Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++14 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparision between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparision I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

Benchmark extractOne

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-1.8.0.tar.gz (527.6 kB view details)

Uploaded Source

Built Distributions

rapidfuzz-1.8.0-pp37-pypy37_pp73-win_amd64.whl (836.2 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-1.8.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

rapidfuzz-1.8.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

rapidfuzz-1.8.0-pp27-pypy_73-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

rapidfuzz-1.8.0-pp27-pypy_73-macosx_10_9_x86_64.whl (981.5 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-1.8.0-cp310-cp310-win_amd64.whl (871.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-1.8.0-cp310-cp310-win32.whl (682.5 kB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-1.8.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-1.8.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-1.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-1.8.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

rapidfuzz-1.8.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686

rapidfuzz-1.8.0-cp39-cp39-win_amd64.whl (872.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-1.8.0-cp39-cp39-win32.whl (683.9 kB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-1.8.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-1.8.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-1.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-1.8.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

rapidfuzz-1.8.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

rapidfuzz-1.8.0-cp39-cp39-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-1.8.0-cp39-cp39-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-1.8.0-cp39-cp39-macosx_10_9_universal2.whl (2.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-1.8.0-cp38-cp38-win_amd64.whl (872.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-1.8.0-cp38-cp38-win32.whl (683.4 kB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-1.8.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-1.8.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-1.8.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-1.8.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

rapidfuzz-1.8.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

rapidfuzz-1.8.0-cp38-cp38-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-1.8.0-cp38-cp38-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-1.8.0-cp38-cp38-macosx_10_9_universal2.whl (2.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-1.8.0-cp37-cp37m-win_amd64.whl (877.3 kB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-1.8.0-cp37-cp37m-win32.whl (687.8 kB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-1.8.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

rapidfuzz-1.8.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

rapidfuzz-1.8.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-1.8.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.8.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

rapidfuzz-1.8.0-cp37-cp37m-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-1.8.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ s390x

rapidfuzz-1.8.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ppc64le

rapidfuzz-1.8.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

rapidfuzz-1.8.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.8.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

rapidfuzz-1.8.0-cp35-cp35m-win_amd64.whl (863.9 kB view details)

Uploaded CPython 3.5m Windows x86-64

rapidfuzz-1.8.0-cp35-cp35m-win32.whl (675.1 kB view details)

Uploaded CPython 3.5m Windows x86

rapidfuzz-1.8.0-cp35-cp35m-manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.8.0-cp35-cp35m-manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ i686

rapidfuzz-1.8.0-cp35-cp35m-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.5m macOS 10.9+ x86-64

rapidfuzz-1.8.0-cp27-cp27mu-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ x86-64

rapidfuzz-1.8.0-cp27-cp27mu-manylinux2010_i686.whl (1.5 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ i686

rapidfuzz-1.8.0-cp27-cp27m-win_amd64.whl (710.1 kB view details)

Uploaded CPython 2.7m Windows x86-64

rapidfuzz-1.8.0-cp27-cp27m-win32.whl (565.7 kB view details)

Uploaded CPython 2.7m Windows x86

rapidfuzz-1.8.0-cp27-cp27m-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.8.0-cp27-cp27m-manylinux2010_i686.whl (1.5 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ i686

rapidfuzz-1.8.0-cp27-cp27m-macosx_10_9_x86_64.whl (1.0 MB view details)

Uploaded CPython 2.7m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-1.8.0.tar.gz.

File metadata

  • Download URL: rapidfuzz-1.8.0.tar.gz
  • Upload date:
  • Size: 527.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.0.tar.gz
Algorithm Hash digest
SHA256 83fff37acf0367314879231264169dcbc5e7de969a94f4b82055d06a7fddab9a
MD5 84fc8eed8d61a9d27948686d506354d9
BLAKE2b-256 ffe92c13f0c3039ae0858a788a2fc49b39029dd1b5cda16ef455597071cea3cd

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-pp37-pypy37_pp73-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.0-pp37-pypy37_pp73-win_amd64.whl
  • Upload date:
  • Size: 836.2 kB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.0-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 1482b385d83670eb069577c9667f72b41eec4f005aee32f1a4ff4e71e88afde2
MD5 3804d2c378e8f82bd38414aad09c9624
BLAKE2b-256 966bd84e6ead3e7dcea78c2dc545236363221fb1657bb1b8f87645a984b7bb18

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0fb9c6078c17c12b52e66b7d0a2a1674f6bbbdc6a76e454c8479b95147018123
MD5 e221e334905dbdda6204e614efd934a4
BLAKE2b-256 371b9e98f93adf8b4d680110fa97816dfbf7a71e8cbd454550dfc1e1539f405a

