Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++14 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparision between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparision I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

Benchmark extractOne

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

This version

1.7.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-1.7.1.tar.gz (526.8 kB view details)

Uploaded Source

Built Distributions

rapidfuzz-1.7.1-pp37-pypy37_pp73-win_amd64.whl (815.8 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-1.7.1-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

rapidfuzz-1.7.1-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

rapidfuzz-1.7.1-pp27-pypy_73-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

rapidfuzz-1.7.1-pp27-pypy_73-macosx_10_9_x86_64.whl (959.6 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-1.7.1-cp39-cp39-win_amd64.whl (852.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-1.7.1-cp39-cp39-win32.whl (663.7 kB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-1.7.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-1.7.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-1.7.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-1.7.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

rapidfuzz-1.7.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

rapidfuzz-1.7.1-cp39-cp39-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-1.7.1-cp39-cp39-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-1.7.1-cp39-cp39-macosx_10_9_universal2.whl (2.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-1.7.1-cp38-cp38-win_amd64.whl (853.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-1.7.1-cp38-cp38-win32.whl (663.3 kB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-1.7.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-1.7.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-1.7.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-1.7.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

rapidfuzz-1.7.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

rapidfuzz-1.7.1-cp38-cp38-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-1.7.1-cp38-cp38-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-1.7.1-cp38-cp38-macosx_10_9_universal2.whl (2.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-1.7.1-cp37-cp37m-win_amd64.whl (857.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-1.7.1-cp37-cp37m-win32.whl (667.8 kB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-1.7.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

rapidfuzz-1.7.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

rapidfuzz-1.7.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-1.7.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.7.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

rapidfuzz-1.7.1-cp37-cp37m-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-1.7.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ s390x

rapidfuzz-1.7.1-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ppc64le

rapidfuzz-1.7.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

rapidfuzz-1.7.1-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.7.1-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

rapidfuzz-1.7.1-cp35-cp35m-win_amd64.whl (843.4 kB view details)

Uploaded CPython 3.5m Windows x86-64

rapidfuzz-1.7.1-cp35-cp35m-win32.whl (654.8 kB view details)

Uploaded CPython 3.5m Windows x86

rapidfuzz-1.7.1-cp35-cp35m-manylinux2010_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.7.1-cp35-cp35m-manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ i686

rapidfuzz-1.7.1-cp35-cp35m-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.5m macOS 10.9+ x86-64

rapidfuzz-1.7.1-cp27-cp27mu-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ x86-64

rapidfuzz-1.7.1-cp27-cp27mu-manylinux2010_i686.whl (1.4 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ i686

rapidfuzz-1.7.1-cp27-cp27m-win_amd64.whl (701.0 kB view details)

Uploaded CPython 2.7m Windows x86-64

rapidfuzz-1.7.1-cp27-cp27m-win32.whl (549.3 kB view details)

Uploaded CPython 2.7m Windows x86

rapidfuzz-1.7.1-cp27-cp27m-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.7.1-cp27-cp27m-manylinux2010_i686.whl (1.4 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ i686

rapidfuzz-1.7.1-cp27-cp27m-macosx_10_9_x86_64.whl (991.3 kB view details)

Uploaded CPython 2.7m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-1.7.1.tar.gz.

File metadata

  • Download URL: rapidfuzz-1.7.1.tar.gz
  • Upload date:
  • Size: 526.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.1.tar.gz
Algorithm Hash digest
SHA256 99495c679174b2a02641f7dc2364a208135cacca77fc4825a86efbfe1e23b0ff
MD5 3fe86c9cbd7b0494781733c641b45cb2
BLAKE2b-256 3b034fcfa47382f5b039fb32a3332d5aa116c28e1ea42645fac82a2e008a2bc9

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-pp37-pypy37_pp73-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.7.1-pp37-pypy37_pp73-win_amd64.whl
  • Upload date:
  • Size: 815.8 kB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.1-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 dccc072f2a0eeb98d46a79427ef793836ebc5184b1fe544b34607be10705ddc3
MD5 cb443113a7c160fcf2943c1a3b0d5056
BLAKE2b-256 cb0fb91078e7adc1e117dffd123b1b9451745447dac5a537d77ab7c8b46daf4f

