Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++14 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparision between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparision I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

Benchmark extractOne

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-1.8.2.tar.gz (526.7 kB view details)

Uploaded Source

Built Distributions

rapidfuzz-1.8.2-pp37-pypy37_pp73-win_amd64.whl (850.6 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-1.8.2-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

rapidfuzz-1.8.2-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

rapidfuzz-1.8.2-pp27-pypy_73-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

rapidfuzz-1.8.2-pp27-pypy_73-macosx_10_9_x86_64.whl (982.3 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-1.8.2-cp310-cp310-win_amd64.whl (884.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-1.8.2-cp310-cp310-win32.whl (695.8 kB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-1.8.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-1.8.2-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

rapidfuzz-1.8.2-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686

rapidfuzz-1.8.2-cp310-cp310-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-1.8.2-cp310-cp310-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-1.8.2-cp310-cp310-macosx_10_9_universal2.whl (2.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-1.8.2-cp39-cp39-win_amd64.whl (886.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-1.8.2-cp39-cp39-win32.whl (697.3 kB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-1.8.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-1.8.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

rapidfuzz-1.8.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

rapidfuzz-1.8.2-cp39-cp39-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-1.8.2-cp39-cp39-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-1.8.2-cp39-cp39-macosx_10_9_universal2.whl (2.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-1.8.2-cp38-cp38-win_amd64.whl (886.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-1.8.2-cp38-cp38-win32.whl (697.6 kB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-1.8.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-1.8.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

rapidfuzz-1.8.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

rapidfuzz-1.8.2-cp38-cp38-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-1.8.2-cp38-cp38-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-1.8.2-cp38-cp38-macosx_10_9_universal2.whl (2.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-1.8.2-cp37-cp37m-win_amd64.whl (889.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-1.8.2-cp37-cp37m-win32.whl (699.5 kB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-1.8.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-1.8.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.8.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

rapidfuzz-1.8.2-cp37-cp37m-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-1.8.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

rapidfuzz-1.8.2-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.8.2-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl (1.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

rapidfuzz-1.8.2-cp35-cp35m-win_amd64.whl (878.2 kB view details)

Uploaded CPython 3.5m Windows x86-64

rapidfuzz-1.8.2-cp35-cp35m-win32.whl (687.5 kB view details)

Uploaded CPython 3.5m Windows x86

rapidfuzz-1.8.2-cp35-cp35m-manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.8.2-cp35-cp35m-manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ i686

rapidfuzz-1.8.2-cp35-cp35m-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.5m macOS 10.9+ x86-64

rapidfuzz-1.8.2-cp27-cp27mu-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ x86-64

rapidfuzz-1.8.2-cp27-cp27mu-manylinux2010_i686.whl (1.5 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ i686

rapidfuzz-1.8.2-cp27-cp27m-win_amd64.whl (715.4 kB view details)

Uploaded CPython 2.7m Windows x86-64

rapidfuzz-1.8.2-cp27-cp27m-win32.whl (571.2 kB view details)

Uploaded CPython 2.7m Windows x86

rapidfuzz-1.8.2-cp27-cp27m-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.8.2-cp27-cp27m-manylinux2010_i686.whl (1.5 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ i686

rapidfuzz-1.8.2-cp27-cp27m-macosx_10_9_x86_64.whl (1.0 MB view details)

Uploaded CPython 2.7m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-1.8.2.tar.gz.

File metadata

  • Download URL: rapidfuzz-1.8.2.tar.gz
  • Upload date:
  • Size: 526.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.2.tar.gz
Algorithm Hash digest
SHA256 d6efbb2b6b18b3a67d7bdfbcd9bb72732f55736852bbef823bdf210f9e0c6c90
MD5 1cf2d22d1ed82cd317974e1844fe2b08
BLAKE2b-256 21c592864654ef66a451fd9d014213f56d9e9b62bde7415f6962e2ea51ae6d07

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-pp37-pypy37_pp73-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.2-pp37-pypy37_pp73-win_amd64.whl
  • Upload date:
  • Size: 850.6 kB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.2-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 9dd34ad050ccb680d9dbf9871a53e1f01b084488d5310349c3e9cedcb4561eb2
MD5 7b309c54b0ca5ec17e7bab7d7b849b72
BLAKE2b-256 37c6df9975b44df541afa87a8d9c1744deb5c96e1b4c25d62e41836cd2cc2122

