Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++14 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparision between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparision I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

Benchmark extractOne

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-1.8.3.tar.gz (531.0 kB view details)

Uploaded Source

Built Distributions

rapidfuzz-1.8.3-pp37-pypy37_pp73-win_amd64.whl (504.1 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-1.8.3-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (797.8 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

rapidfuzz-1.8.3-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (890.1 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

rapidfuzz-1.8.3-pp27-pypy_73-manylinux2010_x86_64.whl (713.7 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

rapidfuzz-1.8.3-pp27-pypy_73-macosx_10_9_x86_64.whl (519.4 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-1.8.3-cp310-cp310-win_amd64.whl (543.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-1.8.3-cp310-cp310-win32.whl (431.2 kB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-1.8.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (833.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-1.8.3-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (851.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

rapidfuzz-1.8.3-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl (949.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686

rapidfuzz-1.8.3-cp310-cp310-macosx_11_0_arm64.whl (551.7 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-1.8.3-cp310-cp310-macosx_10_9_x86_64.whl (660.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-1.8.3-cp310-cp310-macosx_10_9_universal2.whl (1.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-1.8.3-cp39-cp39-win_amd64.whl (544.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-1.8.3-cp39-cp39-win32.whl (432.7 kB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-1.8.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (832.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-1.8.3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (853.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

rapidfuzz-1.8.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (951.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

rapidfuzz-1.8.3-cp39-cp39-macosx_11_0_arm64.whl (553.6 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-1.8.3-cp39-cp39-macosx_10_9_x86_64.whl (661.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-1.8.3-cp39-cp39-macosx_10_9_universal2.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-1.8.3-cp38-cp38-win_amd64.whl (545.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-1.8.3-cp38-cp38-win32.whl (433.0 kB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-1.8.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (835.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-1.8.3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (853.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

rapidfuzz-1.8.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (949.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

rapidfuzz-1.8.3-cp38-cp38-macosx_11_0_arm64.whl (554.1 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-1.8.3-cp38-cp38-macosx_10_9_x86_64.whl (661.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-1.8.3-cp38-cp38-macosx_10_9_universal2.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-1.8.3-cp37-cp37m-win_amd64.whl (546.3 kB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-1.8.3-cp37-cp37m-win32.whl (435.0 kB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-1.8.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (835.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-1.8.3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (854.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.8.3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (950.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

rapidfuzz-1.8.3-cp37-cp37m-macosx_10_9_x86_64.whl (662.2 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-1.8.3-cp36-cp36m-win_amd64.whl (539.3 kB view details)

Uploaded CPython 3.6m Windows x86-64

rapidfuzz-1.8.3-cp36-cp36m-win32.whl (428.5 kB view details)

Uploaded CPython 3.6m Windows x86

rapidfuzz-1.8.3-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (823.5 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

rapidfuzz-1.8.3-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (844.5 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.8.3-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl (938.6 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

rapidfuzz-1.8.3-cp36-cp36m-macosx_10_9_x86_64.whl (653.6 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

rapidfuzz-1.8.3-cp35-cp35m-win_amd64.whl (533.5 kB view details)

Uploaded CPython 3.5m Windows x86-64

rapidfuzz-1.8.3-cp35-cp35m-win32.whl (424.4 kB view details)

Uploaded CPython 3.5m Windows x86

rapidfuzz-1.8.3-cp35-cp35m-manylinux2010_x86_64.whl (836.4 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.8.3-cp35-cp35m-manylinux2010_i686.whl (933.7 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ i686

rapidfuzz-1.8.3-cp35-cp35m-macosx_10_9_x86_64.whl (642.7 kB view details)

Uploaded CPython 3.5m macOS 10.9+ x86-64

rapidfuzz-1.8.3-cp27-cp27mu-manylinux2010_x86_64.whl (739.1 kB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ x86-64

rapidfuzz-1.8.3-cp27-cp27mu-manylinux2010_i686.whl (829.4 kB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ i686

rapidfuzz-1.8.3-cp27-cp27m-win_amd64.whl (471.5 kB view details)

Uploaded CPython 2.7m Windows x86-64

rapidfuzz-1.8.3-cp27-cp27m-win32.whl (380.7 kB view details)

Uploaded CPython 2.7m Windows x86

rapidfuzz-1.8.3-cp27-cp27m-manylinux2010_x86_64.whl (741.0 kB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.8.3-cp27-cp27m-manylinux2010_i686.whl (827.2 kB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ i686

rapidfuzz-1.8.3-cp27-cp27m-macosx_10_9_x86_64.whl (554.7 kB view details)

Uploaded CPython 2.7m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-1.8.3.tar.gz.