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.1-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e8ae51c1cf1f034f15216fec2e1eef658c8b3a9cbdcc1a053cc7133ede9d616d
MD5 5490bc9a19051f22603ebc173a8d47fd
BLAKE2b-256 1053832edd7941d1a4183123bd0f2bc0c3ccd5faf17d5d9dd4fd464962f9ef45

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.1-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 ae697294f456f7f76e5bd30db5a65e8b855e7e09f9a65e144efa1e2c5009553c
MD5 780037f044c98b5226adf61513e50f02
BLAKE2b-256 87bc913607ec73a517c4ecaa840e665e4cc94a7b92ffeef9b44df9e763e211eb

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-pp27-pypy_73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.7.1-pp27-pypy_73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.1-pp27-pypy_73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a1cabbc645395b6175cad79164d9ec621866a004b476e44cac534020b9f6bddb
MD5 2d22636bf291b6c0bcf74fe0a6a72f7b
BLAKE2b-256 a3ab8a0c289d53186dd99ccae1a8a046b9c772fbf1f1fabb2ba79244bc1cbe38

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-pp27-pypy_73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.7.1-pp27-pypy_73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 959.6 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.1-pp27-pypy_73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 729d73a8db5a2b444a19d4aa2be009b2e628d207d7c754f6d280e3c6a59b94cb
MD5 9f090517d86cd7768c815de44e010e97
BLAKE2b-256 caf75f12f78b1dae8f9be144032e1cf6855ab20b410ee94f31943db88190b83b

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.7.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 852.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d712a7f680d2074b587650f81865ca838c04fcc6b77c9d2d742de0853aaa24ce
MD5 1523997f6820e1c07b77b80d36fe32f7
BLAKE2b-256 39078814f18aee2054c7fc86f83e48302ec7f8b5dfe999b39f2a88ddc56b6271

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.7.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 663.7 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 55dffdcdccea6f077a4f09164039411f01f621633be5883c58ceaf94f007a688
MD5 06eea6582396f47edb44dec649f2819f
BLAKE2b-256 0c17aea43d438b783e671fdd03a1bdbadaaf72485b64492727a35d1613021b13

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 a5f90fc31d54fcd74a97d175892555786a8214a3cff43077463915b8a45a191d
MD5 0a8dc50a0c52f9ac0605e75de87e3b4e
BLAKE2b-256 f56bd76176a65f3a81f1013fd30c7dc4526c5c62c0c57521317a195a266363bf

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 358d80061ca107df6c3e1f67fa7af0f94a62827cb9c44ac09a16e78b38f7c3d5
MD5 776a8ecf487a6a0ab509738d06e393fc
BLAKE2b-256 159e31df8e7b73ffd85f5734e3305ad87c63c79a3f3f6918e0fcd900f58eb556

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c98ac10782dadf507e922963c8b8456a79151b4f10dbb08cfc86c1572db366dc
MD5 5daf8e00cc43abdd5524abe6b3394ac5
BLAKE2b-256 b210315a7c63848c31d5209ed7e862cdb967baed9793c776c1eb8cf0041de0f8

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1daa756be52a7ee60d553ba667cda3a188ee811c92a9c21df43a4cdadb1eb8ca
MD5 321d9f8fb21e01f3c73d7d51b6bdf3c6
BLAKE2b-256 a55300b0a39917e6164fb717f3a0aaf3c870314dc962cb91357eaf29c491d7a8

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 61faa47b6b5d5a0cbe9fa6369df44d3f9435c4cccdb4d38d9de437f18b69dc4d
MD5 f407f82cb93ccf6e3c51feaee8bb0a84
BLAKE2b-256 fd06488a1923696b18f6502470c3c023d6e172423c71a266af33769c2673b7c4

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-1.7.1-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a0cd8117deba10e2a1d6dccb6ff44a4c737adda3048dc45860c5f53cf64db14f
MD5 4d3a3fdf337df49dd8e9267300e9d649
BLAKE2b-256 d66ab2b63dc6aa7761bba8ae7c2a7b35c5a08ed64deb524c2c96d967629e3ddc