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.2-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1412ec4d43f0d1854ed3dd220dacbb68b977519553e80a2c4a250d3569793f92
MD5 5c7b6d6013aafee54a65bd17ff66a3f0
BLAKE2b-256 e289c4e94ce53b9edb4aa7ecae51c4945c1ec4cc5adddc6e7768ca662111f406

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.2-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 7d1d6ab126f960aa0df10454a06d17e303680df6370cc3c44c1f0697c4587c5c
MD5 cd7f51375998fffda4d2ba9520719ec6
BLAKE2b-256 c7ca9f3e90a7821cd9fc1d94f9af1197c91fbaaa6655264ba7973fee2b9a38fa

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-pp27-pypy_73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.2-pp27-pypy_73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.2-pp27-pypy_73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5648fcf1cbeacb05ea4b441ddf99c7f5e15dd53b7d3192e7449581b638e8b3f7
MD5 bf140079b6e2f942a2152dda85bbf7d6
BLAKE2b-256 d77200f2d82c5572697e4ec98c92d00f2eaa790a5aaa1df3edffcb95e1923dfd

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-pp27-pypy_73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.2-pp27-pypy_73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 982.3 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.2-pp27-pypy_73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 54406d07788ca85aff12134425a2b931e842ee2c3b1ae915523cdd3d104c1136
MD5 695f2abf5bfe923ff231f6ce643caa1a
BLAKE2b-256 fef4685b77dfb97c7f1ff7d65f26cba1253797697ae31226faf2d80b79880d0f

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 884.9 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 55168678ae7df1ad8099ec2f0ce54024c924b375b18a6f5d3237c930083fcfca
MD5 957e21c92fda101e2bad5c413bd7b86f
BLAKE2b-256 918a3de9dbb1dc6b2a4151be88e1ab52ba2c9b3aa37eb1cb82b908edf0059a10

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.8.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 695.8 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 526d92f1ff354303cba0a4cbf184d11b94395841d00eaecf8963c6dc89deec21
MD5 ccf28face8e01b598732ba02f87356c3
BLAKE2b-256 827e1a03fc0a56a19b2064d3c10cca8767ac58420f1c58cd0315174143422576

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8107e175577f200a2426c4896b8e17a97b86f513122cba4155c7462f0fcc18ac
MD5 15e21301479ce175eae312ca1ab755eb
BLAKE2b-256 915853cadf431a1e632675485e839ca52fa5077087fd29fbbf1b46d2a7a9fb0e

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.2-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 dab9822666819350aa32008fe35a7c7da422289d6961a01a2e00e99c2581e7fe
MD5 be07596d7ec159901a11c7442b96226f
BLAKE2b-256 6c16779f3ff977352d52558b1e2157ad481caed010dc17497a0565f8348bd202

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.2-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 242ebe941991a086b9e455dadcdaf624bb895457e3ce254b0b51a7b9adc68fed
MD5 2fe2c65aac9c0c6c525e50293a3f76ca
BLAKE2b-256 a0bf7b06b0448c2b19d8d073b016d7f35f395400a5f86f53e0286ee32122fece

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.2-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d53a474e3b7592a2ff3d4c1e545324314845d3ccbbc80f6dd89d044bceaf8a59
MD5 2c987633eb7de1a74ffa7a66de719647
BLAKE2b-256 e27d97a84c75d8a284d42b1e777ac9fc1913cc1746693cdfea64e064c8f4cff6

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.2-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4ec6015b74cdbd4ac8bbbf280522e913f11c4656e334559a8454713def4f3b33
MD5 5c549ae4bff71d3b8d92f9709f54fbf7
BLAKE2b-256 d5c1aeb8cc34fa2332c64542c7c69aa26ab1070d6539483228a09b13ca7f32a5

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-1.8.2-cp310-cp310-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.2-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 22f49eb345759602cc002200217a62564d947f65a568723f99b80c74027ce77b
MD5 d800246c3f8a38d3f7924c145560d450
BLAKE2b-256 56b7d8a741f248aa414ca5776ec25a2ac35d8a1b3c32f101d999d220589fcf34