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 c738d0d7f1744646d48d19b4c775926082bcefebd2460f45ca383a0e882f5672
MD5 593c50889c0f6840ac1f52cc672796c5
BLAKE2b-256 6faf34ab386b0bae9332e7a8186cf820a9be33a874b62304c93441d4dc481bbf

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-pp27-pypy_73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.0-pp27-pypy_73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.0-pp27-pypy_73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b7d4b1a5d16817f8cdb34365c7b58ae22d5cf1b3207720bb2fa0b55968bdb034
MD5 45a43a6e4b57006f5ec665cba80d03aa
BLAKE2b-256 f50b73d15130d43e44e0f0d25a94e8b278e9525a7c7426fb19f774a1853c9280

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-pp27-pypy_73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.0-pp27-pypy_73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 981.5 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.0-pp27-pypy_73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a01f2495aca479b49d3b3a8863d6ba9bea2043447a1ced74ae5ec5270059cbc1
MD5 31bd753830538de4987535c76f64bd14
BLAKE2b-256 46eea56b3e8ef71d3bb7f1de1aff651e596ee4dc898bb2c9f8ca4459bbfd8e8f

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 871.3 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 798fef1671ca66c78b47802228e9583f7ab32b99bdfe3984ebb1f96e93e38b5f
MD5 a189c246c3176ba02441998149f089c9
BLAKE2b-256 092de9ecec578b69877fc162131cc0a15f048d3db6a009ef2166637f6bc3d564

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.8.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 682.5 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 5808064555273496dcd594d659bd28ee8d399149dd31575321034424455dc955
MD5 c41bf7b8aee7dc29e73e8bb768c1a365
BLAKE2b-256 7c02b191021016d95aa15f67116afd7544acb418487d0305f8d421a8b549ef41

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 d579dd447b8e851462e79054b68f94b66b09df8b3abb2aa5ca07fe00912ef5e8
MD5 a828c4cdaaa0d1cb5ab4ab15f3c70fa4
BLAKE2b-256 df66cbba8fc2e0fa3fac0164828d792f40a7e683143a78991a131c7e67fb5741

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 71e217fd30901214cc96c0c15057278bafb7072aa9b2be4c97459c1fedf3e731
MD5 ebb3145ac0eeae52fbd22f88ab980682
BLAKE2b-256 8e02c661dac6e71743f145a5700b0a69fa5c380ed9e3900ee779fde933ec6390

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1a8c4f76ed1c8a65892d98dc2913027c9acdb219d18f3a441cfa427a32861af9
MD5 1d791d15531f87ad747849f3286e079c
BLAKE2b-256 39f765ce9be7a6ff6a903c75ca305fc36ea0a07ba8bd980e420ce48b8a8e88ec

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 93db5e693b76d616b09df27ca5c79e0dda169af7f1b8f5ab3262826d981e37e2
MD5 a4a307b3f67f35a4c725289f6ed4be0d
BLAKE2b-256 23017f835fb6de2cbea3ada77517a1f7834d42e60c994280fb4392d4918b301a

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 e425e690383f6cf308e8c2e8d630fa9596f67d233344efd8fae11e70a9f5635f
MD5 407f3049159ee1708f98cd7f4b27cbe4
BLAKE2b-256 14a07bbb56b121b9b44263333b3aeedc7c14ba731dd6cdc23936a86400655090

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 872.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9eeca1b436042b5523dcf314f5822b1131597898c1d967f140d1917541a8a3d1
MD5 0bbbbc14e004b6327d214af1d3dcfd57
BLAKE2b-256 0964f40687cac5664cf3dcc11d9c37cfb716ea640dd9f216153e9e617805e634

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.8.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 683.9 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 9391abf1121df831316222f28cea37397a0f72bd7978f3be6e7da29a7821e4e5
MD5 04e35df42de5fa7d50a1fc062a516118
BLAKE2b-256 72c6cefd9e2c8e13c1f60719bcd3bc8730a362d63b8badc43d9eb239b7013d01

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 87a802e55792bfbe192e2d557f38867dbe3671b49b3d5ecd873859c7460746ba
MD5 712bc9ce0fd9ce8c92a3ab65b7aeb7e0
BLAKE2b-256 c25b3600b6f9dc8d70c5f86e3ca5d67b0f3922694b9c8b5de5c1ae7ae3a240c1