File metadata

  • Download URL: rapidfuzz-1.8.3.tar.gz
  • Upload date:
  • Size: 531.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.8.3.tar.gz
Algorithm Hash digest
SHA256 e85fa8110dc1271b7f193f225e5c6c63be81c3cf1a48648d01ed5d55955fbc4c
MD5 0090296331e1d38b7eca019cf84cab7c
BLAKE2b-256 f2e1a6a03428f3cff07250f26c31275cd8206d90d8f69f249675a47352a487ec

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-pp37-pypy37_pp73-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.3-pp37-pypy37_pp73-win_amd64.whl
  • Upload date:
  • Size: 504.1 kB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.8.3-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 cee3f7daab7813314d61c6d81ba32fdd3c75f7cf6910cc630c76905195c4a2a4
MD5 d26bcaca7e8b0c335607e2def2487167
BLAKE2b-256 de068b52c544849041446f8ce123ece887085edb14943eec3bdc6d4f60135ae4

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.3-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d9205db2beda1b83fbfaf968039fbbd05f1c278c6e13782c699ef1ad4d2c43af
MD5 2fe94f35f1dd1fb744b706a7dd11fc18
BLAKE2b-256 97d8fe98ac48697f2ead5b53ab553bc2d8bba28505c239ba394db216c6bfacd7

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.3-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 d11a69e5a33cbcb665d03f63f77d46bd2d4f4e8fc10f48e734d2880bba0b3ab7
MD5 b239c7d91d47662ea471f9c41ac86e57
BLAKE2b-256 49599a45d93d9c505e9e818fed4d86a2ec2f0a78491f9a9e61fa99fce6a3768d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-pp27-pypy_73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.3-pp27-pypy_73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 713.7 kB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.8.3-pp27-pypy_73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5d45e00b29594e4a785f413869a43815bc29d977c940410255ea51adca61644d
MD5 0a30f4ffbfccc67aec0d385e0925bf91
BLAKE2b-256 8558b6ae8101644f6434f387ca7da1ac603d1627dd6650cabcc17bde60e2e94e

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-pp27-pypy_73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.3-pp27-pypy_73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 519.4 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.8.3-pp27-pypy_73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4fc3f4430ca680bc576a789914d029fa1f332cd5836ca954ef8e12b11fd48801
MD5 4229a87ef5d1f62c71c51437ec815587
BLAKE2b-256 ad21172ebe42c7fc64153cf0461e6bcd2b1ab274ce302020c7fc96e065f5c34d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 543.3 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.8.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ced1bf333f228c4fd31db8d55185366b090755c5c634c51afadf3c4a079fe1fc
MD5 a6d9493453849099448d36cd323d05e5
BLAKE2b-256 47a7cae43fabf798eca16e7fe18e586ce31afe845f30db64a8bfbf3b278e9ac0

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.8.3-cp310-cp310-win32.whl
  • Upload date:
  • Size: 431.2 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.8.3-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 0ed81b389274736675a7815b8f65b0492be65548cf03b5cc81687c66188ff9dd
MD5 80a8cb2e2ed65a3e782547ad6b55f232
BLAKE2b-256 8c4e07eee1cb17e3cafe48df1a695aa6943dbc48c06e72f0d0e852a741e8c641

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2e3c7d39c97414952ce687db2ef7966612511d23561222c04cb226e9871d0cdb
MD5 fd895709c704ca5d582570a4dc95266e
BLAKE2b-256 3230ddbc74f3cd5c751b6b1a9e5e2c3227e1334a102098aa20ff8d4ae9adc118

