Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++14 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparision between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparision I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

Benchmark extractOne

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-1.9.1.tar.gz (537.7 kB view details)

Uploaded Source

Built Distributions

rapidfuzz-1.9.1-pp37-pypy37_pp73-win_amd64.whl (510.0 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-1.9.1-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (836.0 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

rapidfuzz-1.9.1-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (927.7 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

rapidfuzz-1.9.1-pp27-pypy_73-manylinux2010_x86_64.whl (748.2 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

rapidfuzz-1.9.1-cp310-cp310-win_amd64.whl (549.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-1.9.1-cp310-cp310-win32.whl (441.0 kB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-1.9.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (853.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-1.9.1-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (891.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

rapidfuzz-1.9.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl (984.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686

rapidfuzz-1.9.1-cp310-cp310-macosx_11_0_arm64.whl (561.1 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-1.9.1-cp310-cp310-macosx_10_9_x86_64.whl (662.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-1.9.1-cp310-cp310-macosx_10_9_universal2.whl (1.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-1.9.1-cp39-cp39-win_amd64.whl (550.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-1.9.1-cp39-cp39-win32.whl (442.5 kB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-1.9.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (853.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-1.9.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (891.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

rapidfuzz-1.9.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (985.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

rapidfuzz-1.9.1-cp39-cp39-macosx_11_0_arm64.whl (562.8 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-1.9.1-cp39-cp39-macosx_10_9_x86_64.whl (663.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-1.9.1-cp39-cp39-macosx_10_9_universal2.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-1.9.1-cp38-cp38-win_amd64.whl (551.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-1.9.1-cp38-cp38-win32.whl (442.7 kB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-1.9.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (857.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-1.9.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (892.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

rapidfuzz-1.9.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (986.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

rapidfuzz-1.9.1-cp38-cp38-macosx_11_0_arm64.whl (562.7 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-1.9.1-cp38-cp38-macosx_10_9_x86_64.whl (663.5 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-1.9.1-cp38-cp38-macosx_10_9_universal2.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-1.9.1-cp37-cp37m-win_amd64.whl (552.5 kB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-1.9.1-cp37-cp37m-win32.whl (443.6 kB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-1.9.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (858.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-1.9.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (893.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.9.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (984.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

rapidfuzz-1.9.1-cp37-cp37m-macosx_10_9_x86_64.whl (664.8 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-1.9.1-cp36-cp36m-win_amd64.whl (545.3 kB view details)

Uploaded CPython 3.6m Windows x86-64

rapidfuzz-1.9.1-cp36-cp36m-win32.whl (437.3 kB view details)

Uploaded CPython 3.6m Windows x86

rapidfuzz-1.9.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (837.6 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

rapidfuzz-1.9.1-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (881.7 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.9.1-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl (969.3 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

rapidfuzz-1.9.1-cp36-cp36m-macosx_10_9_x86_64.whl (655.5 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

rapidfuzz-1.9.1-cp35-cp35m-win_amd64.whl (538.8 kB view details)

Uploaded CPython 3.5m Windows x86-64

rapidfuzz-1.9.1-cp35-cp35m-win32.whl (433.3 kB view details)

Uploaded CPython 3.5m Windows x86

rapidfuzz-1.9.1-cp35-cp35m-manylinux2010_x86_64.whl (873.6 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.9.1-cp35-cp35m-manylinux2010_i686.whl (967.1 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ i686

rapidfuzz-1.9.1-cp27-cp27mu-manylinux2010_x86_64.whl (776.8 kB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ x86-64

rapidfuzz-1.9.1-cp27-cp27mu-manylinux2010_i686.whl (863.6 kB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ i686

rapidfuzz-1.9.1-cp27-cp27m-win_amd64.whl (471.6 kB view details)

Uploaded CPython 2.7m Windows x86-64

rapidfuzz-1.9.1-cp27-cp27m-win32.whl (382.9 kB view details)

Uploaded CPython 2.7m Windows x86

rapidfuzz-1.9.1-cp27-cp27m-manylinux2010_x86_64.whl (777.5 kB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.9.1-cp27-cp27m-manylinux2010_i686.whl (861.4 kB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ i686

rapidfuzz-1.9.1-cp27-cp27m-macosx_10_9_x86_64.whl (553.9 kB view details)

Uploaded CPython 2.7m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-1.9.1.tar.gz.

