Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++11 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparision between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparision I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

Benchmark extractOne

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-1.6.2.tar.gz (475.3 kB view details)

Uploaded Source

Built Distributions

rapidfuzz-1.6.2-pp37-pypy37_pp73-win_amd64.whl (939.9 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-1.6.2-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.0 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

rapidfuzz-1.6.2-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686 manylinux: glibc 2.5+ i686

rapidfuzz-1.6.2-pp27-pypy_73-manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

rapidfuzz-1.6.2-pp27-pypy_73-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-1.6.2-cp39-cp39-win_amd64.whl (974.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-1.6.2-cp39-cp39-win32.whl (726.9 kB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-1.6.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-1.6.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-1.6.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-1.6.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

rapidfuzz-1.6.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686 manylinux: glibc 2.5+ i686

rapidfuzz-1.6.2-cp39-cp39-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-1.6.2-cp39-cp39-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-1.6.2-cp39-cp39-macosx_10_9_universal2.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-1.6.2-cp38-cp38-win_amd64.whl (974.2 kB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-1.6.2-cp38-cp38-win32.whl (727.2 kB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-1.6.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-1.6.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-1.6.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-1.6.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

rapidfuzz-1.6.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl (2.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686 manylinux: glibc 2.5+ i686

rapidfuzz-1.6.2-cp38-cp38-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-1.6.2-cp38-cp38-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-1.6.2-cp38-cp38-macosx_10_9_universal2.whl (2.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-1.6.2-cp37-cp37m-win_amd64.whl (977.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-1.6.2-cp37-cp37m-win32.whl (729.6 kB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-1.6.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

rapidfuzz-1.6.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

rapidfuzz-1.6.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-1.6.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

rapidfuzz-1.6.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl (2.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686 manylinux: glibc 2.5+ i686

rapidfuzz-1.6.2-cp37-cp37m-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-1.6.2-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ s390x

rapidfuzz-1.6.2-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ppc64le

rapidfuzz-1.6.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

rapidfuzz-1.6.2-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

rapidfuzz-1.6.2-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl (2.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686 manylinux: glibc 2.5+ i686

rapidfuzz-1.6.2-cp35-cp35m-win_amd64.whl (964.7 kB view details)

Uploaded CPython 3.5m Windows x86-64

rapidfuzz-1.6.2-cp35-cp35m-win32.whl (718.1 kB view details)

Uploaded CPython 3.5m Windows x86

rapidfuzz-1.6.2-cp35-cp35m-manylinux2010_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.6.2-cp35-cp35m-manylinux2010_i686.whl (2.2 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ i686

rapidfuzz-1.6.2-cp35-cp35m-manylinux1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.5m

rapidfuzz-1.6.2-cp35-cp35m-manylinux1_i686.whl (2.2 MB view details)

Uploaded CPython 3.5m

rapidfuzz-1.6.2-cp35-cp35m-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.5m macOS 10.9+ x86-64

rapidfuzz-1.6.2-cp27-cp27mu-manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ x86-64

rapidfuzz-1.6.2-cp27-cp27mu-manylinux2010_i686.whl (1.8 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ i686

rapidfuzz-1.6.2-cp27-cp27m-win_amd64.whl (820.8 kB view details)

Uploaded CPython 2.7m Windows x86-64

rapidfuzz-1.6.2-cp27-cp27m-win32.whl (616.9 kB view details)

Uploaded CPython 2.7m Windows x86

rapidfuzz-1.6.2-cp27-cp27m-manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.6.2-cp27-cp27m-manylinux2010_i686.whl (1.8 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ i686

rapidfuzz-1.6.2-cp27-cp27m-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 2.7m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-1.6.2.tar.gz.

File metadata

  • Download URL: rapidfuzz-1.6.2.tar.gz
  • Upload date:
  • Size: 475.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.2.tar.gz
Algorithm Hash digest
SHA256 b222a948ae551d8a59b085d659c4040bd2248f0268e178d072714e113ccf8080
MD5 15600047c3eb7d407475c74481fe368e
BLAKE2b-256 27dc1ca5b589234da6665a3189e9597af79a5a42d39802b51ad8c50521e60592