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.3-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8a477f5d75aef642e14f0051fe5e7315730dff4df4f6c02e2ddb046d3ba94791
MD5 cb0989eea1744cbbfcc044f1be823885
BLAKE2b-256 5a972495d1b59ffabcb5104c193a1bb1de5bea6599f5a9796eea53b82bfee4e5

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.3-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 4a83917d28f23d87f6ad1c6c201ff8385bd5dfd37d5da9c4cb5967e9e3a431da
MD5 9b2668f234b103fab2efe298457ebc44
BLAKE2b-256 ee373f28d310a1612b7ed9b03a439d29fcc895a335d5ace366218bd9274bebab

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.3-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 551.7 kB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.8.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8fa4ef5f82762274558a7afe2037b016aee2c81b3d5d2c749a25771875013091
MD5 83a94aa887ca0aac8bd482ac23303fdd
BLAKE2b-256 9b4761017f5896987f0198af4ba214da75f6058c8b9218d02ea41037ff91d0da

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.3-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 660.1 kB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.8.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e77f537bc28af69de0066e09191be746600f3b51c1d1c820b3e82c9e1b0152bd
MD5 af42de9d22df91dbd9dd3555901e90be
BLAKE2b-256 a7a14e7f3edffd9217aeeff7f7f912c89723d5f365d7d70fe23f62ff27a25e9e

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-1.8.3-cp310-cp310-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.8.3-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 3d15cb1176d77962ef9af567aa3d33459930f290a0bf06355ac7b6d3bfb001aa
MD5 5b12de8cac87c74677771d87a379209a
BLAKE2b-256 f9a96721e0938ee6bdddb40bb1260d628f65783e502cf2519dacd675da51166d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 544.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.8.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 911fb926f0237b67b6f566c4e1b029dd38888675228ad9e1613b2f8deb94d8a3
MD5 45c47b32bec48236d49a896a4988462e
BLAKE2b-256 d2259de7f7308f91dcf6ac77dbdd0a004d04f67a1b6d296a01b6a9fe98b827d5

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.8.3-cp39-cp39-win32.whl
  • Upload date:
  • Size: 432.7 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.8.3-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 55c1772561900bf08fc15efa359f971723785d8b42419c4ea18eacd001bad5fc
MD5 70ee67ad8be08ea2de24ffe80beb80ae
BLAKE2b-256 8377a66beda5fb6433ba73ba259fb2b8103aeefa5f732f6798ded2cc860a27bc

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 915ed93f12f551b0670d8f0d5949c660e533046e9efdfb49016de6c2ddca793c
MD5 c4f3f42eb05c58e7e8c1198f2ccb1178
BLAKE2b-256 1466c012d50c2e00a9eb23deb13766d15a49c3f2f2706589e57ff8ca2de9063e

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0f9310f3d651aa50d4cb023de727bf3f8a96a76082ca3478a01d7a63109e3fd3
MD5 408a952652616bcf42f9df5fdaef9222
BLAKE2b-256 4d7786c157b933d69d505dae30555ec6fdaeaf5a995cb39412ab39da183d72aa

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 29a4ea3a779dd1c8fafdff241f3737c079d7905a1c33beab306e2179bb9bd6ff
MD5 4c74b06c73b85a09072c27cef9c95af1
BLAKE2b-256 11b9a4721eec89e490ad5c4bf25556dbfdf02a22670e14a5837bc3815c190d36

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.3-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 553.6 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.8.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8da386372e1bf7579c7a32c28a263bc417b14fbc66c6c1df76baf30d6efa98ae
MD5 aa5e29722d5d4c8ea136571b94b8ce04
BLAKE2b-256 5ae78232184273ae211776c20e57b4b27d0649cb3935b7cb4f48debe88bba021

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.3-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 661.5 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.8.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3d5a4befaa266fc75c5d9bd414029dc89a19ad0ad475ac527f5505119647a914
MD5 bc7b637bad6a0900a9172ab0d6a35742
BLAKE2b-256 8aeb2b511d4d676c1f33b717b9bc0284df3d4226201455d26d2313753e514980

