Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++14 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparision between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparision I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

Benchmark extractOne

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-1.9.0.tar.gz (537.7 kB view details)

Uploaded Source

Built Distributions

rapidfuzz-1.9.0-pp37-pypy37_pp73-win_amd64.whl (510.0 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-1.9.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (836.0 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

rapidfuzz-1.9.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (927.7 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

rapidfuzz-1.9.0-pp27-pypy_73-manylinux2010_x86_64.whl (748.2 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

rapidfuzz-1.9.0-cp310-cp310-win_amd64.whl (549.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-1.9.0-cp310-cp310-win32.whl (441.0 kB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-1.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (853.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-1.9.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (891.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

rapidfuzz-1.9.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl (984.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686

rapidfuzz-1.9.0-cp310-cp310-macosx_11_0_arm64.whl (561.1 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-1.9.0-cp310-cp310-macosx_10_9_x86_64.whl (662.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-1.9.0-cp310-cp310-macosx_10_9_universal2.whl (1.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-1.9.0-cp39-cp39-win_amd64.whl (550.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-1.9.0-cp39-cp39-win32.whl (442.5 kB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-1.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (853.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-1.9.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (891.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

rapidfuzz-1.9.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (985.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

rapidfuzz-1.9.0-cp39-cp39-macosx_11_0_arm64.whl (562.8 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-1.9.0-cp39-cp39-macosx_10_9_x86_64.whl (663.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-1.9.0-cp39-cp39-macosx_10_9_universal2.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-1.9.0-cp38-cp38-win_amd64.whl (550.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-1.9.0-cp38-cp38-win32.whl (442.7 kB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-1.9.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (857.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-1.9.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (892.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

rapidfuzz-1.9.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (986.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

rapidfuzz-1.9.0-cp38-cp38-macosx_11_0_arm64.whl (562.7 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-1.9.0-cp38-cp38-macosx_10_9_x86_64.whl (663.5 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-1.9.0-cp38-cp38-macosx_10_9_universal2.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-1.9.0-cp37-cp37m-win_amd64.whl (552.5 kB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-1.9.0-cp37-cp37m-win32.whl (443.6 kB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-1.9.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (858.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-1.9.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (893.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.9.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (984.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

rapidfuzz-1.9.0-cp37-cp37m-macosx_10_9_x86_64.whl (664.8 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-1.9.0-cp36-cp36m-win_amd64.whl (545.3 kB view details)

Uploaded CPython 3.6m Windows x86-64

rapidfuzz-1.9.0-cp36-cp36m-win32.whl (437.3 kB view details)

Uploaded CPython 3.6m Windows x86

rapidfuzz-1.9.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (837.6 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

rapidfuzz-1.9.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (881.7 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.9.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl (969.3 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

rapidfuzz-1.9.0-cp36-cp36m-macosx_10_9_x86_64.whl (655.5 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

rapidfuzz-1.9.0-cp35-cp35m-win_amd64.whl (538.8 kB view details)

Uploaded CPython 3.5m Windows x86-64

rapidfuzz-1.9.0-cp35-cp35m-win32.whl (433.2 kB view details)

Uploaded CPython 3.5m Windows x86

rapidfuzz-1.9.0-cp35-cp35m-manylinux2010_x86_64.whl (873.6 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.9.0-cp35-cp35m-manylinux2010_i686.whl (967.1 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ i686

rapidfuzz-1.9.0-cp27-cp27mu-manylinux2010_x86_64.whl (776.8 kB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ x86-64

rapidfuzz-1.9.0-cp27-cp27mu-manylinux2010_i686.whl (863.7 kB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ i686

rapidfuzz-1.9.0-cp27-cp27m-win_amd64.whl (471.6 kB view details)

Uploaded CPython 2.7m Windows x86-64

rapidfuzz-1.9.0-cp27-cp27m-win32.whl (382.9 kB view details)

Uploaded CPython 2.7m Windows x86

rapidfuzz-1.9.0-cp27-cp27m-manylinux2010_x86_64.whl (777.5 kB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.9.0-cp27-cp27m-manylinux2010_i686.whl (861.4 kB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ i686

rapidfuzz-1.9.0-cp27-cp27m-macosx_10_9_x86_64.whl (553.9 kB view details)

Uploaded CPython 2.7m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-1.9.0.tar.gz.