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-pp37-pypy37_pp73-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.2-pp37-pypy37_pp73-win_amd64.whl
  • Upload date:
  • Size: 939.9 kB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.2-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 0409555bec275c1638b7f490b15ecc9ae29bc4147608916fc390c4fb0758af06
MD5 d0fe172b9075ed432b61faca24e7cc01
BLAKE2b-256 377cef0d7320f89bb052fe4f79ac55352cca5f2c573091ec76ba5bd5844a7a5b

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.2-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 bddeecf86cd44e0a826f174fdd139b023f62864704d6b14090dfc38eb527a29d
MD5 066b4cd80e54e75ec799088ab5110813
BLAKE2b-256 a1051e062c19bb87096379bd140358d282ac7eda48c00d9ccf49a80f6ca1196b

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.2-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 095686df7805e04dc51c18e210bdbba91e0a5f86361919fb48cfe0524c78a65c
MD5 85be347eae5671218538c74c9f801bb3
BLAKE2b-256 69c4ca59e506f7f64b550635d136ba2e5444f45332855e38115ddda83fb7c297

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-pp27-pypy_73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.2-pp27-pypy_73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.2-pp27-pypy_73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b208e90ac956cdd309901a98ca2a9ba0fd1d693768a7b7a49390477f3ac119ce
MD5 aa6714ce40f280f7cd1de1de9f8b18a3
BLAKE2b-256 9cab6b0465f992c1a50de0062e681fcfa20065bfb2fd0a67cf46e69f4c78ddc8

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-pp27-pypy_73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.2-pp27-pypy_73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.2-pp27-pypy_73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bcbaf39015baa9f1748f15e16188311c5b9706d3a2e72145d1c6f1620df81279
MD5 3369726ac124de5d39888f9390ebc157
BLAKE2b-256 d20b94f423f2adf497ecce587568adbdcbc3d13aa06c047d6825b47e0647cc85

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 974.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2129111c922fc7d8bacdde4b9916cbd7d5b23fb1fe29b1e8231dd2d8f0dce99c
MD5 f057394ded6bf0d85ba67d771c292725
BLAKE2b-256 46db4b8190b3b6c261766b2151f6eba26ab0d91b5adabe770345cd66dcbf8bd3

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.6.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 726.9 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 12a3b454fd58325c854fd3255b77f6d2d590048655346a4f82ff715b5beeba21
MD5 08c71539d9629ac17e5717853d81144f
BLAKE2b-256 e8c3910f0cf383620cca9d0b756ce80f626b8c8757c2c6ea562e2f84875cec51

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 d115f332dd95afc3003c636e8d1e8c091c7fafbb5d391110563869f4b225647f
MD5 06cb66ec108131e5d7d44e1aa16d93f9
BLAKE2b-256 870330869f7e5d8adf29791f6e3fdef0feaa9a32640889bef6585f360ae6713f

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 279a3b793468a784478cf5d3f8f5e08664326ea2a3bf54ede0d6d86548ebfb85
MD5 b21cb44af1ab2a4634cdd248739a2099
BLAKE2b-256 a7a1f0aced564a27860de1f6f5b142af3d78e15526b4009887ea7457575954ac

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 eefdb2a48c167d62a3cd75dc4cce2c5ac0ad11e99de7660e911ef1a690be8d66
MD5 4dffd15ea9cd38efbfaeddd5155fa9b4
BLAKE2b-256 56a09edc686e54824b5719d65b1e7027727ec8a08cbec716b2cb0e6f9505b74e

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 63051eb2b3645af39507e5825860e441563e9fbfcb7a147b3fa2bb3a2a25e961
MD5 7f8b8a4e62307699ab4eefd017780a59
BLAKE2b-256 1a8fa3d83febe88c2ff60199117582f46568081ff76f2e942f6a3915380cf279

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 9465fb50c3d45497b814ac7db8c4588e62ddeadaa5a8f3bf0136ffa986d60417
MD5 377059d34b6e8d22e437215d67302247
BLAKE2b-256 d372b83c56a6dcadf5b0b6282089d48d0d0a22499097cd97b1460ababc4b2c0d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.2-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 36126e23c6f671363bd09d6cd7c7f0c85f4f2553ecccbbd6dda199cc9e5cd18e
MD5 e4f1cb5c07eaa91e725436496e9352b6
BLAKE2b-256 0ab9a7c7e1fd322f648ec120c1eb79240e4ed20882c75ae4d44e5e669b19695e