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-1.8.3-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.8.3-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 a08453c1f5a6b25e4cc61b99e0601adbb1daed3a360b1270abf24625d83d52f0
MD5 020d2882454e652fd37632361444e9d4
BLAKE2b-256 d9b021c067a8eb461e28b7ff7e6e0f56b817d9f44b87caca12b548a67094c4ea

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 545.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.8.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 124cfe1a3cfd0fa5069873aaa8933df50d9c0a1a0db126739aa3a129e09024da
MD5 a78d3cae1f1afd728b85a64e77e5a9b2
BLAKE2b-256 56b83dd50dff77175b3b515a445d8cd4e684454878b8f991fb6dcc504efb261b

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.8.3-cp38-cp38-win32.whl
  • Upload date:
  • Size: 433.0 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.8.3-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 e0013c270b8c097a90b92b6a4664e410cfb2195b2573431b651634a28c13ee6f
MD5 f9e6bb10fce9c766d5a65b8b9506edc4
BLAKE2b-256 d2214de876c95254f718d7c893463afbe757594f76012586e0e80e5d32782f67

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 496ac913d5917838d92965873b3d9540be44619a9693123f6fb0d1074f1c63b5
MD5 e889a4ed337e4b1da74f3d67fe7c741f
BLAKE2b-256 85b1a9107d3c3334bf5d22f2892d72a1f0a4add4156cebb6f333e5f1546b1a87

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 dfc18bb38085e1b4a4dd2fe99b17770dcbf286408510477ff542fbdd0ffbe017
MD5 e50df642d80fcceedc649df3941578b2
BLAKE2b-256 73f168b84cc4ee1de970cabe54649668bc6eb0b77ad6cfee169f3415a95237cb

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 05d21cb420848838d6c2c2816181325ab1ae3109bfbe45df863635ef8f159714
MD5 cd1873c863881968446c18bbebf26ddf
BLAKE2b-256 6a5a1af0af4db2a90117195fa18bf8745cf91fc33c22913b218c4f757844491f

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.3-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 554.1 kB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.8.3-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6571adf845b4e464a3b748de0b1cdd4acc66c01a0e9fd51e5d43cbf0d4a85524
MD5 8e2068cdd9ed9b6022eca8e89bd0a4b6
BLAKE2b-256 69102ed76662aa102a587c28d35bf4e78cdf34d76f2170b58ea97cc7908918e0

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.3-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 661.3 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.8.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3fcab917846c1c28fec36e8cd22c1a072cfb5ce5a297c6bda2017c01e309a892
MD5 b637a6101578a2f1a5e1b02fed181e93
BLAKE2b-256 b44282c39dc3433dee73337b8177fabcecf6023ab66b3fee692cb080e34a8d5c

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-1.8.3-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.8.3-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d856c8ab95df935636108868e0579a1d78f68222d79fd35853e6d8ba54ced617
MD5 b4a75fd77804cf6cf2d54d8422880c83
BLAKE2b-256 69fad4da0b9ca8adf74479aa71142b3be782ec96814917f7a8aa8267303fcc5d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 546.3 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.8.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 1df3455ffed5cdcc28b6e2b53dfc3ec068b298dceb3782e2e654f50ab16b2e34
MD5 d08de7396467b25f9b428f611df267a2
BLAKE2b-256 fec47bbe887aaf71d470f38ef9b151554a6e90587a853231a55d871e7b56e228

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.8.3-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 435.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.8.3-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 2fe0e9272e35a1f98fdbeef16f2e969e29a9226f187f540febfc064d82878668
MD5 b1417ecfb38d0e35f3e4b5077c2538b0
BLAKE2b-256 603f1951664c457681f74868967df54a8ed0ac6bf2b5bc8f31a28c0277219aa6

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b3435b497bc78e548977a671b91f9655c20045dbbeee6ca4ce5219cac1411682
MD5 2b586e332f1fc095d4f4aed38dd558f0
BLAKE2b-256 b2842ae738d3082c6b2c59ff0a416ba7256bac031bfb9f367d840b8b0f6b72ee

