Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++14 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparision between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparision I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

Benchmark extractOne

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-1.7.0.tar.gz (526.8 kB view details)

Uploaded Source

Built Distributions

rapidfuzz-1.7.0-pp37-pypy37_pp73-win_amd64.whl (809.3 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-1.7.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

rapidfuzz-1.7.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

rapidfuzz-1.7.0-pp27-pypy_73-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

rapidfuzz-1.7.0-pp27-pypy_73-macosx_10_9_x86_64.whl (951.4 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-1.7.0-cp39-cp39-win_amd64.whl (846.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-1.7.0-cp39-cp39-win32.whl (657.6 kB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-1.7.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-1.7.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-1.7.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-1.7.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

rapidfuzz-1.7.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

rapidfuzz-1.7.0-cp39-cp39-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-1.7.0-cp39-cp39-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-1.7.0-cp39-cp39-macosx_10_9_universal2.whl (2.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-1.7.0-cp38-cp38-win_amd64.whl (846.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-1.7.0-cp38-cp38-win32.whl (657.2 kB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-1.7.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-1.7.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-1.7.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-1.7.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

rapidfuzz-1.7.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

rapidfuzz-1.7.0-cp38-cp38-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-1.7.0-cp38-cp38-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-1.7.0-cp38-cp38-macosx_10_9_universal2.whl (2.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-1.7.0-cp37-cp37m-win_amd64.whl (850.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-1.7.0-cp37-cp37m-win32.whl (661.7 kB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-1.7.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

rapidfuzz-1.7.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

rapidfuzz-1.7.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-1.7.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.7.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

rapidfuzz-1.7.0-cp37-cp37m-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-1.7.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ s390x

rapidfuzz-1.7.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ppc64le

rapidfuzz-1.7.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

rapidfuzz-1.7.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.7.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

rapidfuzz-1.7.0-cp35-cp35m-win_amd64.whl (836.8 kB view details)

Uploaded CPython 3.5m Windows x86-64

rapidfuzz-1.7.0-cp35-cp35m-win32.whl (648.4 kB view details)

Uploaded CPython 3.5m Windows x86

rapidfuzz-1.7.0-cp35-cp35m-manylinux2010_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.7.0-cp35-cp35m-manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ i686

rapidfuzz-1.7.0-cp35-cp35m-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.5m macOS 10.9+ x86-64

rapidfuzz-1.7.0-cp27-cp27mu-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ x86-64

rapidfuzz-1.7.0-cp27-cp27mu-manylinux2010_i686.whl (1.4 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ i686

rapidfuzz-1.7.0-cp27-cp27m-win_amd64.whl (696.4 kB view details)

Uploaded CPython 2.7m Windows x86-64

rapidfuzz-1.7.0-cp27-cp27m-win32.whl (545.4 kB view details)

Uploaded CPython 2.7m Windows x86

rapidfuzz-1.7.0-cp27-cp27m-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.7.0-cp27-cp27m-manylinux2010_i686.whl (1.4 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ i686

rapidfuzz-1.7.0-cp27-cp27m-macosx_10_9_x86_64.whl (983.8 kB view details)

Uploaded CPython 2.7m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-1.7.0.tar.gz.

File metadata

  • Download URL: rapidfuzz-1.7.0.tar.gz
  • Upload date:
  • Size: 526.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.0.tar.gz
Algorithm Hash digest
SHA256 42ee496f5e3a272aa867618c393aab1381be51377272cbdcfd91766b21aa6c68
MD5 8c693b7385c134f6210b95a4edfd02eb
BLAKE2b-256 16bbac34b79c60a7e47cc4b15f5db6231f725760539abdf7ddca1a548a43e19a

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-pp37-pypy37_pp73-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.7.0-pp37-pypy37_pp73-win_amd64.whl
  • Upload date:
  • Size: 809.3 kB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.0-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 c8132ec4cb9401b443fddc62c5aac163ce8298fd918b69a14dc21ca01a5fdba6
MD5 60c30f29b2021b12a334e680ff30a43a
BLAKE2b-256 d91257275a65435c32b9019e11f2d2f0476c8d099a56b1d0d786e2156f8c4f67