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.2-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 47ecf6c5b8cb7d2b649b75bfbb3452b1df4834ea96490c8f44da28911fe3d980
MD5 60a0acb4699e9a2155038612e9d0f909
BLAKE2b-256 0791146af58c97fdd076b874485d13b532b40b1fb692d4597aaf1fdbc72e0377

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-1.6.2-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.2-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 fd4b439639846d8813a1b9068c9101c89269b3519c930c54ad54080c15714926
MD5 8d5752e847a69d28554f1d82598ffbc4
BLAKE2b-256 42cefc53b8da3dcaab058847189b519630e8cd9d7b5e21f98bf215a51fa75e67

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 974.2 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4ad4c291e2c7cf2bbbf4b3320e3460d395aafe2df0af4ceff497c59fb096290e
MD5 d8ada03631a31cc7dd331b4d318fb8c1
BLAKE2b-256 7457cc452600760c8d50c362000ee8095f5f8401a92b49f3fe0f693cb6a0dc57

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.6.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 727.2 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 a338941797d6583633a965b96a43fe3a55e1fbff8820caa0442a42acde4d9443
MD5 98e7282868cf93c13292c0b9fe865bc3
BLAKE2b-256 579fa851bf9a25664c615f8e64d8cbbb1a216d3084d66d805fd9379f6002dfb6

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 28a6fdb0e13ce115563ffae61588fb4d1cda26f241cc8e3228a3fc3ff864dbab
MD5 b69a778c09098876038d81369f6ebf80
BLAKE2b-256 6305e8658c063513e3388840a466480827609b2372f8448c549f365fb8923c80

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 4d72167e3c2217ef2dba7a159928bec799bcbe9ec38cff01d42305e8bd93085d
MD5 e392b4c8ef3d30c1aa643ef02a942b3b
BLAKE2b-256 42b209a2b003485ad053af8d37bf32436872f2e3490341191c605637248be56a

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e92792833db73add7098a1d26d55430eb5f4d6201ee276ee8a59d8be89458e8d
MD5 b6de3222778686f7352ec8d51d8e96ae
BLAKE2b-256 43d19028ba089d12c7489da45024dbbfed71b8796d1d49287d150f59a391f637

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 074162713b9ee2b26d0b9fd34819c86eb7c393343b821f4ec36784526f4ae9d6
MD5 d9d3193da1f6e4864727d337a024b57d
BLAKE2b-256 3680fe99948470bab59cd1320513055af410f0ca96b7611df3cf23cee94e8ad3

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 49e2bcd499fe88bdabf0aea341c892a418ace7fef6a30429c87812db7a64b9dd
MD5 307435a75cd790a66f0aa38354474b69
BLAKE2b-256 954030daa7fe66a364aae9a944303d264b64ce675f6bb5b72b4ea700063042de

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.2-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4da66f5fbbd0dd0e75f97f6f19a8019092215fb96295823c594735e8ec3340a1
MD5 b85cd7c70712062990ccf680502aa986
BLAKE2b-256 07814fe1b82268bf184c2adbae242f3f774994372c4bd4f1723cb6cadbba138b

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.2-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0b99b9e5e3c2f7f3902b963ee575bdbe759c4b03f52ad54c416dfa7e38021098
MD5 6e5ab06349e42ae090fe2727da6fde07
BLAKE2b-256 93bf2112ec36763751ac0274c6f61d0ff2d6acea4b22e5b56734b84a39b6334b

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-1.6.2-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.2-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f28f011e934412532d70aded38f96fb7a49a761ffe28c7e8f6037a8d5076bca3
MD5 8081f8831ee458008f4417d926f54068
BLAKE2b-256 5c536a6344f7ecdfb06fbbb6958fdbeaeb46617321652edfd92b56225d4455d5

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 977.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a8d7dfac7db10366c4ecb8c16f24c6c5656bd09695b053b922c274072e2f4c6e
MD5 b1a3c2eb5a33c92a456bea46c2e8e063
BLAKE2b-256 e8608a17143e86599ecf2692640a21ddddc67852fc26c003cdfbd9bf80a4fa79

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.6.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 729.6 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 e83adf409d504df3bbefb32970a39f8e9f52fcd088c709784c17869ad5d79631
MD5 20d953a5626b0c9788219652f93cc682
BLAKE2b-256 f6a0e72ed60ce02e65be4acd6a91bc3719b9117f4b2ded88d205aee20503a285