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 886.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 be564aea09ec8da0478b67f35be73f8c129054d45da7f4b02cd7e035d1aea96d
MD5 8448254beefa93191f306a0950f5837f
BLAKE2b-256 b0b8f9d07f6550bd7b3a388f27594dc4ec2ff838eec33d7d1719eaf957baefbd

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.8.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 697.3 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 02ec1154e62493c0cb66c8b058d7196de48acbee7e884b757cff7bf075252232
MD5 07ac30dbbdf9f21027b6bdcda8c044a5
BLAKE2b-256 e8d2af88da1e53c3512c8060ab53d7175f38c88970ae282aa8ce51741ce51bd3

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5b2bf70a24e129af11e217d94cb34f96a1487606bf4a9d8c8f16bc49c9465b56
MD5 d6be6536a3f122f7c16dedffdd5569e1
BLAKE2b-256 d896da7dc15d66cd341a7bc268e34b996c091824f08967ae971f216f65a7bcb1

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 517f26474012dbce37358a447165ca3b100b9b1b83ee8b3d6877accfdb209d46
MD5 66d6aee377923d58b171b46ae4eef010
BLAKE2b-256 cb407c3fb06cfb5e31b73f03728387355eb1ed66dd2ae517faf5000325083041

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 750ea6977e68a17f16308ac044017f8ce35c8a553698696f5a4fbb77e3110c8c
MD5 4f47c2adc40db0b7d27745e089796f0e
BLAKE2b-256 895d3533b3567dca9311a8f4c025c9dda1b89885bdb12dd397440439a85e412d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.2-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 06f639a65f1269a52679942437228c804a354618dda79b68a70612c5c0a36f4e
MD5 3c3a2d3a7143f754c193ce9633ae1392
BLAKE2b-256 75219936bf979d03e61842fe85f91ff37b6e75c62dc17f180dad8e1fb3cea735

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.2-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d240b7cd8dc7890c103adf4666a43fb3b3d1e5b1231e59aa3986e18dba1d086f
MD5 015519b6e3dd8b6185a1f9acf016d908
BLAKE2b-256 6a233b2936b91b376c0f77c8ed16ccf2d4f9fbf49f34ff752bc92c9efb364aa6

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-1.8.2-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.2-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 7219ca078df644aa0694af9174b7abb09a75302021f1e062f39fcf183cb9f087
MD5 a5e54a7c6c49b32ca3ad926270770dd6
BLAKE2b-256 725109b46120a6ab00b3f236fd84c2f2b1472594e4b2db8725c6b5e963b8f2dc

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 886.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 bd039be9798a3deba25301827b86b3ff084d69e2b4b16ae8da6a34638235680c
MD5 cddd4a121b65d3119d94cfc0c0c9770d
BLAKE2b-256 65f91abcefa3fa0180d645528356c160cdc91da1c62132e72f33e998ce26a742

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.8.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 697.6 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 69ab203a4b59c7e9ddec96044bd684d6165eab3362f84677822936fea2e8c4f1
MD5 5db5cbb930c651ae865d89cd693b2cbb
BLAKE2b-256 d28a193d81449c983ddabf621f531aaa9820c86521f3a1fd645fab9fd4e094e2

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ec24328d855b88e8a472379c61af9972f0d7992edfe2ebaca03afed2c5282f94
MD5 7b71e9d073a66db10af6e1ed49b4a46b
BLAKE2b-256 ab8645d446b48a61c264227cd33f43202b39aa1cd284b749f190ca1477c86864

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 20dfda3bd9c14e6d7951360af66792a15e81051fa017db00c71bad4b1e25688d
MD5 fdb72901eaf55f7bc3a49d3fe1e8832c
BLAKE2b-256 fba49cd00d3323e1c15e89b491c4d1aeee203ef1a1ef5a336961d0f2c0b475d6

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 0eef79b223e239af5cc9c0b89ae8096a38bc8a9109474ff610151ea0115b931c
MD5 9c2de29e67ad7ab3dac297a8cca07e93
BLAKE2b-256 67ca82be7d24260765443b7627d95c125251b7a71d94d239960c112a822b71cf