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a0b820f3279253d9deae6bed82c699d43903a2676208ac4d849f54a00919c473
MD5 f52e21290785c229af280a9d7e0b5fb1
BLAKE2b-256 78c8806bc45cfba761351b960c5279ccd8461c6a607ade2039c2c7724abae579

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 5954565dbc0a376971c4b8a65f698d8f12226b9e275ce1bef7874c2fc5a3a433
MD5 1fd5b7abfd8e2e4ba7e2f224a0b8cb3c
BLAKE2b-256 bd9bdae4f6a476f6c919f728bb7c8ba14f77bfc73b09d46ab182ffc197a5ee8c

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.3-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 662.2 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.8.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 70efbce4e2c80f091ae5f7040c6afe4f6e04836a2b0d27ab554fd6fb56b46ed5
MD5 26df12657ed3d507663e954a7099ef98
BLAKE2b-256 7f0243e7e78f91255ac99ad0eb84067d92648f5fc1ca16814015f5cf3ff135a8

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.3-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 539.3 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.8.3-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 8a443341fbc171df6eed302fcf1adf4975045565988edeaee4302636c0a7e6c1
MD5 98ddd8521908e09b1468a1125bbc5785
BLAKE2b-256 ecef20f99bb0c47af3e4b40191b5975c1e32483f7926712c4d3d684215124b44

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp36-cp36m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.8.3-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 428.5 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.8.3-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 4bf7a88deade25cb91eff36f79e40b174b6dc1fdb467e50a3aca65ab8a951431
MD5 f91112b239b08e6a3bde8cc55b415011
BLAKE2b-256 9520b0b1a87b19a650004bad2bbaba7dfa5f99bb076cf99bd3ee81518e2defca

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.3-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2985f9694f2732a968f8af8cb7e4ab0325a7d80d9e8fd29f3b2b4621da6ccef8
MD5 feac734bfc4f7fbb20a634219cdfca6c
BLAKE2b-256 7d1214ce91ce705b6e0f533041c0cf110e357b6d65f034696849cc739f98de16

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.3-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 205cf9193aa1cc6c368e1a744a35e205f152ca2f63f516802ed9322764ece04a
MD5 b68e31c7d95131713c51c4d3670ab817
BLAKE2b-256 20695abfe77c8da7648b379b23f0952ca6cd0786f57f12436ce6c4f16303c2f5

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.8.3-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 ee1149e2038e6ea6065a439b14e2f7a6939d3bc9fb19fa9d4e32161f678ca555
MD5 281f493f1561dcec131ace099fdf0782
BLAKE2b-256 7f8386fdbd58bd46306fced5a0305e9f54ff0404e03cb619f55a058bdcfda3a8

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.3-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 653.6 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.8.3-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 31082c7cf4ba405c054d149cb04e32f68cfb13c736d09354dab81aa60d553194
MD5 dbb37d9d4cc687c44e4c008a4ea188f3
BLAKE2b-256 9a221675f548e1f46245f04ceced14558a68870cde4169f42032e52fe6b4705d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.3-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 533.5 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.8.3-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 d7f9cd0836689a6a928c79005108475c9e95cf9ea3ec850b54017f49a3cc961d
MD5 f4c175668e186a93febf7dc7c50f9e3a
BLAKE2b-256 6876f2f98e367e86eeeb79709d39fdec7f396c765b5c4b039c8c599a9c03d1e2

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp35-cp35m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.8.3-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 424.4 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.8.3-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 60168de30ea1280884a2ebf83ff028966c670b0c56840095939b987e3a372aaa
MD5 4650697d3205fe66235ff51dc2670ab5
BLAKE2b-256 3266ca833bbaad2309e2b1b0216ca60f9b7aedabc89009675548d7ef5043dd95

