Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++14 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparision between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparision I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

Benchmark extractOne

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-1.8.1.tar.gz (527.7 kB view details)

Uploaded Source

Built Distributions

rapidfuzz-1.8.1-pp37-pypy37_pp73-win_amd64.whl (836.0 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-1.8.1-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

rapidfuzz-1.8.1-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

rapidfuzz-1.8.1-pp27-pypy_73-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

rapidfuzz-1.8.1-pp27-pypy_73-macosx_10_9_x86_64.whl (982.0 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-1.8.1-cp310-cp310-win_amd64.whl (871.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-1.8.1-cp310-cp310-win32.whl (682.6 kB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-1.8.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-1.8.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-1.8.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-1.8.1-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

rapidfuzz-1.8.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686

rapidfuzz-1.8.1-cp39-cp39-win_amd64.whl (872.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-1.8.1-cp39-cp39-win32.whl (683.9 kB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-1.8.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-1.8.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-1.8.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-1.8.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

rapidfuzz-1.8.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

rapidfuzz-1.8.1-cp39-cp39-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-1.8.1-cp39-cp39-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-1.8.1-cp39-cp39-macosx_10_9_universal2.whl (2.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-1.8.1-cp38-cp38-win_amd64.whl (872.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-1.8.1-cp38-cp38-win32.whl (683.5 kB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-1.8.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-1.8.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-1.8.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-1.8.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

rapidfuzz-1.8.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

rapidfuzz-1.8.1-cp38-cp38-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-1.8.1-cp38-cp38-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-1.8.1-cp38-cp38-macosx_10_9_universal2.whl (2.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-1.8.1-cp37-cp37m-win_amd64.whl (877.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-1.8.1-cp37-cp37m-win32.whl (687.9 kB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-1.8.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

rapidfuzz-1.8.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

rapidfuzz-1.8.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-1.8.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.8.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

rapidfuzz-1.8.1-cp37-cp37m-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-1.8.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ s390x

rapidfuzz-1.8.1-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ppc64le

rapidfuzz-1.8.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

rapidfuzz-1.8.1-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.8.1-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

rapidfuzz-1.8.1-cp35-cp35m-win_amd64.whl (863.7 kB view details)

Uploaded CPython 3.5m Windows x86-64

rapidfuzz-1.8.1-cp35-cp35m-win32.whl (675.2 kB view details)

Uploaded CPython 3.5m Windows x86

rapidfuzz-1.8.1-cp35-cp35m-manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.8.1-cp35-cp35m-manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ i686

rapidfuzz-1.8.1-cp35-cp35m-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.5m macOS 10.9+ x86-64

rapidfuzz-1.8.1-cp27-cp27mu-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ x86-64

rapidfuzz-1.8.1-cp27-cp27mu-manylinux2010_i686.whl (1.5 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ i686

rapidfuzz-1.8.1-cp27-cp27m-win_amd64.whl (710.0 kB view details)

Uploaded CPython 2.7m Windows x86-64

rapidfuzz-1.8.1-cp27-cp27m-win32.whl (565.7 kB view details)

Uploaded CPython 2.7m Windows x86

rapidfuzz-1.8.1-cp27-cp27m-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.8.1-cp27-cp27m-manylinux2010_i686.whl (1.5 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ i686

rapidfuzz-1.8.1-cp27-cp27m-macosx_10_9_x86_64.whl (1.0 MB view details)

Uploaded CPython 2.7m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-1.8.1.tar.gz.

File metadata

  • Download URL: rapidfuzz-1.8.1.tar.gz
  • Upload date:
  • Size: 527.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.1.tar.gz
Algorithm Hash digest
SHA256 73aed694e0f36764b61418a9d5d75e9e428fbd954e154e71ad1e34912f2e85ab
MD5 7b91bac5d198743fb4395aba5abb4e4a
BLAKE2b-256 03888976f0d9d6dfbe9f32dfa39ea73fea4e4c4d3fb4e26206ff1a4fccf17a0c

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-pp37-pypy37_pp73-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.1-pp37-pypy37_pp73-win_amd64.whl
  • Upload date:
  • Size: 836.0 kB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.1-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 2f5bfd4852876dd438a7c704d0b3f8efc225f1b5e73bcd35bee52345f1e9b49a
MD5 7a3c1d276d0daa099ada5fb798a42464
BLAKE2b-256 9f545b5fac2ee5ccc802fb5c04a3ebd17fdccb5bfcfa21b709bdad7a6e9fa4ec

