Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++11 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparision between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparision I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

Benchmark extractOne

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-1.6.1.tar.gz (417.6 kB view details)

Uploaded Source

Built Distributions

rapidfuzz-1.6.1-pp37-pypy37_pp73-win_amd64.whl (734.6 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-1.6.1-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

rapidfuzz-1.6.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686 manylinux: glibc 2.5+ i686

rapidfuzz-1.6.1-pp27-pypy_73-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

rapidfuzz-1.6.1-pp27-pypy_73-macosx_10_9_x86_64.whl (960.4 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-1.6.1-cp39-cp39-win_amd64.whl (761.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-1.6.1-cp39-cp39-win32.whl (581.6 kB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-1.6.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-1.6.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-1.6.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-1.6.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

rapidfuzz-1.6.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686 manylinux: glibc 2.5+ i686

rapidfuzz-1.6.1-cp39-cp39-macosx_11_0_arm64.whl (997.0 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-1.6.1-cp39-cp39-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-1.6.1-cp39-cp39-macosx_10_9_universal2.whl (2.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-1.6.1-cp38-cp38-win_amd64.whl (761.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-1.6.1-cp38-cp38-win32.whl (581.8 kB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-1.6.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-1.6.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-1.6.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-1.6.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

rapidfuzz-1.6.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686 manylinux: glibc 2.5+ i686

rapidfuzz-1.6.1-cp38-cp38-macosx_11_0_arm64.whl (996.8 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-1.6.1-cp38-cp38-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-1.6.1-cp38-cp38-macosx_10_9_universal2.whl (2.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-1.6.1-cp37-cp37m-win_amd64.whl (765.4 kB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-1.6.1-cp37-cp37m-win32.whl (584.4 kB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-1.6.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

rapidfuzz-1.6.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

rapidfuzz-1.6.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-1.6.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

rapidfuzz-1.6.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686 manylinux: glibc 2.5+ i686

rapidfuzz-1.6.1-cp37-cp37m-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-1.6.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ s390x

rapidfuzz-1.6.1-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ppc64le

rapidfuzz-1.6.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

rapidfuzz-1.6.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

rapidfuzz-1.6.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl (1.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686 manylinux: glibc 2.5+ i686

rapidfuzz-1.6.1-cp35-cp35m-win_amd64.whl (755.6 kB view details)

Uploaded CPython 3.5m Windows x86-64

rapidfuzz-1.6.1-cp35-cp35m-win32.whl (575.9 kB view details)

Uploaded CPython 3.5m Windows x86

rapidfuzz-1.6.1-cp35-cp35m-manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.6.1-cp35-cp35m-manylinux2010_i686.whl (1.8 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ i686

rapidfuzz-1.6.1-cp35-cp35m-manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.5m

rapidfuzz-1.6.1-cp35-cp35m-manylinux1_i686.whl (1.8 MB view details)

Uploaded CPython 3.5m

rapidfuzz-1.6.1-cp35-cp35m-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.5m macOS 10.9+ x86-64

rapidfuzz-1.6.1-cp27-cp27mu-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ x86-64

rapidfuzz-1.6.1-cp27-cp27mu-manylinux2010_i686.whl (1.4 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ i686

rapidfuzz-1.6.1-cp27-cp27m-win_amd64.whl (630.7 kB view details)

Uploaded CPython 2.7m Windows x86-64

rapidfuzz-1.6.1-cp27-cp27m-win32.whl (483.9 kB view details)

Uploaded CPython 2.7m Windows x86

rapidfuzz-1.6.1-cp27-cp27m-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.6.1-cp27-cp27m-manylinux2010_i686.whl (1.4 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ i686

rapidfuzz-1.6.1-cp27-cp27m-macosx_10_9_x86_64.whl (990.8 kB view details)

Uploaded CPython 2.7m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-1.6.1.tar.gz.