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.3-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 836.4 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.8.3-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0a255c6bd346dbb3c0fc96daf5ed10473a2568365ab76de7d779732d3a304af2
MD5 b8a33ecdc3aa9d8ef0182aa49b1db081
BLAKE2b-256 49f7e67cb623dceb8015534fa0bba8b95266b5a9d96350924ee6c5edf770ffa1

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp35-cp35m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.8.3-cp35-cp35m-manylinux2010_i686.whl
  • Upload date:
  • Size: 933.7 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.8.3-cp35-cp35m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 87056d8106cb3f118b5fcc4a7c8ab77e40dcf7e5b5904a83a344d8a916feefd4
MD5 f204824b9f30fb02fcd79bb22671dfb0
BLAKE2b-256 c715ef38c83a7542482f238d80932b0a06a58206617f4acf21178772d5b5d914

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp35-cp35m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.3-cp35-cp35m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 642.7 kB
  • Tags: CPython 3.5m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.8.3-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 50c25c058616b9c3a3b5814db1560e9ecbdeec3d987e51b641dc3bc261c55bbc
MD5 a89cd6dfbe91b2cf50b01be1226e7032
BLAKE2b-256 96fec8972a53f6eedf8da2c586c34d51b036d026533de3955dd323da982cc122

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp27-cp27mu-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.3-cp27-cp27mu-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 739.1 kB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.8.3-cp27-cp27mu-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1e0c30a631fac14469d18d19190ef8b53d97a95aceecb0ffa103d13a76d7bbac
MD5 68d43c4c2e1200f8031107a49060d56b
BLAKE2b-256 69f1e8bea1ab5660dd8d3c889662848d80d797f2bfa3eedba37a0c9b232be28a

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp27-cp27mu-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.8.3-cp27-cp27mu-manylinux2010_i686.whl
  • Upload date:
  • Size: 829.4 kB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.8.3-cp27-cp27mu-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 c69e0bbbfb6e4add79fe6919dea7e6936401c7708ed76280223a954dfb8a3277
MD5 609bb10d750a22950057dd514de65624
BLAKE2b-256 af1c0831cc8d37154a4062019c12539b264a7ed17ff9338f86ee347d6bd40914

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.3-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 471.5 kB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.8.3-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 39ec5cec3f9054a1176906972b4d900b5ed314d25dab709156d1e9b7f957de11
MD5 64be84dcd86d498df7729a35437484d0
BLAKE2b-256 b54510490ba642f4353760b594494634c48556087a2bd21efe1ee8423756a734

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp27-cp27m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.8.3-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 380.7 kB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.8.3-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 b896fc68897611354d78285262e475e387f539cef85d11983c0c06c7aa0ac20c
MD5 b91a77285178fda6b72357aa18d048cc
BLAKE2b-256 87369e8cb226ee76ca91eef338ab66f5ed14d56820feec9369dfa6e63e5114f4

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp27-cp27m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.3-cp27-cp27m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 741.0 kB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.8.3-cp27-cp27m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7f79d77e2d20d2042c7fa00c07e979e28d684d875e5a523a51c06e8b1a2f579c
MD5 33534f8a94a96ad477dcc531dd535474
BLAKE2b-256 0a87ebe1a42dae9a8d18240af41db2180e8bd86e9124ae303da44931b01bf117

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp27-cp27m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.8.3-cp27-cp27m-manylinux2010_i686.whl
  • Upload date:
  • Size: 827.2 kB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.8.3-cp27-cp27m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 6854b2399fa39dbf480a55fe359e1012590b29e683035645dd8d56c8d367ca9b
MD5 266976eee5a2e882977aa35828548254
BLAKE2b-256 076b77a5c859917b912e548ea629c63d24495205c073d7f1d19021246c3e6376

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.8.3-cp27-cp27m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.8.3-cp27-cp27m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 554.7 kB
  • Tags: CPython 2.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.8.3-cp27-cp27m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0aa566e46bf1bf8e98e7a009fb0119c6601aece029af2e9566cfdf7662526c20
MD5 b7c56248a7fce30aa1d044df8939239f
BLAKE2b-256 8591aef723b7ea57661df124fd3d572b9d4486a178d19555cff3ba3de50985eb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page