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 de5773a39c00a0f23cfc5da9e0e5fd0fb512b0ebe23dc7289a38e1f9a4b5cefc
MD5 681f9ab7fef81e24d2659269ea4e12ff
BLAKE2b-256 863537161d663a5a7416feec5e52f1b26041d5f6ac8adbf38e4fc99ed823a81d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f4ce53291575b56c9d45add73ea013f43bafcea55eee9d5139aa759918d7685f
MD5 c8bf53cd115aacb96ab4aa0b79a4beea
BLAKE2b-256 920947e6abb32fddaecc3c751af2f42f9c0cef30553d014fa69ec75b481dfbbf

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f145c9831c0454a696a3136a6380ea4e01434e9cc2f2bc10d032864c16d1d0e5
MD5 9b684987216e55cf866484bcc6148293
BLAKE2b-256 1ba93fdfcc1e7693d6dd79a38eed5c722deb9086204d2974180e2ab07aa9c6f0

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 6dc2aac5ea6b0306dcd28a6d1a89d35ed2c6ac426f2673ee1b92cf3f1d0fd5cd
MD5 0b8e92248add805cf832cb62b2d591af
BLAKE2b-256 a37beb561f6e9a3699c3a10412b606803c3d64ef1038b6ad4401a423cdc25ef4

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.0-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0f5ca7bca2af598d4ddcf5b93b64b50654a9ff684e6f18d865f6e13fee442b3e
MD5 c1ff989a05cbf8825897dfd368f35da3
BLAKE2b-256 ae2b16c2f6d00d03289f06f85ea533cc50dbb69b8f6d51ae3a0c00ed00bda081

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d976f33ca6b5fabbb095c0a662f5b86baf706184fc24c7f125d4ddb54b8bf036
MD5 188cad32fa0525db8563b66474db2759
BLAKE2b-256 8670a283c77843de3612a576fb8ac01c146d68822bf6916a4e00d527dc129d6a

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-1.8.0-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d610afa33e92aa0481a514ffda3ec51ca5df3c684c1c1c795307589c62025931
MD5 467b58f2d5d8e3f5221e6f21a74b4293
BLAKE2b-256 2718d8547ab479f8f78d38024039932d509422fa30b18853dfcd8c00af0b35c6

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 872.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 81c3091209b75f6611efe2af18834180946d4ce28f41ca8d44fce816187840d2
MD5 9fecc43113095fc9ed884131e2b99a01
BLAKE2b-256 7f295d4d5c55e0803c61eac56d4e1de6784d015e0296f76f644e229680d735d7

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.8.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 683.4 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 97b2d13d6323649b43d1b113681e4013ba230bd6e9827cc832dcebee447d7250
MD5 465fcf63cf619d0a3577605331dffb3b
BLAKE2b-256 9ea918a78c5a0d4bb5c18498570b6c79657bfb546837dd9204954e7a0eb81c3b

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 190ba709069a7e5a6b39b7c8bc413a08cfa7f1f4defec5d974c4128b510e0234
MD5 3d7d7c1a4f9da1e1dc460271cf274156
BLAKE2b-256 49840d98b1533ac1e5ce13510d4e68db43c1ece915316b04907abeb0fd313984

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 b954469d93858bc8b48129bc63fd644382a4df5f3fb1b4b290f48eac1d00a2da
MD5 9d98a2b054139416be1a48d72a46d364
BLAKE2b-256 e0b985843492466bb1f6f4030c40f538b1d691dd353159c8ffd418370ce69d69

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1fec9b7e60fde51990c3b48fc1aa9dba9ac3acaf78f623dbb645a6fe21a9654e
MD5 5f2a0933123b6b23ca88f2817bebf80e
BLAKE2b-256 1469028824071a5eca4c0511f918d821dc9100f05b2bd2d43d704b63fd893e3f

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1577ef26e3647ccc4cc9754c34ffaa731639779f4d7779e91a761c72adac093e
MD5 48b3512eea2db20bc211076ae06db4d4
BLAKE2b-256 4bd9a86ac3e350b21ef15f6d4e4e8892e5e2cfbade212471a51d95e5352c2b7c

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 fce3a2c8a1d10da12aff4a0d367624e8ae9e15c1b84a5144843681d39be0c355
MD5 ff1e638cf83fc7849b7288fb8e10e1b6
BLAKE2b-256 254efc092a189c71222c7d7937d340fef8525c4cb0a2364d5b22781736c567dc

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.0-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 61d118f36eb942649b0db344f7b7a19ad7e9b5749d831788187eb03b57ce1bfa
MD5 171d335285e253c741ef0321cef4785d
BLAKE2b-256 e1ef3b2d3315fcfb76ed0f4a19609058c1b4198aa94b0befa9e4d903dac46925