File metadata

  • Download URL: rapidfuzz-1.6.1.tar.gz
  • Upload date:
  • Size: 417.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.1.tar.gz
Algorithm Hash digest
SHA256 5cc007251bc6b5d5d8e7e66e6f8e1b36033d3e240845a2e5721a025ef850d690
MD5 73ea3367aff104f62ddbc043a4ec189c
BLAKE2b-256 d192f0d2c3f97faaa3fd3383411e80ef5030a096051d2feba0a1710a9655c5dc

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-pp37-pypy37_pp73-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.1-pp37-pypy37_pp73-win_amd64.whl
  • Upload date:
  • Size: 734.6 kB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.1-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 ddd972f15cc1bd5c95854f0f7ebad55e46f56bdc6545cdbf6fcf71390993785c
MD5 8226d443ae422e1c6da2471e3661658e
BLAKE2b-256 09ca0179fddc7045d66bb59e357a8ba3166ff3e4b27f74c51ee1cd184637991e

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.1-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3ec0ece8ba8c9a1785a7ec3d2ba0d402cccf8199e99d9c33e98cbeab08be7f18
MD5 98a31d373e06d64addc65c811f0ad0b9
BLAKE2b-256 cba0c690827a4ff04abdce44992f41d399ff89b3be08773eac702152b20f0fc0

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 e0b57bf21e69636da99092406d5effcd4b8ba804c5e1f3b6a075a2f1e2c077d3
MD5 12d36104c06b8795e7d8e8f163d218d9
BLAKE2b-256 46ec4d1245c89f94f6d1555efa1970b8d610152ab48f3ae8506bdaf099c2fa9e

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-pp27-pypy_73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.1-pp27-pypy_73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.1-pp27-pypy_73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 edefe618fa6b4bf1ba684c88a2253b7a475cc85edd2020616287e1619cbe3284
MD5 85fcfca29fb392a24e66d3ffc5b73e73
BLAKE2b-256 32bca1483398e55a73c3e223a3bd4b187758ea847c9881d7a064d4928f1c2a8e

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-pp27-pypy_73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.1-pp27-pypy_73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 960.4 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.1-pp27-pypy_73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e6c93b726666db391275f554a7fc9b20bb7f5fbdd028d94cef3d3f19cd1d33ce
MD5 d585cf0b61063cd552f5f9d68667b972
BLAKE2b-256 73040e5e092e2132ae6c7e19b3c3b4b29a664f7f5fadfa163488297864a0c169

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 761.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ce68d063f97e3ac69c6bf77b366d088db3ba0cad60659dfea1add2ed33ed41ba
MD5 1f2e2f8da25f6f8cbbe0230458345f5e
BLAKE2b-256 51ed8eecf41247654a1cf338f5011a87f89ca7182a573c6aaf4f8e6d0e3d033d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.6.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 581.6 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 2af0bf8f4bef68fc56966c9f9c01b6d5412ba063ea670c14bf769081f86bf022
MD5 0e54cf525397a38b85a7a4f553e795da
BLAKE2b-256 2e98e9bd1db8beda265d4578fe09cc0ea82886039d40d88576b237c90bb5ca78

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 c734fd58bb80b0930f5bfc2aba46538088bc06e10e9c66a6a32ac609f14fed27
MD5 b094a09cd10362cdb3a9ce595313ac56
BLAKE2b-256 a4e9fcccc2a5be3c7c048b9b1003e59c0157b5aea00659b4c18ad6b27b684466

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 ba36dcd6add2e5e9e41e1b016f2fe11a32beabdfd5987f2df4cc3f9322fe2a22
MD5 de4dd318f031a19dcea676160387f7fe
BLAKE2b-256 241d08fc3266d092d06cfb1ff01074f3ccf84c19f43b595ace37f111aa156740

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a3d7602067d38f0da988f84aa0694ff277d0ab228b4ea849f10d5a6c797f1ebe
MD5 a88d4d0e9a4f20c69e82456517c61f3d
BLAKE2b-256 1971a9e54bb4633b356ff3083c89d039901f44152bc39321cf3a117700dde369

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 24e378ce0629852f55a6c7cefbe3de5d477023d195da44c3bdd224c3cd9400a6
MD5 232665185919ef90a749f274aa729ec4
BLAKE2b-256 8fb36ae568637e001b5bb5630ffb903ef8055432eb1f824270fb772b99f71df6

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 f8b42e07efa816413eb58a53feed300898b302cc2180c824a18518c7fdae6124
MD5 87bc7e20eaaa8b124c72e493448e9884
BLAKE2b-256 372ba8f0964936282ef5ffbff74972703938543e72ded1265bce4f0f6058d668

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.1-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 997.0 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 58a97922a65c3c336a5c8613b70956cf8bb8ecc39b8177581249df3f92144d89
MD5 7a1bd503e5fab772fa789a3754e59d7d
BLAKE2b-256 64359fd81e798baf2ec227f97154a5f6960a4c9b4d6b780a803ffea9ec239767