File metadata

  • Download URL: rapidfuzz-1.9.0.tar.gz
  • Upload date:
  • Size: 537.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.0.tar.gz
Algorithm Hash digest
SHA256 df0a704e34743c05a2b0b1ca0547a64dfe25446be4048803a3864ceb3431f609
MD5 b9929271008b53e4441e80b1a35a39f0
BLAKE2b-256 42f2318eb39ee1bde9c8d995694a6ec702580815187a4797428bda49867fe12d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-pp37-pypy37_pp73-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.0-pp37-pypy37_pp73-win_amd64.whl
  • Upload date:
  • Size: 510.0 kB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.0-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 4b804bed2c5c06ae133978288260b12436fd8e020da93911cbb62d447f35ff09
MD5 281bc548eb66956ce6a6ec2406feb449
BLAKE2b-256 52271d95e5c381fdfe84f7e3edd329ebda2b1cf6dd085942526e07bdf3b65da2

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.9.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7101baa6847a068ebaa767b952bc99fa254a4c6f341581abff056a2802a2254d
MD5 1f5652078df4a7858adc2f01d68a178f
BLAKE2b-256 4b4ebbc48e395efbf60520e289047f8dabbcc27efdd6933ba4a3315ca9d0b1e5

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.9.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 141adf595db06d55cf1c44ac23742ba2bf15e82388d939fcb8793cd45c54de94
MD5 0a494078bed57dcedc393078a24f2ed2
BLAKE2b-256 3e117dfa58ded743bf6b52aa1485357e562b909a7a41b8040692b1c61a437901

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-pp27-pypy_73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.0-pp27-pypy_73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 748.2 kB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.0-pp27-pypy_73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1dd374e53c16359a666978f3a7adbb92d22ece79be5b0a94ed458d04a206eada
MD5 4e63854dbfe079e754c8bb3f02758022
BLAKE2b-256 928c9a128bb4bdb47bc0c2aa9d9a7904c1613277181d7ece46ef97d2963958bf

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 549.2 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b7251afe4ee82289a87950d3f0303e91a8c83cc6b7d154596976d90bc22dcc4a
MD5 8ef7099e6f934f03a14ff6eea3194c88
BLAKE2b-256 5d4bf87ffe587153281aeee9d21171bb9d6bc1c2099a7b7b1762b5717938f3b9

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.9.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 441.0 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 64ceba13a049579ff31a1146bf4b1f4e9a5a9f68847511c6eca7dbb46c2f51bd
MD5 f4b9c9f31fba0c6e0ef00c7051bcb6b3
BLAKE2b-256 0399fa2ea845714a99791535a3a239142ddc2c7467972bc20e41a272c4a5a644

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5fbd39e7d70a4c8bf5e032f9682c9610849c5f011f384e3e418d02992b874cf1
MD5 51569ecb02fb0b939b751735b622debe
BLAKE2b-256 16696d67ed60da93bc12f6879eb5061d3cc226c26b30e58a78e3ed86f704ee31

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.9.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 11f20ae5745e1924b82862a7c3dbef2c3cc7be9ce9f4d8a153646fc4901530a9
MD5 a60683746d66e444102f15b665313a6c
BLAKE2b-256 ae83c01107b3bba3c6e077ccc8ebe322a2bc72e9b44933c88ad6f5ff23344404

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.9.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 7196cd40403ebba3135596a42f533f21f0764fffd7aa17e8966075b508226c4f
MD5 153c6382ccb5969931bf343de0c6ad12
BLAKE2b-256 a6691a4229be9bafb961686fc4387bc651f3d9fb587da3e7d4e713a86787d340

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.0-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 561.1 kB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2d020da72618f60eea53cd351ee10a591abba119afe3ed04288bef9d302e0b6f
MD5 4173bcef2d44f2b805de58cea5843020
BLAKE2b-256 31f396cb87f29e0bd6b71a482f369a61cac24fd0c5ada8a5b1aff4bbd2f58641

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.0-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 662.0 kB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 83057dc409291a90f43113b2a482e9b8ea6ae34f54dd15b193cb453e7931ce52
MD5 eebd7c024ff30e4d6b252264c54f2898
BLAKE2b-256 52caac64b8a71dee5c07d4b4ee02ddb5ee0ee938fe35ea02001e51cd3d7946ad

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-1.9.0-cp310-cp310-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 4b08552ad553119e4ca737087bd348cbd28aa066c4aee52a3cdeecacd0ff0871
MD5 6b7a97d77c73c816b13e8540b2385f56
BLAKE2b-256 4bd7d1b7229b91a36d8cbc397d1fe5bcaaad0bfbe25bb072f36e8397a18a7e53