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.7.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 212d6fa5b824aaa49a921c81d7cdc1d079b3545a30563ae14dc88e17918e76bf
MD5 23335305666c46e1f1b4c88f0366dc7e
BLAKE2b-256 b5a504ff44d4205eac98de4ec90b27b265b050e222486e5bdb92581604ee9e1a

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-1.7.1-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 9d02bb0724326826b1884cc9b9d9fd97ac352c18213f45e465a39ef069a33115
MD5 3fed44af57302929e600ce42975ed9a0
BLAKE2b-256 a1a11d96663c3b5e8159e36296f7ed9034c9c2339a9d7962fc806e7c90693db5

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.7.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 853.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 058977e93ab736071fcd8828fc6289ec026e9ca4a19f2a0967f9260e63910da8
MD5 3e31370903dbfda8431aebc0e86c33a9
BLAKE2b-256 18e8e90593d0055506c70cc0bb342917e4a4e1c217f30272a49c6dce23598c50

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.7.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 663.3 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 234cb75aa1e21cabad6a8c0718f84e2bfafdd4756b5232d5739545f97e343e59
MD5 cd0f8e2c07bacab6e4f76964ed728b13
BLAKE2b-256 f1e8969977c11b42d563fd157259ed2343281b55859f066f161e7dccf7b85f56

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 9ffca8c8b74d12cd36c051e9befa7c4eb2d34624ce71f22dbfc659af15bf4a1e
MD5 445efcda3614793cf39456ef527b869f
BLAKE2b-256 242a6450ee8d4ef33ab21af792f9e90822974cce509e276ab1704e368165f200

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 0195c57f4beea0e7691594f59faf62a4be3c818c1955a8b9b712f37adc479d2d
MD5 20de41d3238e24750b825fd81cfd1271
BLAKE2b-256 1cff4f6779c17f08c3c4e54d80b766c4b9ccee9af38190f748291bd2f3c8b8b1

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7db9d6ad0ab80e9e0f66f157b8e31b1d04ce5fa767b936ca1c212b98092572b1
MD5 bbd58b6fa44dccbdbeb2b350b5f2387b
BLAKE2b-256 833ffaab310e35ed0005f2c68dcd2ed222bc4c8146e720f203815d5516137814

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e6d77f104a8d67c01ae4248ced6f0d4ef05e63931afdf49c20decf962318877f
MD5 31c3a7aaa098202f2877b7cc31bc7af2
BLAKE2b-256 eba14f8706c97fa12931af06d2579b85f2f4e44bb670901c5aa0fe4c10f0538b

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 afd525a9b593cc1099f0210e116bcb4d9fc5585728d7bd929e6a4133dacd2d59
MD5 0af97efd5af2a598230e5f7ecc091536
BLAKE2b-256 a04ed2dde2565fd861bdee3b536fb20e78d8e359229b40f33dae9fe4e17cb2e8

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-1.7.1-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 88c65d91dcd3c0595112d16555536c60ac5bcab1a43e517e155a242a39525057
MD5 bb3f7dd387efae7ecfa3178d3491a91c
BLAKE2b-256 bc3972e186e6696c1672a78fa6a34c6796b66041b298a5d76f0fbc1bc76f0f10

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.7.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 de2b0ebb67ee0b78973141dba91f574a325a3425664dbdbad37fd7aca7b28cab
MD5 b359e0142f326e33d5bc827e520fe59b
BLAKE2b-256 8490dfde430b7b838120ad32fe63761adb5b7890922878ee8dd0dc93a03cc82f

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-1.7.1-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.1-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 9e27eb57745a4d2a390b056f6f490b712c2f54250c5d2c794dd76062065a8aef
MD5 b97abad1f7d5cecaf3aed90de03e627e
BLAKE2b-256 61743c64d266508a253513d0645247a615aaef02c4c8292e7863988aa19648e2

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.7.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 857.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ef20654be0aed240ee44c98ce02639c37422adc3e144d28c4b6d3da043d9fd20
MD5 0e4b21d29a229f5c2f8bd907ac2bbfd7
BLAKE2b-256 81acf0bf19ae34fe1b668970d0ef523072798c70eea5989d66cebb6b6d1996ba