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 bab78670640e3fed443c06f320e519984955527f17d6a12a998e75d4f025ac90
MD5 935970512259de0b696772aa11cdc486
BLAKE2b-256 b2f4ea9fd5f8fa07efd8deef40ca139d1ef28a6d84d93c05d1c9a78854c5491b

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 a4eff1d407cd9c3ebebd6acb55c3f06bc0d9853e54df72fdd89181e23681e2ef
MD5 3745c92c4545205193dca5e29695318f
BLAKE2b-256 06280457dbf942df9574805b75eca021fa360e4e74ae180535dfa5f23a582e55

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-pp27-pypy_73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.7.0-pp27-pypy_73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.0-pp27-pypy_73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7dfb434a36f58802edca3e911bbdd0247b8a4e4092895fabd9f8d9d415050c02
MD5 8be51e759426d20af3b1846798a2f648
BLAKE2b-256 aab6651f35d251c104de15b99e7ce055d9537a110d3fe27b3253efcb4d25c404

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-pp27-pypy_73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.7.0-pp27-pypy_73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 951.4 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.0-pp27-pypy_73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e3b6e70c93f3ec53966bf1423c395446726c50f6b96413fb7d0eb5b1f6fe8be0
MD5 7fb8cc2aaca3bfe32994519aa712a621
BLAKE2b-256 eb9c31625a00f6659b6ac01b8c103c966ad8163f08ba72105d4d0fdc65d59881

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.7.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 846.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 01411c2d5bf8fa806f4581aec38a6c9f9be97192cd72f3ab299eabd1d0f866ed
MD5 696a63cdeceb56ca43565e32adc3ad66
BLAKE2b-256 affe3868830ae98a4b0ec2193e71a9501a765f1d89363ca69b96a1eccd261d23

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.7.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 657.6 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 168846e3d7ec0e3ecf8ae7cdb7236c090b2bb69b7d81fde39a70a6a1173c3908
MD5 cf9bd04934a972584178c7f3790a14f8
BLAKE2b-256 ee3ed18f4938715367735bf9e46720001fd456dfbdd1a1474af429e268758ce5

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 d813ffa1162e6f472fff403cff04e55abef3200276e3e1b128ff531b1edc9803
MD5 101b4d69344b40768260398f2d9ae45c
BLAKE2b-256 f468109977d9ae34d0e20b427658f8e19f50b548d127245e0d2efffda981ddd6

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 466f5d4a5dd494635b179d8819800b137acdf2e541325f7a28ef10cb84953abf
MD5 03ff38c17fa055a2bf775da8600d475c
BLAKE2b-256 e443131a3ffe3bd8af14738e4abfffb5c8e8dfead87b27f44157ae3fe118ac63

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4163a352deb2223a5666c7780f0a91ed23998489c60193379d2ae69f0c14a159
MD5 243f5ff37667120d1103f9600c5be76b
BLAKE2b-256 4e3c9fab77b995b89456a37538fb5025c81218ef065970de2dcbb6882020a172

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 61f3f696247b4484bade4965a1d3c46c5bb22c9eabe63189202daf6e4ac4610f
MD5 a93dea4f01badab8869f2ab2a81fc2b2
BLAKE2b-256 a10725448c1c498e0b618cd88ec700258b43b4b72927769c6a8fbca80303aad6

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 5188b069be4bf5e023c1d4043b337985101aeb0ab1d44bf9ee79fb70201ce59a
MD5 0ba10aad8455919ba4d927073e54dd87
BLAKE2b-256 93d5086a0d47f848cc665768c13cf91febb5f06ab4ee5d20d54dd70ab731fa6a

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-1.7.0-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 631be284bb3f66abc2fbda138e649075db7c1388054c5e64027f2a94a68003ba
MD5 696aa44436ef796c5b807a63b5b40d80
BLAKE2b-256 adef26b4083609fe4693a4d58d32dd3c03524055121cd823cbfc3f42461bd929

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.7.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e730c221aa52e157a300b5ba0cff4fb91b81571aa6c65186183d7557a7492639
MD5 d75a6f21f7a910ed1bf88dc4177d5147
BLAKE2b-256 a74de0ea6ca44b82e844127c89f19d4d8f185267d7ecc88647e4ae7179784982