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f3670b9df0e1f479637cad1577afca7766a02775dc08c14837cf495c82861d7c
MD5 6b4168a052caa9146b7e4e4f3dd02932
BLAKE2b-256 5f39bb9f35f77fae7e4152d97f58513137c582e63f54dd8258d321efbf6259f8

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-1.8.0-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 b4fe19df3edcf7de359448b872aec08e6592b4ca2d3df4d8ee57b5812d68bebf
MD5 060e182788063b99ababcc178fa2ae60
BLAKE2b-256 875d3cd377e53d5177c50643df4e46074d625d54459380f53ba3b4ca1aad5ec4

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 877.3 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 693e9579048d8db4ff020715dd6f25aa315fd6445bc94e7400d7a94a227dad27
MD5 9503584009ddf0ba73c2cf684e33c7ec
BLAKE2b-256 20146c0118d8431fe8f395af59b7c68fd7c9d90d3dbfbfb66d4bc1221c1878ef

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.8.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 687.8 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 12c1b78cc15fc26f555a4bf66088d5afb6354b5a5aa149a123f01a15af6c411b
MD5 eac2953ee72a700bc711f6c3aa3408bf
BLAKE2b-256 744c19c0da5929d8f797a45666b39724b96e863307a36928d8008e122a9d0419

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 db5ee2457d97cb967ffe08446a8c595c03fe747fdc2e145266713f9c516d1c4a
MD5 782c05c972b00068ed91c6063252978d
BLAKE2b-256 d1511922f7b360e8ab271c3cded98cd9aadee867c7c2d5b594acdb6527a1b0d5

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 e6dc5111ebfed2c4f2e4d120a9b280ea13ea4fbb60b6915dd239817b4fc092ed
MD5 b85151656bc39c07f4449f916ec3a304
BLAKE2b-256 3c18b16ab802de3aec57e9fe063f5f92068f0cfdb2400f76dfbfbc8db04cfd71

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a8bfb2fbc147904b78d5c510ee75dc8704b606e956df23f33a9e89abc03f45c3
MD5 7c6340b4a5426ffe52883a9ac9815de2
BLAKE2b-256 6442a8b0a97d07a77fbfc4d7a8e8be9b80bd4bfc2d272603410ed9a175f32bea

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 22b4c1a7f6fe29bd8dae49f7d5ab085dc42c3964f1a78b6dca22fdf83b5c9bfa
MD5 019108790be4489f8e9c8954677839b4
BLAKE2b-256 3c4bb728c74f64377c74bba5b928884569ed9531bd42bfee6bbf35ab69e829d8

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 19a3f55f27411d68360540484874beda0b428b062596d5f0f141663ef0738bfd
MD5 af463ceb7c6b596c2d98892020348cdb
BLAKE2b-256 abf5bc97b8996430f9103980682fc464660d6eece93d8b0d8d2de5b1cfa4cf70

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6f4db142e5b4b44314166a90e11603220db659bd2f9c23dd5db402c13eac8eb7
MD5 291529731eb070f8aad02a85847af4e5
BLAKE2b-256 42cfdec85c153f284a7bbd5599e234841b32e58bea7a824834e970562d97f3a1

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 35097f649831f8375d6c65a237deccac3aceb573aa7fae1e5d3fa942e89de1c8
MD5 8570a8158b0d0b75d6079b635f58c620
BLAKE2b-256 77d38a3181d671b6a52e70d2e8f486ea0374adcf579ab3c740f423f51769869a

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 acdad83f07d886705fce164b0d1f4e3b56788a205602ed3a7fc8b10ceaf05fbf
MD5 e0b34dd487d3876839aeb4f82de8e990
BLAKE2b-256 75efbb8114a4a50f8506299488192c8c8143462a80ca2be91a0a1f357440888d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 535253bc9224215131ae450aad6c9f7ef1b24f15c685045eab2b52511268bd06
MD5 47a055620b3bea78bb72f60e1eee52bd
BLAKE2b-256 ddccc4ebaf19235c60f6bd42b2e6ba7f6e10ef914ced9d710ae77bbf1d6d2432

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 da0c5fe5fdbbd74206c1778af6b8c5ff8dfbe2dd04ae12bbe96642b358acefce
MD5 728d28958bc810d4b9a050b20ebbaadb
BLAKE2b-256 f3b4fef0e268337c7658e6e6aef8ac0ce2b81d6e2822c501002c54923fba17af

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 705e1686f406a0c77ef323cdb7369b7cf9e68f2abfcb83ff5f1e0a5b21f5a534
MD5 6497ae013507ca5ba1dd77cc2bdb3264
BLAKE2b-256 e6e53b9dff0b79d5a034084a0d8f141c75743cf24770c5f0e57666a16d419d18