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.1-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 cf2f41be966bd3f1ec9f3aea828fad29c99f2a32cf92a7246f094d09a0b779ae
MD5 d072026e7d0156b2b1a63d4c793af898
BLAKE2b-256 f0b20dfbac9ad84e14fb6ee6409a0b22a5f5b810895c297b5321cb94654ef669

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.1-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 993772c6d322695c61ae79566e13182b9a99229307db4e1f34b3f261876f6f34
MD5 4d22d9b332a634f494e5784a9a38eca2
BLAKE2b-256 a9730a3c8ff095bc49c7d3ab6ab382ae1ff364dadfb1301d994a5bf758959f79

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-pp27-pypy_73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.1-pp27-pypy_73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.1-pp27-pypy_73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ce6188048bd3d837510dda622199bf4707e6f459a274b259e2228df8f34d393f
MD5 012246592bbe7cc28aaba4db00527ae0
BLAKE2b-256 bd486b648e3ad6156e27945047f2fe5bc8cf4a1545f440891355a3beadb312d4

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-pp27-pypy_73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.1-pp27-pypy_73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 982.0 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.1-pp27-pypy_73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 30fc0264f59ea3a964a6d973f0f513708c4f128c60c07abfdba1cabf88810491
MD5 00f642f70b1f9a794854237c63d84f1e
BLAKE2b-256 1a47bf395c4e53e6b1587322afa72007fd0f94abf6936a6d0908fa121539a722

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 871.1 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 684fafdd5229e95f6bc26517566ddea971fcb3f0b8bceb94d35b3d4d7adc508a
MD5 b2eaccc620ee35ff58a2b9e7d092b54c
BLAKE2b-256 9bf1e2402d2f350be574b958483f4bacbe009e0717149319c0ad9c1ed162bd54

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.8.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 682.6 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 b6ce46f65574acef77882c47ff9810376b3dc431fed95f28439b4b1d4bb7f9d3
MD5 3a5e0890ff39c2ff86cd99aba25cdc90
BLAKE2b-256 5e9dd72e9207f472b6217440be13945e6aa71ab48401d67aa15f4814a4600cb9

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 9f4d5abde7b9ef9aaa84005d9a0d8337d46c17c5938223de9c5bcb5a20ac3bad
MD5 03caa35f8c37ddee22da7078d9c05699
BLAKE2b-256 589c0e117c565ad89d12391ccded48dd3d3d77012fe5a4e0c34ff520545791df

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 e90e243aece81636e6f24b3e7762148c15bcafe5f320bc860fa6e122dc449a7b
MD5 6fbd562c03cb59417410823e553ea1c4
BLAKE2b-256 2b919f683224e3994b19cd7e44581f11d2838858953083f3d24fb06d6ea059e3

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6dc7569eeca5cea5dad14bf1878985a892b27c499746f6d0f9cb259ab8084525
MD5 6a1adadef49c7a8c4c782e3611cc7721
BLAKE2b-256 de8ae6e4034bb65f9c1dcaa26bfb5849518cbd6d890e10cf438d97d298fcf1c4

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.1-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c6420645e40307cd770f8fe9ed9008f5537da887ba808433ec8cb460641513ad
MD5 2df90a3a72292d0a716f33e3b893e440
BLAKE2b-256 1d72e908ac65a668b2731724db665f8a8d96af816f3c8b2a2d94f1d90d9d3719

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 d07ef42555c595d1e8581b6e981ad82d6e9e2a1b09c20ae00f17f70b87e38c50
MD5 6bc54f0fad18a7301e94d72c97cc3eeb
BLAKE2b-256 1462357a5bebdd7327815c46ea6fe8e6aa5c977dafda39a5f9a092688be225d9

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 872.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5e1a13268ed05f14fc034feaff2bd7ef25b62dec10f382851df83948b9c2955a
MD5 40cb5930645761ee60e5d5451ec760d0
BLAKE2b-256 bd4948817de189ca7ed3aea45fa3f0bfeaa78b035916127af6772c3e853be946

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.8.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 683.9 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 696abe5b4386ab2be0ab14283554d65693765114de0cf39a9c4ac9d4aa8ed49c
MD5 aacb37ceaa7c522a90a968c47e602917
BLAKE2b-256 98c6e26ed6d07512482575eaa4ace2381334dd4751bc4ed727fadd21a178e1d2

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 dc3609ab10d451fd4d8599b06096b75e1a98ac5be90e94d716f1a22f4479e2b8
MD5 4d481977ac5d4262766a9a05e50fe64d
BLAKE2b-256 8ade3664f9dce5b39760328305b82fa7fb0768a4d33f43b1373c80c758d60517