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-1.7.0-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 fe1866b11b16efd13e2936573b87771ad63286aa90e0ed637f3faa850d954da9
MD5 c7a5b2fc7e5c6a8daed3e776f34be765
BLAKE2b-256 e969d6b539ada58b92bee66960382f623160b8a67f6a50a2194c9078142a8e7b

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.7.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 846.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 7c2c0e6bb2dec94202462fbad00f52f2ac670a588389d525f6555a5fc8de9ff7
MD5 dbf968d2cf4657f0f0bfcd65e87f8d1f
BLAKE2b-256 52356c83c71efea1b6dfd8a58a25848e0fb848fd3a664e8e3934a52d1ae5a919

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.7.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 657.2 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 a90a2b4dbb8e94c10f79c17df21ef552ee73fa3f0379c819307fa93f59f4336d
MD5 93640d6c0f785957bb870e7202502d76
BLAKE2b-256 b28ddaa423ce2769e295c562f0d8865bf4b4b992d02a73243129ac0d396052c6

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 c3e787eb8b52028d8746de50e06bcfca09b2a3174a12a247c35602debd84f6fb
MD5 60876114021a6dc3d8f645db00f02b26
BLAKE2b-256 52da15971060dbde50f09d232136aac15858db7fc58c832d0ccf7d3390209a1e

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 07bab04e847a3bdbe0c4b633c277170832e28794002a9ef872f360f2970fa905
MD5 08a963a8a9664a6a3321f5296fcce7a5
BLAKE2b-256 6918eab8380af0c52d27ebc13d97ff34ceb165f134e8adbcddc65f9257b4732d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fc27b7f6211a9b9a8129170232631cbbbb3768aa15c3086c8d7124c5c397acdd
MD5 6d832cb20cb8f65ff78e589bee6d430c
BLAKE2b-256 be87e8138fbc1ec55590b5c54a066a53e75f619e9237328f47dee4b98e2d6890

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4d7f87372ec8e5991addf812c5db58bb9a89480a03869fbe62c33bc5b1f56fa9
MD5 7034d109cedcb9c19a66a19b4484c705
BLAKE2b-256 ac393e9dd95203a2f2bb6b6c35195390e6bb5dd456d1c4e24eaff3f7274f8a4f

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 da0dc206d20e1feff38fc60ac729eaab834f663b05f50ed8b6483197449cda40
MD5 6825eaf3dcc9315a6908aac38410cdc8
BLAKE2b-256 2e3ad418d9a691652dacb826db325e37d838f224907a4977ade53000fc99b6eb

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-1.7.0-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4687f3ee89d5e1d2b10622198ff4452e871987da163d570d1a07443f6e56afe6
MD5 8ebd343d58cd934ba9cfa270118f16cd
BLAKE2b-256 b611458ebc94eb71af750fbdb2b4495396f0b762437b9ec1b02f464c88862c48

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.7.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8f54e1ee044e333aafacd6d2d01ffc8daebece07a997893084648fce2ab0bc58
MD5 24851401569aedea02fc6482dc95cc9e
BLAKE2b-256 a224f78a4c031ca293bff426c1fbbfd8a5f3dbe774c4b00eff8305f211fb4d8c

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-1.7.0-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e48c42650853262c6857374ee82c952627a08b64274217838b956039bc26e8a0
MD5 36407736ae7f2996880be9d11648f723
BLAKE2b-256 b41bb0a7cac58a0b3b26033d288a260832b488120c6ad7921599d4dbb823bed0

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.7.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 850.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 8e038c1c03af8b5d405719f92838de4348a59d5ea2e1adb14c2fd9a5fd39405a
MD5 6d36b948545249484594b4ba2d1ac286
BLAKE2b-256 074389b052e82192fd29fbeb643d04aa8ea070ce33bbe0c9b128e8a090e56eff

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.7.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 661.7 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 3a4eaa966d17bb0b28bafce372fb56d18f5c775f8a5055927f2e866dac2ebacd
MD5 392197d9e0df1903452af32d51392ddd
BLAKE2b-256 75f060592271af42b7bb993353a47f6386830af07cdd0ec50090ddd669e2359e