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.2-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ab21f86812a7da111a17c118fc8e827b4c289d02f39536f7a6acc6baf479dcc0
MD5 74342167bfc21c8b7229ce920a7f720a
BLAKE2b-256 61eb1c52478fbf2383c3bc95156ac70deaf4796a6db8f4c0964b6e80800a77fe

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.2-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ea3c3c1a5401affeb7d279c2b7cf418d5e7d7e170eb010fcb1b45bb28de5e4d1
MD5 681f9ca88a5ef83b494675d19a22ed87
BLAKE2b-256 4477484a0eea4a59a066b1c3568926a0cf07d764a17b06a7f851343ffc016312

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-1.8.2-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.2-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 91e20676b562c972de8af6a153df6eaaea27da96ade8321e51da7bab32285242
MD5 61068d77882c85bb4ed98fd1505ad925
BLAKE2b-256 ff6d033bebb382d0da90c06ac212fbd1c238b2ec69fe3a9efff52732800905d8

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 889.2 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c426eb833d16ddeec95c966efa78492803d741c85cf6553febf78979fc267692
MD5 04f8b675446bc41004ca1c0bb8628081
BLAKE2b-256 ffe30371720cf5d98224d3adeafba8dcafd42cc897d30e8bf4f5ca4ed611bfe8

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.8.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 699.5 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 709ea3151a7448bb15adc3212cbdd4766eca557f1ae73cdff8ae656b6899e71a
MD5 c387a6a074416a35bfc3660f62021b3d
BLAKE2b-256 df19be09038557ba4b5149369ef0db7017b663ce75b3f2621e5031ce69181e91

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1f46137937dfa2ec04fbb9f0225ff3160b9f1ed993dc5abf126ccdeae38726c5
MD5 8524990857c9a87b28ca91f25ddd5dae
BLAKE2b-256 d0e09a719400fcb7b7ce64f9d1d39d1fd5d24764e695b8595e2ca0ac9b2ca064

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 28528d34fb73f991e2822fdf1aa28eff7832c2189c8d2d0b598f15dd1b1b7d88
MD5 aefb25c53d62287d2380ce31ec7bd6a7
BLAKE2b-256 df09f58026faf771cb91db3880bfcc22dc77df4b3a215f07f6d1250a9a42fcb1

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 40dacd641d93708818ff2c9921eb6e5b9463e9b3b7f410dde3c96e0e0f80c414
MD5 5e2ebd2e89ebf5ff0e6052c4dcc7657b
BLAKE2b-256 b85a1d1628b68f2af02a533659078a78cf785a3ea7dc39fdd44993943f82eb34

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.2-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 648fd2e561b6beb208e6cf46eb9f20ba952add69c2f90fb4e46898a821bca4c9
MD5 a008347f1f0c785095c13131d1d4a0a1
BLAKE2b-256 94959ca942790a25d9a50adcd9d98daf89bc32f38600b20de76bd7bb5d6d7f2c

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4b8eee29e35ce51adf1cbfcc5b64d1a89d71401a5101b8fe9b87abbe6bf4f893
MD5 d57736f106c5135355b99af7e4662c54
BLAKE2b-256 2a928d69a0c96f16cacff4b25f4f5213417ab90b20e099a280e16181b0171b42

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.2-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7dbd1524e0f2d4290cd60fe1474068a8d8a27a41e1dfa14b1e4d53735529a11c
MD5 5d22ca7faf6f810bc46e24525d2525ed
BLAKE2b-256 fb5129af7b81a6a8f736bdb5a5f0c6e20a04a68afe164aad3e350407e99927e4

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.2-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 90901b7be174b1f14455c5601eff46b03b174cf1d61cec0fd6d37c74dd727c88
MD5 87136ee12d9a06f2ab27aeada84be227
BLAKE2b-256 c3826e243577a151aa8e72f2c007492f6833856dc1020c77ab6d01474a223143

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.2-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 878.2 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.2-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 2d4240fce22e74c6f3d381201288cea6cc5af8d310ec271b573b26558c2eaec8
MD5 93343087cb872b55668dd289b496ecf0
BLAKE2b-256 25dbc53ec5784321d859aecf4dae5a1e3ee1ad1dd3fe27a49f731d522cbb2310