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 550.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 42ed0083a15b75e7376c0dc2d02ea542c0cff8b5d7ef46fcb573cef22067b974
MD5 1fdafa849fdb402cf7a09cdbb0ba8ecd
BLAKE2b-256 2f3557ffe8474c176770ee6e4415558d76bc15f21023fc167e907378760d8a18

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.9.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 442.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 f08146313cc625c1215ccc8f984dd4df916914fbd09a1b752cdb17f0c59c4f7a
MD5 5999c85a44942defeb9ba3d9d483f906
BLAKE2b-256 87521860338a14e20e3248f27c8cd96be6582942b6f9a7bc50913ec040008a3a

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 04b60cec01c8a4b7dd6f5f6dcda6ba9aee884a6aca01352560168f8f51cb2535
MD5 a79cd7d58b58225b81400a08f1e91622
BLAKE2b-256 1cafabe475258533f36ca93efd546792315acb5db8a4b7b369994e7fdd813e21

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.9.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 021087e6b422ffb6c96d0a589f3abee36146f3e8dfd263e95abaeb91e6dbd17c
MD5 5b538ba65aeb8f0c2b46622802b3b266
BLAKE2b-256 8e8d0d58510adb2a3d5466bd6ba2f3e96d05a6040e720e9945c6675431b79fc6

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.9.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 09daf1903362df5db8b2ede777d3aa61d013bbf4e07bd0ee1e697f748eab1ad2
MD5 fd6f99c931e4aefd8454f6ff72ce7819
BLAKE2b-256 c8eb9d90818e37fbe06b1a497b613f46e678d37cb5cad9c8abf77d556ec358c8

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.0-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 562.8 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3a46cd733bcfd7de847d51b7399bc3d8425ed4ecac903786188a0886d6eff1ca
MD5 edd8bf9701372e3d5f41c41099270985
BLAKE2b-256 768f266f8dbe0937d3c77a51bbdb42839120cff802026460320fb5c1f5e830cc

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 663.7 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ea4366c8195de8c493fbc60b85115751b54d701d3efcb62f005ed1feee0e9217
MD5 a29bc9d6f222a41b2ed2dd10e2f377a6
BLAKE2b-256 37e4c0d38005c07743ff55596843b66e0d82df879727ab961249da93ef467883

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-1.9.0-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f4741dc0868685f7954fda5dc5d287658f5305cfa4cfd02b1fe872d6b27776eb
MD5 edb07f30da56ed473eb5f765970e8d32
BLAKE2b-256 89aeb1ae3d6966b0c92c7e0922dfa35aa60579762eba5ac921d126b780ee510d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 550.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d5984966028a04490e81c26120760e2c3a77a75e9ded67a33884462c60ee477d
MD5 ac5780f0f4d41d495f8d0cd7d5ec02a2
BLAKE2b-256 5af18dbadc98cad8ccf11c21966d88af2d04c682e10bd84aa996a9fcfc150c08

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.9.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 442.7 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 039d7c62d178282a6eb000b4e00181f50c4768edeb53a7ff0ccb2024c69d12de
MD5 2261c8bea0d5e8353ad19ad48b8303f7
BLAKE2b-256 7de5ebb4b047c879d82ac7e99633c71b73ec0e6351981f2df057cfaff44f3669

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.9.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a0c1c0af50d851935608c3ce492e9b5fb571a71c972b6bbbbf201ef8e46f8667
MD5 6b1291bb1ea7d5faae0cb1dcdb878b2b
BLAKE2b-256 f3e2499bac59a35dcbe7c96f56bd0d2a95ca3fe36775bf5953a48f33caa4284d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.9.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 faa6c54a05edc074027f3110c82e229d3c9c07fe2c213ace460382819fbf4a28
MD5 9cd9fdbc2bab95ba7f88469763cda327
BLAKE2b-256 0010fbda9c2a6463d5d45150392db7b8b28b2bc0c8bb178b28455c68e477682a

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.9.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 70d46faf1e826a49d0ce726f1532e407e84022d903088281f1ba79d04679099b
MD5 bf39c9a3bfdc812d68e2a0e9c56d3252
BLAKE2b-256 49d7495cc3fa834eeb989ebb24588901d57510054fb53091b74d790c2b9b4422

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.0-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 562.7 kB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0abcf0c9d04c566ac55b67e0c55a06933cf84089c695a015f7fbb3c37de1e9b9
MD5 87315faee4ee60ab827d0a4a01d46716
BLAKE2b-256 89a700a9e013751818af936a11ea1c1a043b8a448b70d4329d688a3616f7ef6e