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.0-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 863.9 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 98901fba67c89ad2506f3946642cf6eb8f489592fb7eb307ebdf8bdb0c4e97f9
MD5 529a3fa9b16ac0872d232a212c9dab07
BLAKE2b-256 40b2210fe10345ed817bcb5105f2bcfea52cab3a04a0fe9582ef9b4978e754bf

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp35-cp35m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.8.0-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 675.1 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.0-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 7e6ae2e5a3bc9acc51e118f25d32b8efcd431c5d8deb408336dd2ed0f21d087c
MD5 f09e1187ab456c651226bc8aa5061a84
BLAKE2b-256 6b74d8763c92b5c7507f0e7405699f14c03aa653ee8c33957bca45d1cfbb7599

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.0-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.0-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 942ee45564f28ef70320d1229f02dc998bd93e3519c1f3a80f33ce144b51039c
MD5 1024cc5ff161d8d215e49d4ad0c929d2
BLAKE2b-256 f5c5004791fe162bd82b309e81645644359d685ce0e5bb3df710367bac8f7e22

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp35-cp35m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.8.0-cp35-cp35m-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.0-cp35-cp35m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 c819bb19eb615a31ddc9cb8248a285bf04f58158b53ce096451178631f99b652
MD5 f2e3ae5d41056f178a5f093b6b95d7a2
BLAKE2b-256 685f1518e7b64783f43b16b915ce20bd3d90a02135d619a97964b84e08426515

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp35-cp35m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.0-cp35-cp35m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.5m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.0-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c9e0ed210831f5c73533bf11099ea7897db491e76c3443bef281d9c1c67d7f3a
MD5 6bdea824c3714a73f8e307a5e33c9f8e
BLAKE2b-256 537dc27521d92d97c3d4ae3e73cfc38d4f590ee9020e35f2aa2f84fb5954f6f5

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp27-cp27mu-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.0-cp27-cp27mu-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.0-cp27-cp27mu-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 61b6434e3341ca5158ecb371b1ceb4c1f6110563a72d28bdce4eb2a084493e47
MD5 f49ebe34157d6afe5379ec3bc0f3f798
BLAKE2b-256 64447947d650e90870b1cebb141b8e99937e6cebfa21365346b1641d09fefc13

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp27-cp27mu-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.8.0-cp27-cp27mu-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.0-cp27-cp27mu-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 9bf7a6c61bacedd84023be356e057e1d209dd6997cfaa3c1cee77aa21d642f88
MD5 945b0e778bca4ad3be7b941e07ee1422
BLAKE2b-256 55e5dcde6de13038161ab9cc77579e82a05cdaea427a1f8055da150018b9936c

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.0-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 710.1 kB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.0-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 2baca64e23a623e077f57e5470de21af2765af15aa1088676eb2d475e664eed0
MD5 c78e5cee18146722e6daf4488db9c1ed
BLAKE2b-256 8cd0c226878dd966fdd715e38512612aa7bced7f5549f0f3c481750a55ba3b6c

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp27-cp27m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.8.0-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 565.7 kB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.0-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 00cf713d843735b5958d87294f08b05c653a593ced7c4120be34f5d26d7a320a
MD5 2edffcc1152440649c279ee41e7d2c77
BLAKE2b-256 9a183bb56fb79cd53551184d8b174adf6b9c5dde4b3145af2b1cad3e0d6fe2ec

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp27-cp27m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.0-cp27-cp27m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.0-cp27-cp27m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8810e75d8f9c4453bbd6209c372bf97514359b0b5efff555caf85b15f8a9d862
MD5 6367c6f2ee615bcbf78c6e9b348d0e75
BLAKE2b-256 0054cf176e1627dd4babcc361f9f182cdc2577318e1e74447bc2000481b027c9

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp27-cp27m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.8.0-cp27-cp27m-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.0-cp27-cp27m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 4a20682121e245cf5ad2dbdd771360763ea11b77520632a1034c4bb9ad1e854c
MD5 dac7d1381e5be575337bf309c4605174
BLAKE2b-256 ae91f909f3f1060c930e20d373e348ec5d77f30a37f42fffce16a7d74c3e887e

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.0-cp27-cp27m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.0-cp27-cp27m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 2.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.0-cp27-cp27m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 91f094562c683802e6c972bce27a692dad70d6cd1114e626b29d990c3704c653
MD5 11fcb851a0309822d34c4621e4a282a0
BLAKE2b-256 a2b35ea25f454eb6a8d6c1fdedb699bef6c21c844f606392fb42dc5a0f1590b9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page