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 32262729c0280567b52df5f755a05cbd0689b2f9103e67d67b1538297988f45b
MD5 06577efca22b3d108372fe680388f344
BLAKE2b-256 446b8ee5d7a8d926370f1d909b0ab15a8461d1e7f0db8b6097ed8b525c2ba733

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-1.6.1-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d9292132cc011680954bf5ea8535660e90c16fb3af2584e56b7327dacde53e23
MD5 3d042a55061e03e54cf132067d245363
BLAKE2b-256 74a267cbd7ffba073cfd5cdfee36f61ffb6f9c3843e89f99e8b83858d7334ea0

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 761.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1e0290e09c8dcac11e9631ab59351b67efd50f5eb2f23c0b2faf413cbe393dfa
MD5 ed4214c9a9f2bc249200943c4a2c1078
BLAKE2b-256 1b37f9e68b39016fc219c51a0456bdb6d532ec9bc91273fb20b8b2c47b7ce010

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.6.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 581.8 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 8076188fc13379d05f26c06337a4b1d45ea4ca7c872d77f47cdebb0d06d8e409
MD5 0231882cafdb22d4a7a01eabc289833a
BLAKE2b-256 281c8ad9272d28bb052bd687244690f7d8ab1f7b6428626857ffde7613bf662a

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 f5a8001dc1d83b904fba421df6d715a0c5f2a15396c48ee1792b4e00081460d9
MD5 6aa54481041055c9ad33170f2ec3fd14
BLAKE2b-256 cd1b36f1a7d8b9b30382bdafa0f69abe110d7abf76e6362bcccb54a74fe4e92f

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 c1ced861667713655ce2ec5300945d42b33e22b14d373ce1a37a9ac883007a50
MD5 b6a8af8f1bb12debc841238b350ea566
BLAKE2b-256 0b88e11f5bb6428ebfc31e3c85742202405845b5d75e4695e71ebdef35c8364d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9acb9fa62b34b839c69372e60d52bca24f994ede1e8d37bea4b905e197009c7a
MD5 e302388d3e4993c26a79a9bfb536c305
BLAKE2b-256 b94a8ab8f20646675fa69e023a98f673166f0df5536440f1f0401459ca93cd2a

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 48c0da783ce1b604f647db8d0060dc987a1e429abf66afcb932b70179525db0c
MD5 2ed04272d0f6b80197a44ac0378d1eba
BLAKE2b-256 c5bb96e5828cfdbc63f8ee5f94e727046e24ff0b3813d9fd3a88abc0554e9deb

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 5e1dad95996cc2dc382ccb2762e42061494805aac749d63140d62623ee254d64
MD5 378163a04e3411093ec09074a209fe67
BLAKE2b-256 f6ecccb4bac5d95ce334911272fc5ee79335680e1c4ec06e406b2d6765aa9225

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.1-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 996.8 kB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d7cdd8a82c4ff7871f4dad3b45940ebc12aee8fcd32182d5cbafbad607f34d72
MD5 bf1d1f84bafc4620bea53c69250bece8
BLAKE2b-256 268e0b8d5430c9e663784a34241ca8590ebe88c744d47bf13099fba0d34827ef

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 375703ba1e5928cc6dae755e716bd13ce6dce8c51e0dae64d900adf5ccaf8d24
MD5 8dc3c757abeb2f0b40b5b98a668d2de1
BLAKE2b-256 f9d8b8b6f5560ce0be90b11c768b3c59c54950c024a70676ca96384e4bb74d39

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-1.6.1-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.1-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 61900b8e4574277056b5de177c194e628ce2eb750fad94c8ba5995ae1a356fc1
MD5 c23c6f538a24ed336c0b581879404778
BLAKE2b-256 8981e4bc9a7ad1802facdc2149f51002d378b66654b45f6f7f47bb155e328070

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 765.4 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 4f10c8a1656eccddad84c9380715d6a5acfa1652c2a261fff166ef786904ba20
MD5 7871fcf461316f5929bf4517f4897c04
BLAKE2b-256 ef1888335de9b3976b03cb4adedf5ebe7353ff48d8b88f68137a85c1fb541ead

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.6.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 584.4 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 65e331eefee945ba5c9c00aa0af0eb8db94515f6f46090e5991152ef77b92e53
MD5 d55aaa6f21b7ac3beff0607db26a2cc8
BLAKE2b-256 c326aca6d8c66b520c3e859338b960657f3ec2d8b93dbdd9a02e5619ab3bfa58

