb5d9f0c80e683ed2806d2b11ba7
BLAKE2b-256 d18a050cab0adddc06ce20698d2a55b32183402d668f065f0b59f87fde2c797d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 17edd1376f84559cfa8fda76c00b48282061a0ee5c88ccb2e8f079dc4ce1e3b3
MD5 6185704bb333ee9d7cd376ea5b9828e1
BLAKE2b-256 b82d2c8507c3b87ca8372ddbc045eb663f5e2e329641e1608cf87938f40c5327

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-1.6.0-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e2143f301111e3389efc36591ccb9b6c47113e473be753c840b1e09021f2e0a6
MD5 9959160fa9060b9e9181dde85a07c032
BLAKE2b-256 7279eaeb199ca20ba5b568c4457e6f3037b86fd6c287c671373a1541965ee5b3

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 765.4 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 35873a454d37d22f29600607eaed262bafe8b0e9882f5326a8976dd830240f50
MD5 c7b94e286b50f3100173fb2856f2bd18
BLAKE2b-256 5e9b42188ddea9140950db6d4934d4968a22f95dded551799a7dd71e9b7000f0

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.6.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 584.4 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 698131875ba1fe8dc40b517f6a35c786adaa1021393520a41fe3b9aaf055a9f9
MD5 1d5d84f51edb0f126455df3f539ba09e
BLAKE2b-256 a1d41b35b71d7cf146232078e676a0e31cd9099fc37420ed168d59425e3d5ee3

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 0083ffed4c414496431ae9a6c568e1c2e49c4ce16c74e2bb2272f7f5d47e1445
MD5 6ebfb6b3bfac74309239004396635243
BLAKE2b-256 0a4f0b5b414c5f51cb27a6042ac9f452e4ef96a14abe3dec0d523b4baf473fb1

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 7b607ba6da6a0a640ae92fc6681a3ed3382a848bf227327e2628ca990929a2a9
MD5 e087b29b3a68305c8675f73b256f4264
BLAKE2b-256 47c2a796711dfa4e2a5e5b181c2a047695414646737a37c15034a0885e6b1fdc

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7d82dc22be9030173957cffd3d5280529725c0bd9612e1436367633823354aea
MD5 68c8c78a9774cd044516b0ccf1fcea7c
BLAKE2b-256 211f7f9127155a105b20182b32ac129100a68aaa6bbad189b5c47ad9586b830a

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 84b4349d7e093986038014be2e0292adfd1ef1e036664b4314c0f76995d18779
MD5 86e41bf68540e51a8b8600cffe3fb126
BLAKE2b-256 72a614fd0c27e5fbdb0bb6e84e04d0c85417e1862264b2d1bc57ba1a1264ed0e

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 bdd5188d86afa85b1f6dcdb6c37e8449efb11209b6df3f632f61dc6a41909106
MD5 494eedcd2b7b6dcc29e7c170bcf35e8e
BLAKE2b-256 93741f1e2ce6c1a7eaf55456a34fc7e6d2de4262611070fc772b90ce7046e901

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e5a6d2100351160e5aead000e152322e2e15c9fda173a0b6bf0413833e218015
MD5 15b00b61417a195cfbea560ff540c707
BLAKE2b-256 9710e098ae182a04cb144ad78c07fa6f6e349bf491451f7a050ef7fa50ee0dac

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 ef00a367572fba510ada161783d27b2f99515a28aa120bdc6b9c2061f1ee9e5e
MD5 742a616b3098707c370f098c44978fdc
BLAKE2b-256 9bfb34f77bb86cbbb1650bbf73ed7abd5d98c6a34fdae4377af64cfa46f46b2d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 a8f5f6d9b67116234d6bc0c9e2523fe0d352aaa04ff1a433ffef7e1828ab6c06
MD5 fd9897e669f9c80ea211dc9ca9d90f0a
BLAKE2b-256 dc764b98c3b80f0ac47f8e933d593f29013811ef5e3c8423bdb72abdb57fc430

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bf5951c5ae33682b06aade248b7862a01cb71d52cf92d2cae726522ef17657d2
MD5 3db7dc985e2f26e9830d6f0bddcd8f55
BLAKE2b-256 9d32fc1b2feda9fb97c219f0f26e960f2208a6bda206bc0f139223b9f60ae287

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 338e093f666f719c6acbcbb76b1ac4cc5bc5951df84c4857948e46fdbf440c98
MD5 1747f5b2bfa1ac34c8b0f9e9b3803667
BLAKE2b-256 52526172487a6b925b4ab506247b3613b8d517213765b73b442db9c0ed19dcca

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 a7f5ffed57130d871bddc75c0ec3632b7db919294bdbc5ddcfadcec2b6daed59
MD5 864fbb3bc970090ea515b405f572dcf1
BLAKE2b-256 ac1dfde894273d64ea545c082b7412395ad8b597124740334c055eb53ffac36b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page