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp35-cp35m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.8.2-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 687.5 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.2-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 8ded55e5395af1705bbc89ab94bea3c73218e1f71ae2b72cd905a827ab131fa1
MD5 3fbfed27ea47f22966a3eb95c98f4a68
BLAKE2b-256 e141f52532becc33da84231416fd74cb51624ab369cd5e67521b736cdb8661ae

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.2-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.2-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c9537e7f2a489654671c4e3bdc3e01d1116052b3889217da7fe2f0b0f0b27e10
MD5 d4539efc74c3c9531b6299550791d917
BLAKE2b-256 3cb40ab4edbc5e87c84f3ad1b50104fec1b507b7cd094e3892719fc914a02ef2

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp35-cp35m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.8.2-cp35-cp35m-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.2-cp35-cp35m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 90d0e10c7075f761b17e590cf9254b32e7084de7e2b4cd11201031c61386714e
MD5 a3344ab811842dfc9f01752fff28dd9e
BLAKE2b-256 9244518f3390675d1f9e60cd999aab2a5e8dcadf7ed19b7370aa732cf32c90c7

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp35-cp35m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.2-cp35-cp35m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.5m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.2-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 23c0632047bf8fac891ef73dfd397e951514d11fb5f168b630e3569ffcd51d61
MD5 2a2017f33fa42ee414f2ffe2ae2467f3
BLAKE2b-256 e1f3e1dd86b49e0ea183c977b8718af819490dadb7d7d10709fc04b68288238d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp27-cp27mu-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.2-cp27-cp27mu-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.2-cp27-cp27mu-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 271ce29c63eb87d76bcd384753cdfbfb8f2a0aeb3c7d0891787b1f19b007a0e8
MD5 42b98ca48c12cbee94abf07b739cb5b4
BLAKE2b-256 3a4382a3ed01c23e8b629a74b761bbabb360cc4f9b487fad06742dfe207d03cb

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp27-cp27mu-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.8.2-cp27-cp27mu-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.2-cp27-cp27mu-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 f62471a08d2c46c79a8e0129b74c2997e62692c36bef47a7392b542d6dafc6bf
MD5 c5b05b25b2d1ab35065e81bf34ba75ce
BLAKE2b-256 9663ad6afc5566fda8355fbb68718339715766fbfd1f9b7f6047e9a0c3be1417

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.2-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 715.4 kB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.2-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 6c3e298aa955b164c85e7e0e2372805da1d6bae7399dad256211caafdab46e7f
MD5 aaed238e89bc73da3a796dda554545f6
BLAKE2b-256 fb46c048d47f308f6e4fe778252fd87080a63d9be64d149f011b7c57faa97de5

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp27-cp27m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.8.2-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 571.2 kB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.2-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 ab067c4f04f037686d6cad1a7fce4c3998548f38778f0edb351280b902b8b3e1
MD5 c41ca307a5e3643c9a3fada8444e8ffa
BLAKE2b-256 4b252a1a6e623747c5ab2a117ac4d9e2d16cca3a097e324db3758534df3eef9c

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp27-cp27m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.2-cp27-cp27m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.2-cp27-cp27m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 17e456d2ba6bee54b5c83bb403c33e02c3873958e153c0413021a2a042b0940d
MD5 eef5ba71ba00ffc61c9d078705dba428
BLAKE2b-256 cb16b8569c35b437a9fe062817ee470aae2149185964a544ea690432f018b6e6

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp27-cp27m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.8.2-cp27-cp27m-manylinux2010_i686.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.2-cp27-cp27m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 8e47b2f9f49edbfd582f6703cde54d22ffa98d83c8393ccd07073852b33832ea
MD5 cd509e80e0d63d790c73f74a618d5ae2
BLAKE2b-256 a3df06245dd272f23d81449ea47c2f67c7cfb2599016e7d2ba446a4938264ada

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.2-cp27-cp27m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.2-cp27-cp27m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 2.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for rapidfuzz-1.8.2-cp27-cp27m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d218a4aac1488cc7d63f1a597a33863aa304f6ac590d70057e708ec6865a4118
MD5 105d5ea9fa468d94bbabc075f4db79ab
BLAKE2b-256 fce17b463f42df1872be8bee02dd95f5e9ef7679fc65f495b90ad6ecfc9e15d2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page