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 316ddc3ee3b6e6a02281c66b1553dabe75de05febed613ad3341fd513bf4710e
MD5 d3a552873629417bc6ccad8f1d5d15eb
BLAKE2b-256 8c1a7cabd778721fb8626f7bb80224144dfef95ea9f6042ae7cea4ab5bdbc46f

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2275b8ad68c55a4e897710cde26693b4ab502f678ccf78056e1b3c1a4f6bdf60
MD5 6cbf7d9e7c0225ce230fcea0aeba2d44
BLAKE2b-256 ffe1facdcf230a092fad78e056e54e099b1a5fc28cc578374ff790a187e3ee57

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ef601cc99b8ae7fd242f212fae3e411f6407bef8a8d47376963c0069ee1408c5
MD5 81e2ee712dcd11a8f184eaa7fd884b16
BLAKE2b-256 9a7380bda1ba77c3706f1dee392cffb9ed20674f43626ef1d7845ef30f364e4e

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 8d78ad5f8bd6b0d514e50a0f92e3db52ce5d3852fdb167c434589a291b26cabb
MD5 2cd4e6b6890cbb0c8e24e5e76fcf7447
BLAKE2b-256 3a42fac945ba67dc0d5c31529b713e09bd71d8287eb0bcd2961dcbe756b60e14

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.1-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d18277c390b548aa282bea5cccf82cce6de621d3b477c46e6bb26678b9745697
MD5 dbf1ac15cb68c732412d972b7cfa73cd
BLAKE2b-256 453f0096bb8491069a26a751e2155087161c8a96006df1cb6c26dfd65ab9057c

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b3389f0543c23647511afc87c935933ffc41c9f9c373425946d0b1ab10d9f7ad
MD5 2c296d7366d9d0c3df1aa150ca8bef8a
BLAKE2b-256 6d6fa1d71ab49f96e5e08757ecea7f2c912db3f615f41304e5168343b9cc6794

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-1.8.1-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 5a275a625168db7c728f46ab3be3cf7faa5d822567552caec491acb7b577c9d0
MD5 ffcbe4177dce32dd7668c98d0e20edd8
BLAKE2b-256 a6326c81d1e47840d1db01323c5a57ade7283c4d817d536c1c51d4a106317a94

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 872.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e824de20f05dc6392e5d6171bca046db27f1b6d6882b7c7aa4a692a088c97cf7
MD5 8aa6d6e81bd0b2a93eb305879dc109a4
BLAKE2b-256 4cf0bcc8ba9c0bd74f73df200f78fe411a8bdb76b63b6bef51053404e2862991

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.8.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 683.5 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 508c028d7ab70ea202122b9a41b5393ec4b492877c6cac42a7b23e7bd06abeff
MD5 70fc8838315046c35774cac1bfa22cf6
BLAKE2b-256 4ace75b73e568c40ab4cd45a09e9b8bb841ca6cdf208cc11218efeb165395984

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 9f9b5650ceb3f5b4ef6a43d5de4e47e121c29537a3eda4e35edaa2347567670c
MD5 ca82b90fda79c7af95238d8622d0ce4b
BLAKE2b-256 ab944118bca960678cce321646bc8755139339626d3f518c0fec91017c002511

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 55af7a8c39f3da0f3a77c2ad1674851d63aeb24df379bf3acc745fd764c3bb08
MD5 2f194ac15f41f3859795e7224297add8
BLAKE2b-256 80c000ff7ae80f6d80a96540e0ceb723a166498d9f095d1feddbd066a7d5e24b

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 257fbb5b5e237c2d43a4c7e6a12b2828b690fe54e98d38d48e33e3acbc5a959a
MD5 64f37d83f7cb5dfec9c2ff57b7cc36cd
BLAKE2b-256 591c4b736ece46f1f488bc8263f6fd837b2453c8148540cb791a6a57e2378ca3

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 59910b0a00ccbf33252563b67e7c71fdff707d4f1b7533e392131e8cf287f341
MD5 377f98631747d544eb768ded95e34d2c
BLAKE2b-256 a210d03bd8499203447ea112113afab386f67963f7a214b351b0cf7f2d8a41a4

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 25e96435b1099dc9d14c5d73ea2b8341090d4315148d204d8b276c24deca46a4
MD5 1c2255339478ea65c2b86925a85acb33
BLAKE2b-256 2512b5d22951e386a5d70b446d3295e0bfbb28a551b5e950808c57555cbe9166

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.1-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 31dbe267927ad82694d117bd66b56f73ed1e3c34cf50b10429446f331e57086c
MD5 b74f001bf562741eb39d56d6f0edc95a
BLAKE2b-256 1d4b725de0ebba62d69b12eed354d206b26fd611b5f4650eedf9e55645a0b239