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 663.5 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 63f42b7826ed4b3692a5394ce2b265037dbedcafd4eb8835a2d1e211547864c1
MD5 eb2c129994789d2024077a9cefc8f715
BLAKE2b-256 dcd1ccb14700619bf41e57ae34a780d520f61ad220854865e60e240d29c3652f

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-1.9.0-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 ffa588de339f05fc65747c507373c139dd3a0b7133e16481e713e6af6b887767
MD5 50df8d58911c91070d1ed3fd2fe9e48f
BLAKE2b-256 903fc0f8706feec3863f797e7a116af7c9328890fca5e354482b7dba87bee134

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 552.5 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 386c62272fd5ad9282149b142a978bf3aef6d55c368443ddd05d8788411a4064
MD5 eccacbf3ee79fc934df682672be709aa
BLAKE2b-256 0baa2f0254cbaf1c1e78218440b83c10684650e3f57e099e9a731f8a38a1536e

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.9.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 443.6 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 fa355b26c64940c0d68c4174f0657259d9bafa41fd7aa061885a34daffce72ee
MD5 fa17db9050b0c966121b9cffcfa0b01c
BLAKE2b-256 4e2345df547501953df4014983aa8876fafa374256ad049c11aeee2a93b17289

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.9.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fa89d4fa23822ff0cf8ca1c3f81067f60d36d7d93775285b512445c814bdff7a
MD5 0eb3bb2c1387df68bd1c589ae5682d19
BLAKE2b-256 332965eb0d18e16e0ee977cab83a3902ecbdc9f3b53da19da985e47a1be642bd

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.9.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2c350b9ba89227514b27c373aaad79d1601686442c64b290d81a6a75ccb53dc6
MD5 f749ce34736e110927dcc4d2805c9a85
BLAKE2b-256 1db39d4ce5ef8a35c485b109de453a96810261febe9a5a889fb6db8aab29f93b

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.9.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 f93ec2959f31db5efd1bfe405d8c71f7dc7dff582a9545db769891e3c03cd4a3
MD5 c929c0b966997c52eec95abfc72ff924
BLAKE2b-256 d87d6e0897e512f9fc2c527300b0e26849a7fbebe9f9ccdc036e06831ab0019f

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 664.8 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b19b393a8fa3417510fd1a836f760f343e19019a0f5354f718a9db202949f073
MD5 d228e899e2ea6bcff9e6a117905f0eeb
BLAKE2b-256 c78c3f5dc00c6f6ed280691be407c6a085c45bec756aace6afa2db324b5931c5

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 545.3 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 dee6ab404db780531de3583a556939e645b59da4c652190b6e071b8c0a5e94bc
MD5 93f5cf52c379a2cba8711b1e086c87a1
BLAKE2b-256 6860c95653182b1dab8b526459a1ad7aebec266a932b64375dbb01596eaca0fe

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.9.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 437.3 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 e28e04da79500888c502d44d9e483480fc5d4286cc8b2c17704e7ce251f571d1
MD5 3546628b96efaf1ff49fc4d041b03926
BLAKE2b-256 ae36c9842b8d01192de6243938c162af4747ec4df436fa0e8c8b2f3ed6b92773

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.9.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9587eafbaa26f7c4f253c9116bf81fc522f3b8d8960b5d4b0db3545e92eb9360
MD5 4e89aee904645693d4896678b8539f56
BLAKE2b-256 1b075d501b22e957f7072a9887b70095a8be8518da60dc7f03283b8d28e35af8

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.9.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a81cdf9375525ef5c6ab1e37a42628fd89b06a0dbb3a40b74669062d5b300e36
MD5 fa92def07097e40cf342a592021f7124
BLAKE2b-256 61f60d8c55af0eca36d10ac89711fd0cb5075257534d539365df0f3f4fae9d31

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.9.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 96ff76afb66c4d02ceda1212b069fa1d5002036bf68a0b7de595c572f485b6ce
MD5 feae115b8e441418284c0ce7a891d9e5
BLAKE2b-256 613a42c9ead6a53c616d86b78142262f3c7cd2a23acb346ac73cf25dc805b027

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 655.5 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b93320544639629238bad777d818170731c39f1a5ee23ca5d977aec9b2b3c0a4
MD5 fcaf61b0260c0385cdeb28f0209073bb
BLAKE2b-256 f1b51ee1d3b0a14e3649ac8c640d784dca59d664cd574bcca7bf17505ef430cc