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 6465f62230c96e2a835c5b5bb5fd776a8f8518bfb1ee9d7bb9f8947e688a1468
MD5 c7ede1fffe944a553749f8800e1b6c29
BLAKE2b-256 a337f29191b1014c903239dd4a742b95c57638628e786edab8fb55a702c53589

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 e5f9d479cebb0b4e8b3148fff6e22bc9d25a4656e84f7c0d6020720804b2efc4
MD5 7cb05cbbac7b8f96848d962acb4220dc
BLAKE2b-256 0c958cd2f634729c290a9fe68d1e7f4bad9ecab323e0a35aed247ebc9dbb7cda

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c77d00ccea730a9357d2e1d2672476c1d93ce86870aa0b1ec84efc7d9986d65f
MD5 344e8a78e19debd3069a99cd553e8e3a
BLAKE2b-256 33410ab3fb0471ce7d8c7b4aa5d078c532051dbcf14a4bd7e3cd0057d63b35c8

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6930aac3df87acf6191bff2a9601100c92ea2d3ebf522f0cf6bb3311ceb261e8
MD5 86538057483c121234d8ceda36373c57
BLAKE2b-256 ac1427a56bda7b471ff151ff0865bb7978c4fe4be3a51b51a09e5fefcfb9872b

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 5234ad4defe2b21f332101c7dc7de7c62492165e44e402cbc770528421e15c1f
MD5 ab4cdb4190688a4f75f21286e02f608e
BLAKE2b-256 263cb10de47ae2ab42eeff0981d1663e209657e070db551538e2c7594f23d2b0

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.2-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 713a9d54a2b8aa2e0bb7c6d419a74298cdd00b76d744ba18b55bcecf18a09516
MD5 b9da5ed67c036f4bf291522c7cd91616
BLAKE2b-256 f0d9d6bf034d9ec200adc9f05451582f6af7539d1f1f1874ee97bc33cfeba670

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.2-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 8c8a0a788bb09fc6276c638709b3d16150e29f09357de3a91e5597aa26b8af4b
MD5 410ccfe41caa1a63cea33b21ead42196
BLAKE2b-256 006626a1ab428150c5ac86531028639a2e9ee55f9e2b5b03e63ce0f5a3dfd525

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.2-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 152cb9f7de7fb0ea9622590d6ed9d243814ba2151d9b9ce2ca8bf4c5e2dac453
MD5 550647394e891ddeb4b5f68876aca9f6
BLAKE2b-256 83662aac1cf1ee5c2cdb88199ba23456d42cf1f0bcd414295faf384396896b34

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9819146b086db72813a3f79f74385dfd2dca45d5947de1cd9f83929c66c53fe7
MD5 92c9b43312592ba0f53d94a236060337
BLAKE2b-256 ed2f49df3af3a19e14e8ec4ea60593dc02ebba9f2ab68672ad8c4769cdb2d519

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.2-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b49a5ba6336e300fada8d32f840751f0a20f486fc996beaa6ad1b17377a1a7e9
MD5 40d15faeee1a5ea5cbf20fea79e3f4da
BLAKE2b-256 144ca96331dbefcd63c596ac7965e26e5d8854890af85d9ac44c64448889a8e1

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.6.2-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 16392d047d80c5946b44450ef8340568fc131a1fa7535b389fa56b066ef8dbbf
MD5 803a4a46734401d62ae3b4b66651caeb
BLAKE2b-256 1c4731b9c9c3859ba87a0e8798ecd110c163d1e348a943abddbc0815d0051f38

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.2-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 964.7 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.2-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 977040b96db491c78277421d702693a7b842fb50ac0fd510c22ecb6d77894315
MD5 fbb8f9ff1068ec77f3cbb2d3184d51e5
BLAKE2b-256 8a4e1c621e9ad2ff16fe5bb99fb73dd9ca0cc15594db1f6f0f30442161b2b1e3

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp35-cp35m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.6.2-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 718.1 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.2-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 f4888908ddfdad765d9bd9510ace98ec095c2b5869a243b2268948eb70d3f28f
MD5 5433c60de36fc54991aea858236f0888
BLAKE2b-256 b4cede12de5eb03eca12694f03811128a04d0b0e19b1ad23ff0661ffc8e0b525