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 30ba1aca03c300b8c05e0e259fda540ced6bffa22202a8c6d1128f7120df5ee0
MD5 365b315e2fe9b8be0e31da61eaadec42
BLAKE2b-256 fcaa42eba84b7c972261dcc96051066d54fcafd9ff2003f6c31d4cfecef8cfa6

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-1.8.1-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.1-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 02a309a1fb103e8db6bf212884777ec22bf9fbcba1413854aa88ecd91bc61a99
MD5 9cae921c07131ef9d8d1d96eeb141c65
BLAKE2b-256 2431c029d79fe4d6710e4329ab38056cc93815622119788d4a0e21a75100e9a5

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 877.2 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 08572f743e89d3bb5ad56839a046bc7b23ae225356fdf9a1b4798d8ed7e15d69
MD5 a07a69dcb41c81a09a13750d4ccc3e9f
BLAKE2b-256 5940a1505464ca7bfaa4f00bc31d2e909e68c96bdd780cc4c6c4464e135258ec

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.8.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 687.9 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 19560fc6b025a1ccb9d22e2cac597201fc6979eaffeb39cea9ef171c4e9ae48a
MD5 58e7f9e823492ed31d46da5a875c0605
BLAKE2b-256 c19ca68292b8aed0780fca899a6d7e474012a8f144c6aa7c6c63cf881aca2158

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 ef91bd5a865f237b9ec28d1db06e41bc81ef7dd468569653b34c93717dabbbde
MD5 40466bfe45a7bc4861f9239f2f88e551
BLAKE2b-256 d0ca03ed974f916483868a54a0c179aaf304300ea4ada1439510a8f7f017c783

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 9ac47023c4e9aa61984557602f0beea53a623fe32edd2d799294812596f74798
MD5 2784c41d0c30df936bc97a93cd089206
BLAKE2b-256 4e1054273530dc65267ccb76a01c249f925e9db0571d6c254edb9e48c6f1de01

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6bd95454a2a13c18b39a61ac8b8475f24aaf474c48448115bd81c67f7e421c18
MD5 ef3528fb083e420d583329721d8e1add
BLAKE2b-256 14a5671dd680ff1b713deb917f83c266ab31c95e9a8da86a87b9e62a3a4da11a

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f31db70318ff494171f6a95f9a8f2b1542c1ae4b11aee7e7cff9bd5c7f076706
MD5 58c3bc49460083c86b94171bafbf5811
BLAKE2b-256 4a4057b1b9859c6fb1e36f6477e4f37077b3c4afd07bceb32f33ccc450bcfe34

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 4df8b3b1e322eac4af0894b100591078a707c4dd9bf6d0cb6360fd74f012bcfd
MD5 270a173b15470e77d22e583e69d8c509
BLAKE2b-256 19e37b010b0a050790047e37e769eb6c5d2c3cb95d20ad98fb951c1a12366bdf

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d2bac1d343a707e2090c9737e6d5d49e780a43d3541132d96338e42a83524b6d
MD5 29deb058e987ebc5b1a6aca2b284003c
BLAKE2b-256 a1cf38c2676e9fe2eb6bfa94d12e932283d78138e69fc9e9c4f547d2d43a9864

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 4e80ba975f1d2cf9c85341c09e29c95f164502eac828398563f8f0269157103b
MD5 c3e1e96693b23d8d5df2c54101a63128
BLAKE2b-256 817b832be362c6be122c4411e347b6f603f9534ec812bd0cb2a69779ace4400f

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.1-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 1cc17dad5227b85312b8ac58544597df914c030d22a76f113877f2ca0715b401
MD5 419b27475be760cf7145378d48df6f37
BLAKE2b-256 6b98539c0071d72a4c3e7b287ed89e903b104f796d793548db0f98a24c17ed3a

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 aa4920daef40beb9ad372b76179a023562b660cd760172aa175866972d860629
MD5 fcacaa346cc7ec45660d04d0b2824e9f
BLAKE2b-256 63d33bf1d397dbbd871bd5101f1ddf7683267c0773c215e50fb1dae9733fc80c

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.1-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c01c71d88e60355f22b1a199f7622204aff149313bfc5985d1d197bdbf1cc19d
MD5 13e68cc91e2041fb928ab220a5e05497
BLAKE2b-256 ec73b136f96fc205f2d3acfb39021748affc95f2185db88ff62847aea8fcea94

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.1-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 a47ec7cd79e2b31c36d724693e836f6d2a75beae2218cf0c5f6c330e64e41295
MD5 f701679a6f1fb6e193ea4b764f5afdcd
BLAKE2b-256 09027f37a429ab9558d585ebaa2fef9629cbb64fa07b028ea1d17fafa3ed95b0