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.0-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 538.8 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 1d19acc69ccd64cc146ce36798d3887128e8c8ca3409d5b3b40a23151d784858
MD5 49eac29c7c1c5b7aab97426d877c0f9d
BLAKE2b-256 caf05edd7f53e951f5457dae7584ab51a0faf2bf217c860f8a431f95359846fe

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp35-cp35m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.9.0-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 433.2 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.0-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 03624349ae64eb78a8cb1f4a509f22740cc02a43f3aa8b2558813be7cfb82918
MD5 0da00673ebd97b65e743495375ef4aaa
BLAKE2b-256 501db79dfba401210a5adb0df6e930b03408cffba14c134f2956191f00c7702d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.0-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 873.6 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.0-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c4b5f6e360c62ea54437d8d110fd135601a0ed7065acbf02db1e15aacf111eae
MD5 d96f13fc655f2947eb6cd2da534fb154
BLAKE2b-256 2e761e831820f133104eacf60d08bc28a25234352ea108ddc3954fc636660d67

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp35-cp35m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.9.0-cp35-cp35m-manylinux2010_i686.whl
  • Upload date:
  • Size: 967.1 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.0-cp35-cp35m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 087a1cdac66d95e2bf6337bf09fb5d2ea575049bfd9c226a6c4769b1a6030731
MD5 5c01160fbf75bcff01331c098beadffe
BLAKE2b-256 0f6a12fb21a132f1f80d98423d8713a1bcdb65f759532a5999c43bb479b70da5

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp27-cp27mu-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.0-cp27-cp27mu-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 776.8 kB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.0-cp27-cp27mu-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 28a7e2136d8c927d2adf2a90c33fdd050fc86cfc12d4e2999c35843f9b1798db
MD5 1522e24eab2cd19a9dfc7f36980feac8
BLAKE2b-256 dbd7506c086cbc263340874e35b4045db12c636d86c198f545a89f4783f59ffe

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp27-cp27mu-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.9.0-cp27-cp27mu-manylinux2010_i686.whl
  • Upload date:
  • Size: 863.7 kB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.0-cp27-cp27mu-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 68ea5c845f42460d3d82a0858ae686694282c6659e1d1dbd9c9b829eb06fe8f3
MD5 a82a205f1cdde105d2057b6ee3b05283
BLAKE2b-256 106dd338b85991324990fc255dd1c39b91bc8d67238eb162647ea2d7f0e100c4

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.0-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 471.6 kB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.0-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 791caf417c50186a2621d61de794851579138a9cece4ab4cfc8496cb7b62a6db
MD5 2189b92e2d8cf7ca9cb04a90fa6e4b56
BLAKE2b-256 05d135ac49e3c6f1c39c75476df31e2435a406039e873b19395cc8f229609f4b

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp27-cp27m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.9.0-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 382.9 kB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.0-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 656ab60bc3a668469009bc28d5ca663f1984713d4445f1d6ff75ceaa65b8033e
MD5 05d45a08a79a6824db6b589e9de6bc08
BLAKE2b-256 e53e4b267635b11c37f4b9719412f2999e9e548ecb404dc975eb5d9d8932aa0d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp27-cp27m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.0-cp27-cp27m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 777.5 kB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.0-cp27-cp27m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a3ed2aaac8cd65463e510841beec77174fc35eb4ad16f317b65381e7fe0aa67c
MD5 436dfa411ed4ade94b2255cd39e10faf
BLAKE2b-256 04e829d773f5222043e55e69273e277e3c4235f22c30e4cec0e3205b458701a9

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp27-cp27m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.9.0-cp27-cp27m-manylinux2010_i686.whl
  • Upload date:
  • Size: 861.4 kB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.0-cp27-cp27m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 f4cd123be19c36982323e7faf648845c97f993e4507e175da5f8c85770b4dd58
MD5 d0b4d729249eb9c2ac9080b3480ec3c1
BLAKE2b-256 70080d91b7149a51ebf2f9578edbdaf6fb103bd1f54120e931d7ed7e9f72dd07

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.0-cp27-cp27m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.0-cp27-cp27m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 553.9 kB
  • Tags: CPython 2.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.0-cp27-cp27m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 609144bce3b9dc6f5bb6ecf743401d8276e0a102988536306fcce5cf5e6cbe3e
MD5 fbb1dbea30502ea594712695cdbe3ede
BLAKE2b-256 f3f0433982a86d858b44a24e8daeacf168c3cbab819809f2549264664240f9aa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page