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.2-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.2-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b8a25b999db5262b9dcfbdd92a5de5437e10ade0d97e99b72e01a2499ddb18b7
MD5 357fb9e596e2fcd42cdeec45541a48ca
BLAKE2b-256 68168f3b65bb7560cfed17529ae4c94391443e98b8dcd7b3cf049aa4dc8dc59d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp35-cp35m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.6.2-cp35-cp35m-manylinux2010_i686.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.2-cp35-cp35m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 64917b19546687f735f5333fcaefc241af7b2c69140e0c0408db53c23e3d61ae
MD5 a699c21e4d7c1bce4f29ac843cea1831
BLAKE2b-256 b62563a06e744a59878a0ad751dc11cc28e027480530778586cf57f5ba96a2bf

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.2-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.2-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 94946fc146291cd2e69248417a930c70a112286f4f96288e29d613364f0ce71c
MD5 cf4bd128da4d7caf693504f565db64ed
BLAKE2b-256 55d0c0990bd08af40d49ce3259b683c0c83c3207ce62d5729c478bc4e7f69522

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.6.2-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.2-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 e84863f5fe1c22845830b2c710e62ea9d163f915f421352ac27b4a6cbcd2164e
MD5 af6ea3d6b77545ca3cb2b88fbf9fa39a
BLAKE2b-256 4780e09f6265aca097fd6bd695e2c9fd413257c209e257e7cd8655e65a3a7eb7

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp35-cp35m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.2-cp35-cp35m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.5m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.2-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7a9a2085f110d0a120a2488f10dc4eb2b8eb75a1f5ba891bd95a06dd93ff9fd4
MD5 ee46feab718d12bf0095d960411c04c5
BLAKE2b-256 6e0ffc69f3145981a33eb9b28c8aa076330faf35f1e8bb446640e2cff00f4388

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp27-cp27mu-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.2-cp27-cp27mu-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.2-cp27-cp27mu-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9cd3c6531ce9473b25c89c0b7b5207a656e5a23c396cf73cccbfca978952dbf7
MD5 5d30acebae130e32deaa7455289ba5fa
BLAKE2b-256 78a861e8e08d7cb8d77562fb34daa9b77bd1807800f164cf482cc8aeb7e266b9

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp27-cp27mu-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.6.2-cp27-cp27mu-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.2-cp27-cp27mu-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 d57f312219a3efe3542ed83f856201bd5fb7b90ffd813c08fbc8ec525220808a
MD5 865f410b06ee36c002e8081b29680535
BLAKE2b-256 55db29a41cf2c42a0bbe1553096316120260b460489f9711cf395203d4ab3272

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.2-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 820.8 kB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.2-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 cda6c29143a8cafc9c96bdf7fa5e70cfe3cf43953b1ce82fb82303d8c90602ae
MD5 c6e8f1876cccad223f8a5a340a7cad34
BLAKE2b-256 7656ae20983a7cd8e1e8daaac59022418979fd7efb35c27e6d7138d9dab90ac3

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp27-cp27m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.6.2-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 616.9 kB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.2-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 cca21916c4f192ab277a583ebb8854b87c7be0cc982486cf384a39b20fa12158
MD5 a4975592557bf429c22212926f4a2d8d
BLAKE2b-256 1d54c886c15a78343078719ecfc89a931f03ba6b47de1d9e332dfdf2bc5b4539

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp27-cp27m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.2-cp27-cp27m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.2-cp27-cp27m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5050423f9464018e07eb4c6f85d861d14197ffe77c40688907518cdb691f95ad
MD5 9b33753c27ea0ab9e92e5505866bac18
BLAKE2b-256 eeb0c142e5fd14a983326e482521d664c68f052864e77a491142b87a90b18b13

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp27-cp27m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.6.2-cp27-cp27m-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.2-cp27-cp27m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 42599e89faed105c326d3abb23cd6983be62a54448c192f0682d534aa5ceea5e
MD5 6822bc50f15c8ec4c7f59690a7b76aa1
BLAKE2b-256 0641d9bb0d2b14a280c030e9ebbe8aa8e43a8e70297aa061f106899e42e5b4a3

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.6.2-cp27-cp27m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.6.2-cp27-cp27m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 2.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.6.2-cp27-cp27m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 586752383b7e812efea3c2d89d17a160a254b0818c028cc378d24c35d7e7cc15
MD5 e08d2bbaac9b96ebbd75fff0d3e3129c
BLAKE2b-256 354ea79153af158838bf3779ba7b29e8aa9fcd1f5bb0f515dda709401167714a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page