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.7.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 667.8 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 e113f741bb18b0ddd14d714d80ce9c6d5322724f3023b920708e82491e7aef28
MD5 39059d0116ae20d8a965fd8aa13cc982
BLAKE2b-256 a982b62e5c9e330b71297e45a733f12c18a27b0620ef04ed065be74d511a8f0c

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 dff55750fecd8c0f07bc199e48427c86873be2d0e6a3a80df98972847287f5d3
MD5 bfd15b57dbadf0cb4878af5ce585660d
BLAKE2b-256 6636a391ffd252a6cbc74d7a8f6d2edff9bb302fbde6a0dc88e5203f147e83e0

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 ec0a29671d59998b97998b757ab1c636dd3b7721eda41746ae897abe709681a9
MD5 720e5db33d2272a2cb69665fadd837de
BLAKE2b-256 8cde8fb67089af02686e7c796a51059c11033d46a9d5f89b165be2791138dc03

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4887766f0dcc5df43fe4315df4b3c642829e06dc60d5bcb5e682fb76657e8ed1
MD5 82f038bb7dcd8dd389d71175be6e8f64
BLAKE2b-256 0e18c3424f3d61c842d9dad29161ea0dd62ee9f882bd2157273c732109b04694

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 26d756284c8c6274b5d558e759415bfb4016fcdf168159b34702c346875d8cc0
MD5 4d7f51905ac1f3edd181b8fada96cd9c
BLAKE2b-256 7c0b208cdbd88e6e34e1ca5cd3dbbe99c66209515013d355d97f3a656d845d9d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 e417961e5ca450d6c7448accc5a7e4e9ab0dd3c63729f76215d5e672785920fc
MD5 f1541146d233bee4573e3c156d179509
BLAKE2b-256 e86b94dc7f05614339bc713fdb1c24260cb333f718fcbf771ebefdf96f867c9e

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.7.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3725c61b9cf57b6b7a765b92046e7d9e5ccce845835b523954b410a70dc32692
MD5 f840b3fb9212fcbd8e555337d399eb9c
BLAKE2b-256 d4cd9ce71e3362f5490d394fbcd2c924afae0e770599c586a056ccfc53583bb6

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 2dd9d8eaae888b966422cbcba954390a63b4933d8c513ea0056fd6e42d421d08
MD5 5f54672f332d25ac43af257245efea64
BLAKE2b-256 7245c768104733ff108a0884f0b1ffdc5eda753b00d71b2e233ea43db88f30ce

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.1-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 2d5194e3cb638af0cc7c02daa61cef07e332fd3f790ec113006302131be9afa6
MD5 1ef75542c298b2256f57da24e8a433d5
BLAKE2b-256 b6d60986ed76b8b299819a5b434e37c47a76e8dcd8bcdfc8dc3d3052e26d0b47

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ba574801c8410cc1f2d690ef65f898f6a660bba22ec8213e0f34dd0f0590bc71
MD5 71083fca438feb09ae9aa47ffafa679a
BLAKE2b-256 1acd32c09ffb4a361f6220f9b771b88cd812c90cc17a7e3976917fd7833ce620

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.1-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b8139116a937691dde17f27aafe774647808339305f4683b3a6d9bae6518aa2a
MD5 7710c423ecccbcc08596d59d8c542852
BLAKE2b-256 e38b76290ab6d83a24c17c4bd621b67f27c200005dc43237693ca45f82a1b938

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.7.1-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 8f96588a8a7d021debb4c60d82b15a80995daa99159bbeddd8a37f68f75ee06c
MD5 cb0191053002195e2d49d277308de66a
BLAKE2b-256 fe04a3d7870b4d4b015a942bdc4c08250b23da4c6a4f55378d8408b54ff9af66

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.7.1-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 843.4 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.1-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 3b205c63b8606c2b8595ba8403a8c3ebd39de9f7f44631a2f651f3efe106ae9a
MD5 4c73a7d6eb13494338a5822d39ba4e0f
BLAKE2b-256 5fc320b06ac79d97994039d4b5af0163f2c14d9a8588bda5e486f71095e8c5db