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 589baf8444719e8466fef7db9854fb190af871c1b97538d2e249a3c4f621d972
MD5 96301d318308963311512c081a1d9d8a
BLAKE2b-256 15ab7719a3b729f8537376cebb202c139406cf0169bcda89fc945e78b6df7206

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 7394d4624b181346654fd0c2f1a94bd24aff3b68dc42044c4c6954c17822ed31
MD5 ce2fe55d3c4aa58bdd0a3a34f6be77a2
BLAKE2b-256 eecff46d61760f2647dcb5be2ee895d959d48c6477a41d1a8708c1aecbb598b3

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5a764b8a8eca7980fe21e95fe54b506273a6f62b5083234de3133877b69c8482
MD5 35733b4e06301ee262e19edc98d3fb0a
BLAKE2b-256 9ea11428d91d51cf44084b500842fa2107099f6a17e2c2226d3cc5713fedeeb6

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f8dea0e89791c5ac55ff314a6ac2aa699b69bf0c802e7253628baa730d80f68b
MD5 2c568af833d13c997c28e7759e8a2c2d
BLAKE2b-256 9be074146e25e487864cf8206cd0547d34c6b8f5b8283847e277bf69eaf81273

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 ca7989d42c9c14ad576e8a655d5f0ae5d10777332e1cc9384267a423f93b498a
MD5 6171c517fc7e070fa2570d6f8171dcbd
BLAKE2b-256 fe2053be8fbfe4f0a64389af300f711cb10d8fdcdb2e1c1229b8d5320643e20e

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 17c23bc209f02d7481a3ad0d9fe72674a3fb8c7b3b72477d4aae311d67924f7f
MD5 18a61c63e91e54157f335e041f55e47b
BLAKE2b-256 f6942b345b34dfd930ffcec193e2006ef2f9dbaff7afcc098199ad0a61c2fd0c

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 d4c81df7e4f9a3ed9983ff0ec13b5e88d31596d996b919eeca8b1002e8367045
MD5 3e4f2a7e77f5cbb225036161cbf259c3
BLAKE2b-256 d80b0d80232a155e82b743f88985fab4f5a9fa1ffcc521189d2a0adf21e728cc

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.1-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 c9e0594fd26b01ab81c25acd0d35e6f1ec91a0bd7bbb03568247db5501401f5f
MD5 6126c37435bbb7e603358a6294ca06bb
BLAKE2b-256 61fa4fed289d7ecc134824f149ab09f3c3b7be3fa64a7adfdcbe19c2f141e9b4

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 75503a5c57c4353ddf99615557836b4dc7da78443099f269a4c7e504ddc6e9eb
MD5 d139cd716ea8a157b6d6141d80c70c5a
BLAKE2b-256 83cad6a1cb0c47dbfac54a7f6e2b4fb57dd4b720e1a43e3c1396a0d66ae62cb5

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a9e7f82401a66b40b3b0588761495aadd53c9c24d36f3543f0d82e5cce126964
MD5 53b2d3e9af28923bab163680e2bb6ca2
BLAKE2b-256 d51ec44187e842d891c210a2061c29f836ff1147eaf7864c7fc4c510f8ae484b

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 df8fcb829ac760b6743626143d33470b65a7a758558646c396fa7334fd9dd995
MD5 f38152f35173a9d39aa85cf1796cb863
BLAKE2b-256 336aae0626c5bad157089ef78d838eab245b4a76e83ad61d29d6a4d9b89a3c61

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.1-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 755.6 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.1-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 9ae20b5687121966b67658911f48fd938565b18b510633e6f56e3d04d1d15409
MD5 2caed6f4ec06615bccbc1e901739f595
BLAKE2b-256 4867d6974571188ebb9d7ddea04eb545350526d4db171df3f9a40f5053dd626c

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp35-cp35m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.6.1-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 575.9 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.1-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 24b4fed0e31f975d7325ec26552eb71c2a0f17dfa7867fd8c9d59aadc749a960
MD5 c717097d6406b98c8ac4207057c500bb
BLAKE2b-256 df7e7383efef96b7e6d9a080d41e60eae90eb16f83fdff61096771d68160ed84