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 8bcb1570255a10012bd14e3bb2bb9043d13af745592a1c48cd263cedd4b9939e
MD5 2f5016aa2e6a77b40d2ad9ecbfe30520
BLAKE2b-256 3aec57be0e88a96aedcf388967b02802442bbb5cef9b620679a71cdee71c63fd

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 c08acff42e2d1bb890a1390e151c07b30726d83e5d5b9e1df559113f587a4004
MD5 4707e2f099d03ea8fb0d3bc7806324d9
BLAKE2b-256 3fd4e7975aff44168dd172e372c31e28118c8f70def676289114d55a144bcc36

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 87a008988fa44b1f9bd9825e4fe2d047a2d6c730ae921e945d628bcb7d244648
MD5 5dd8796ca5b6a93dc6c6d8a0a9fa3fe7
BLAKE2b-256 a28f6a1c9b14b558b635d0d5b3b450972f7bd962c5f31930675f58e4ff3ff64f

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 62c2eda8875f5880d57cd76eb34e849b145b09c286d92e775b4a443af979cd8b
MD5 0932f127d34ca76e7124c440de26677a
BLAKE2b-256 a43f42c3027622be384466c75dbea665c1aff192ff3a1a83605c307e5b0346a8

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 4d3760326a5e0076f03756c3d00a2b84dea327302bfaacb596e47fc6b9b32e76
MD5 46bb3e1b6a6a1e23afab79e692d7cad7
BLAKE2b-256 3114e8e708dff0b0d6e3f62edc12cb991008c9f3499dd87f7a320fb79b835d2c

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.7.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dca61d8fb044739b205784cf5f251930d0ddc2508b1fb7a7eb880837ed5599c2
MD5 278d8137a2d81e35dbcd29ccaf5193b8
BLAKE2b-256 0a663794fda0175c3cd49dd31e7c2f0532503551e5d92fc04f588a0f90e12cba

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 7452a6397e244e4dd4b215883165b7d5f965c6d0db22398e3219cf0a4d0281bb
MD5 578bcd546965f6a24d2bfdc8327372b4
BLAKE2b-256 d4aed99ca2842ed76c92eaf2f6fd6706a507d5c64a1a62e69ebc70c160aac7ad

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 b62f70958e169ea0dca6e2c12c2317b91036b196d6dd562e88a28616a04f573b
MD5 4861cdfe294fd836591ee612f7a2a2cc
BLAKE2b-256 c2a6b55c6418f66ba99f2ccabdb3808e743d86ea843920dbb445024faef9e0a0

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 47e1ae6faaf106556542be31eba7f0b5008a731e029706569fe017fab68d4ff0
MD5 f639a0eaf7c9f0ad188ea2415c702ed2
BLAKE2b-256 7f225bbbed59540e16be1e10e852e66320aaad6f9845ee1592ca638e56f47d01

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 07932c7195e805537a563995c5bbd38f900d19a080422f5e2b5fb1753474af12
MD5 495000e6c6edc0c868f202a1c604c15e
BLAKE2b-256 a5451308e6830d9edfa8f75c636e42225dcb0f78a81695d18d1c1b6eed837c33

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 9d4c95edeb3820e8051e3265613ac9815763c1f81fa3b09baea2f1522b1f3fb7
MD5 a3b176782e914166187d685bf1f7a623
BLAKE2b-256 ab95c0215a88bd1f391c79a8390e59f206200c9324749f655f3b4f62558c72c1

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.7.0-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 836.8 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 fde25f05e2ed1dd04d13542cbe30737b0a9f6df5e8b75c823a17b8267b03f7be
MD5 c2622aa36ff7101042c8c047b671dd08
BLAKE2b-256 64ee6ac727aa35acdd75be86d0ea6caeb55f12094764d56779dd64abbdc5e6f7