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.1-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 863.7 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.1-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 2aab8a168e10134ba7f6851aa4a207a3ac8f3a00e4ccadb87548527fda18bd16
MD5 2df27d6edc2a484ce643d103de66e65c
BLAKE2b-256 28261fa3b3d8dd150ed93cf452abe82730273f11e9cf4324436093781b7817a4

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp35-cp35m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.8.1-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 675.2 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.1-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 11a0523742feb9af88d7cb252432e55abbfcdd8548bcef0e9012d6cab71a615b
MD5 596e3219ec5e729f05160b5d9cc1530f
BLAKE2b-256 3db6bf29d793296ea6ca12e1e60a6ce2cd20534a3ba8b5f872a3eab324f4c0e4

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.1-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.1-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4a6831adbf463dfb6a2395bf4e2c606aa6653caaf6a9f5cfde782971f3296605
MD5 8dd6484b9a6215f21e6226d40a85468f
BLAKE2b-256 d79a7653d45e1b91f191a60de34900c5664d833757a04325f06381ad540adbee

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp35-cp35m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.8.1-cp35-cp35m-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.1-cp35-cp35m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 e82bf3ce820a9fb883157bd2fc291be564422def2845d7b09e9347ed43b91a1f
MD5 7dc1e32a8ecf6fb954c90bfd5416ce01
BLAKE2b-256 29269eceaa261a775a80fdb5c050674e4eb169067e69ec6fe178e81f833acd96

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp35-cp35m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.1-cp35-cp35m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.5m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.1-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c092d998e57286a347ffd548368152aece2336fdd7620d433bf3b32fa516ed67
MD5 b7ffe10331bb42eecee00751a55bb95d
BLAKE2b-256 b41e087939ca4fb362d78c9d50ba5a45391eceb806cd470ced1ad84876df2a97

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp27-cp27mu-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.1-cp27-cp27mu-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.1-cp27-cp27mu-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 04f41f1a55d3d9ff93c0b02b9213b43e04c80863b3be85402e6239be68518656
MD5 2ad4f6296d1c8551c39ac1ef95973d77
BLAKE2b-256 19f7988528aa531b001e8502e2fd45fa30faa72473704461e3bf64d2ad4f5e95

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp27-cp27mu-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.8.1-cp27-cp27mu-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.1-cp27-cp27mu-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 983c04e8ed2a34d5ad8a9b70ea0bbbfdefe5b5ca27feb616ee0457e52b7b2f1d
MD5 d6fd1ad6f13637dad6b002358c4e5a89
BLAKE2b-256 786e0becbdf944f86127ef854b64d8f70b8e557ab1a244bcc6755a2487e4b0ea

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.1-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 710.0 kB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.1-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 b1b728846f23b91e5de36bfe851df81006041ca40c70a24feced730e59e67f6d
MD5 29a40ae084097aaad3378bcc2a2397ae
BLAKE2b-256 562f92657a33bab6037e0c1256187522c0cb1c13215bba10efd0bd2cde713700

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp27-cp27m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.8.1-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 565.7 kB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.1-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 f48c459d549ff0242da832d5f94c8d518532d96e4d9ce8093447c7ad6bc63cf4
MD5 844a759d138435fdc307220b6fda0e73
BLAKE2b-256 1363d00aa5dced3cca786f2f2bec0ced01a31d1451756e0b1929113a3fb3d24d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp27-cp27m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.1-cp27-cp27m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.1-cp27-cp27m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 edb70e94edbac04d98cbf5524c3ffb0da40fb8d2a32d4cecb24f1bd73341f79f
MD5 b83acc174d01c5edd54d86bc13d126d2
BLAKE2b-256 64d4986864a0252d9c587271a6ddc714965fe95ca82f965e4359a0cfa060c584

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp27-cp27m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.8.1-cp27-cp27m-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.1-cp27-cp27m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 52e936b7fe14808c3d080e0aa91ba6694d2ebb4e723d612e4952f380a13abb2b
MD5 8e60add3b9d8fc7b9cf44ec77b75e453
BLAKE2b-256 4c90238a59f50cbf816dfcdf138a84105af828f09541dce10fdf95e8898264ba

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.1-cp27-cp27m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.1-cp27-cp27m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 2.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.1-cp27-cp27m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7a6c6b161221eb535b2a8fbd74a2c9ef779384d644a2c7a9390957704b80119c
MD5 80349563a6825a4b379cb41d905399fe
BLAKE2b-256 67a8796bb2f704302bd9d8abb2dc993561a94c425d54574a2f960014b486185b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page