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.1-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.1-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9ef4d63990c8ed1fe57f402302e612da4ffa712d5ff8f760a83f18ed72cc54dd
MD5 fa1d0588fa929b14792fe7591130d74c
BLAKE2b-256 255fdf0adab4d76b3eb9dc6f40f6b329a80038074b2946c61e37747260feee74

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp35-cp35m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.6.1-cp35-cp35m-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.1-cp35-cp35m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 317fafb2e725490721e76ee6b660dff1c10e959199dd525c447a1044ecfd2eaf
MD5 2248d45a5451a31be37b6e26909b03ff
BLAKE2b-256 e883a44a6ee8af29464970b1a5c2a27351b4a909fb9a557045e70a3e2c0b20e4

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.1-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 fe3eba011c105d4d69cbbed9e7d64edea9077c45f3c2fdfa06cc8747b55f2e56
MD5 1592283f3f9b26a73b47e788525844f4
BLAKE2b-256 6f701a4a50770a5cfa4a04846ef1c6a9bfdf8c4f0a26ed921dfabc3e618b3128

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.6.1-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.1-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 ca2178f56017a117afe76dd8192c07e4f18df116516893f7218e3f8689680489
MD5 781a210ee8dc26191ae10e08b4ca6fd2
BLAKE2b-256 aa7a249b132ccbd590cae70261b0f12a9032722a450c7316907fb30383ef0fc9

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp35-cp35m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.1-cp35-cp35m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.5m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.1-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 02ccc031bb18dad5834e4e22795b6980471522ef6557e6ced1685c5cb43d411c
MD5 def507d5d974c0686d5b0ec515dc29a9
BLAKE2b-256 5e59b1d0a80577cfa25bf9259ddee21fdae881d5f09f96d19026f7ca42937c43

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp27-cp27mu-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.1-cp27-cp27mu-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.1-cp27-cp27mu-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 23b6ae916278b3b4591f8749a264ef41fa11cb6abd736eadf9a625d45f800e72
MD5 8577bac0f272992c5fade5cd032673e4
BLAKE2b-256 e71db62e6964a8f5767fe02a23c9c06768536287b479cfade0e8c1183d94efef

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp27-cp27mu-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.6.1-cp27-cp27mu-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.1-cp27-cp27mu-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 8888ffc8f2504dcc5943bd2b016f20b69d6c94695fcb6626cd193703c0667c67
MD5 dfa703d0986ca2890a6ef4471712dd91
BLAKE2b-256 f53502098adf62a13398b23e83f156740545391fe0191f5d15f4dbb3e1be9823

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.1-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 630.7 kB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.1-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 dc133cfed87dadf620d780a2f9334c6209b1a6eed030e10bd3f7c5d9d52bbce1
MD5 09bf713058ed80862b0a27dd691cd638
BLAKE2b-256 8a2ef97a258327692431a046721990b08f54999b084ebcde51bfe3863690c105

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp27-cp27m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.6.1-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 483.9 kB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.1-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 c266e7de2f3d29648a06ae15d650c029c2021e6cdee3bc67fdaabeff47385e49
MD5 68093b1a9e8b664d7b034d5f2e2ec2da
BLAKE2b-256 1bc83c018206af13e9d816e6a6a1874f2e9efb70129f08f47986f7a8fd44f02d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp27-cp27m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.1-cp27-cp27m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.1-cp27-cp27m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e6fc27ab404ee918dd92bd3200aae98e4539f3383e2fec39b6fea7ed70e9eb61
MD5 a0e9418fae64e9bc92c1143b6a26f64f
BLAKE2b-256 5bd04a23ebd618d2583790680217602080c36e42478e7836c7ce4e9ae1def0c9

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp27-cp27m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.6.1-cp27-cp27m-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.1-cp27-cp27m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 1b6afbde4ac6cab1d5162bcf90d56b95b67632fbbeec77c923f0628381f12a4e
MD5 608a80534165f828e580cd8607e487b1
BLAKE2b-256 51828411bc91432c76e14bf71f088de0d97eaa59c9a422b8955d6f55b0b757cb

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.1-cp27-cp27m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.1-cp27-cp27m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 990.8 kB
  • Tags: CPython 2.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.1-cp27-cp27m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ef307be084a6022f07fbcdb2614d3d92818750c4df97f38cf12551e029543ea4
MD5 c012aad365d56db0069d3e0f74eee60f
BLAKE2b-256 f76ef035d5ef61ada3edb747a0a7ff5c8ca313d4bff0be6d5f8b65970af606cb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page