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp35-cp35m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.7.1-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 654.8 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.1-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 80d780c4f6da08eb6801489df54fdbdc5ef2b882bd73f9585ef6e0cf09f1690d
MD5 e52b1abce6f8aa85abd7137bba6b7e9a
BLAKE2b-256 7b83985c2ef7d4d3e02e9b32fa302bcd9d34e873b6a87bc37f5c3cd7e1879efa

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.7.1-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.1-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d5779e6f548b6f3edfbdfbeeda4158286684dcb2bae3515ce68c510ea48e1b4d
MD5 e2d238d0072a716809851d8b365de94c
BLAKE2b-256 3615c4b88e8e9e91b772a8aa06f2676a3cc55bd19f6341b2a2b70a2996d48cb7

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp35-cp35m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.7.1-cp35-cp35m-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.1-cp35-cp35m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 be18495bd84bf2bd3e888270a3cd4dea868ff4b9b8ec6e540f0e195cda554140
MD5 b57e30b184a179904602363d5987049e
BLAKE2b-256 a03bd48ef3349879d65ef28962d237d99f0d43073782a46670d0d9e0a5a39ba9

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp35-cp35m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.7.1-cp35-cp35m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.5m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.1-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5ed4304a91043d27b92fe9af5eb87d1586548da6d03cbda5bbc98b00fee227cb
MD5 4d919eff4bdebd79427ad2d7666c0f2e
BLAKE2b-256 b1c6358f0c8e00dccfc2dd1214459c024b81654549d112539886e5383dcde9ab

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp27-cp27mu-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.7.1-cp27-cp27mu-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.1-cp27-cp27mu-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2940960e212b66f00fc58f9b4a13e6f80221141dcbaee9c51f97e0a1f30ff1ab
MD5 c5669c9a23841801a9e4288793f2d0ef
BLAKE2b-256 c3c4c49b59496f375712f38738a026d9294ac11a06f052d10b2e6e8ceeefe047

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp27-cp27mu-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.7.1-cp27-cp27mu-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.1-cp27-cp27mu-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 cdd5962bd009b1457e280b5619d312cd6305b5b8afeff6c27869f98fee839c36
MD5 a9035c6255e424ee38d4d82c531ad708
BLAKE2b-256 3631d95ede59b39a796a657f4896707abcac632a1f675a42210caeaa245f136d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.7.1-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 701.0 kB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.1-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 83f94c89e8f16679e0def3c7afa6c9ba477d837fd01250d6a1e3fea12267ce24
MD5 ab99e5e39506e46ef84c0eb031283824
BLAKE2b-256 064b804b69190b92da66d5022f1d6cc60ba64f9fde331daf84262b4dd730d008

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp27-cp27m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.7.1-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 549.3 kB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.1-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 c1090deb95e5369fff47c223c0ed3472644efc56817e288ebeaaa34822a1235c
MD5 7cb7613d88a70e6d05cccb55c39a0cfd
BLAKE2b-256 9592c7db662f663af282b9378bb3ccc3d8804b96faae407f6d1562584f437d26

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp27-cp27m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.7.1-cp27-cp27m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.1-cp27-cp27m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 76124767ac3d3213a1aad989f80b156b225defef8addc825a5b631d3164c3213
MD5 4f6a60d88663abe60ab5296bd10409bd
BLAKE2b-256 319a14a4073d838637e23dfd568e6857cfafd43c80ba56517525881805a7f185

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp27-cp27m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.7.1-cp27-cp27m-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.1-cp27-cp27m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 f336cd32a2a72eb9d7694618c9065ef3a2af330ab7e54bc0ec69d3b2eb08080e
MD5 75f18317a967d029f74e82144f632a8b
BLAKE2b-256 02df8a6e52ce531591a052ddd089819c352576124d38c3ba52e9fbb92177e58c

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.7.1-cp27-cp27m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.7.1-cp27-cp27m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 991.3 kB
  • Tags: CPython 2.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.7.1-cp27-cp27m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1ca9888e867aed2bb8d51571270e5f8393d718bb189fe1a7c0b047b8fd72bad3
MD5 c2752e191ae319a6c6f7d63de11e4338
BLAKE2b-256 ba4bdf7a3189bc8b16592191b377fe1fbde288788f4848c821109be9fe91d8fe

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page