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp35-cp35m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.7.0-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 648.4 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.0-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 e674ac166d9b3ed6cd62b6d32dfcd3f3e45381ebb1c04a246a1645974ef0612c
MD5 96854ce09e612b1767a6121abca0362e
BLAKE2b-256 f25a773761cb21e876775a25797c87082261bdbb4f07fc116b4f9f933cce88d3

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.7.0-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.0-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a478a9b002b8c7ef1ef608750b13ae69c3b28291effe3e7fa5315dfef7a6e471
MD5 ad8206fc68b14e25bc276bf2af03d17f
BLAKE2b-256 c6f51bbbf602fbe56dcd252f75d0bc9af9bcf339eac34be31652008f277a82c2

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp35-cp35m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.7.0-cp35-cp35m-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.0-cp35-cp35m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 22bcb885e760322bd94905efd2ce1a7ad8054deca6a32a5b9fdaee5ab29ea973
MD5 1cef08907ea0c04a048af0934b12305c
BLAKE2b-256 68c2ef0b7514f0fe97ad7e36004527df25eb111bfbc1e92264e53540af541f58

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp35-cp35m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.7.0-cp35-cp35m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.5m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.0-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 81b569daed4468f2da45013ee8b3e76b46565a78f34aa56ba4509d22e8476488
MD5 bb610865ba2ef766c3502db1e498e298
BLAKE2b-256 9348950aa0442d95e74f87a579a23aa4216180464f2394f84e9fe78da57dcd69

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp27-cp27mu-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.7.0-cp27-cp27mu-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.0-cp27-cp27mu-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b7b48b2541362542913f3a00a037fcf59794c66f0b18a9c936ffdf7280122e8c
MD5 d1c26d17e68885d8f9cf373077437ba9
BLAKE2b-256 ecb56b2160442d0f93e26401d9ae4954c1be9a9ed242e92b7552d5ea034e07a7

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp27-cp27mu-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.7.0-cp27-cp27mu-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.0-cp27-cp27mu-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 0852cd6b6ef9c77b78f2e7f6b10cca4041968e00803033b0f7e6152bfacb8f4a
MD5 585f174c35399187710a5b3f111840ff
BLAKE2b-256 603c451a3040a8c159f10c499f5b6809f9336b6296e7f3404d80e32430c68a1c

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.7.0-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 696.4 kB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.0-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 3facac94392d7116cce90fc11394fa8610caeae57a28d7b5c61937275d2852fb
MD5 affc20b20ce8971fc8f22e304a40b2e4
BLAKE2b-256 ebd12c7c6e78397fb94fe4402e4ab9b96581ef458a186738923626de5fe1003f

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp27-cp27m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.7.0-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 545.4 kB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.0-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 51ecefc73c7a55185588fcae1678d8fefe003b96122d3d6e45c2cb6c8f4f6889
MD5 d48902fa4c93ca600991c647f080a07a
BLAKE2b-256 90bcd953ee44e0c6be21c649bd41cc8aa5d4973b761215ee9a7cfcd887a6ff55

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp27-cp27m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.7.0-cp27-cp27m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.0-cp27-cp27m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8aabfc6b7927beab444e6e8f03ddb8f3fd1f997947dc38827539c153a51a2342
MD5 ae94f235f6f24bfb50b374ab4efbfd25
BLAKE2b-256 e4789205cf3d04e861ec1ca959004bd42bb93c862ef9b9ad77a3ea7aa3fc6bac

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp27-cp27m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.7.0-cp27-cp27m-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.0-cp27-cp27m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 06f4b6734fd1358a845178c23bfa2342565758612a1d5f7641f484019ec69eac
MD5 123e32cacd699d05f2e5c24eb5f25dee
BLAKE2b-256 503bebc4779ebd61943a902df4d02657f2d853f29a63736560af38d6436adfaf

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.0-cp27-cp27m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.7.0-cp27-cp27m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 983.8 kB
  • Tags: CPython 2.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.0-cp27-cp27m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 05107d80c2f9d8498dce335a7d655ffa0b43eb3b79da647d300a17b93236bdfd
MD5 9c4a4f8e41744b3dab9290bd1e790c3a
BLAKE2b-256 135b993e9de566f786fa32d020560c7abe9a4c3e45f62651f564a0ae6b5ac8c9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page