File metadata

  • Download URL: rapidfuzz-1.9.1.tar.gz
  • Upload date:
  • Size: 537.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.1.tar.gz
Algorithm Hash digest
SHA256 bd7a4fe33ba49db3417f0f57a8af02462554f1296dedcf35b026cd3525efef74
MD5 450e128fad83d575847d276cd5587d6a
BLAKE2b-256 7f51e00e3b8e5fc0be5a3f5c320bbd75c9aead4b958221103a81471f847ca9b2

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-pp37-pypy37_pp73-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.1-pp37-pypy37_pp73-win_amd64.whl
  • Upload date:
  • Size: 510.0 kB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.1-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 af991cb333ec526d894923163050931b3a870b7694bf7687aaa6154d341a98f5
MD5 9f74ea79b2aab17bea169847b5d07256
BLAKE2b-256 e58325a68c25a4ddfc170aa836fa1dc824bc897cccd0a1af9940f19360582cc5

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.9.1-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 33479f75f36ac3a1d8421365d4fa906e013490790730a89caba31d06e6f71738
MD5 5e81ee8964a7a77eae9fa2e2b613a034
BLAKE2b-256 4d2cb3a8eeb5e5c7671daec8cd7f7af8cc6aa9d2154647a1a515221e15e59776

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.9.1-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 db5978e970fb0955974d51021da4b929e2e4890fef17792989ee32658e2b159c
MD5 104e0c2891e2c19fb517be0c2b6d7fe5
BLAKE2b-256 9b3fb13f19dfb014ff8cc3d437a7720ebba12c876068e68e3346eb48f43871d9

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-pp27-pypy_73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.1-pp27-pypy_73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 748.2 kB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.1-pp27-pypy_73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 de869c8f4e8edb9b2f7b8232a04896645501defcbd9d85bc0202ff3ec6285f6b
MD5 dba9671d50ec7674fc54ab7d23bc8b19
BLAKE2b-256 38a253525e8bd5155decd9ea0120e5ee9d7d84b7ef1ddbb0f6450b9ce20906c1

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 549.2 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ac3273364cd1619cab3bf0ba731efea5405833f9eba362da7dcd70bd42073d8e
MD5 de713d72ce352d0fdcf020b4b892e1d5
BLAKE2b-256 44a359c8b97f4525cd34e14b425ad8181a2a9684eb761506bea86eedf701e283

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.9.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 441.0 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 b1c54807e556dbcc6caf4ce0f24446c01b195f3cc46e2a6e74b82d3a21eaa45d
MD5 c2a5ddc00d55499e59185e22a2d429a7
BLAKE2b-256 9c31ca57c4cfa334a078d310f03541325694f62f315c1105f62859e3aded5db0

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.9.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bdbd387efb8478605951344f327dd03bf053c138d757369a43404305b99e55db
MD5 968b72711f8cb39229776ff784f296d7
BLAKE2b-256 0e78892eee8e5334329b4a5c3e4a393c7231cf11ed2b2736e3c2b21b9cab0632

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.9.1-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8dc0bf1814accee08a9c9bace6672ef06eae6b0446fce88e3e97e23dfaf3ea10
MD5 d7ca9f54628703cfb245e2ec7e01240e
BLAKE2b-256 869bbbbb616eb973c94b035bc749d471a256e3203bf43f971ebde76bd4e29b78

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.9.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 92066ccb054efc2e17afb4049c98b550969653cd58f71dd756cfcc8e6864630a
MD5 6e8f3d4debae5431f4be62754f900bf0
BLAKE2b-256 7c1b202b2b962d92c69ccba3c7b712467cfdeacd25503daf667955ed5b3276ca

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.1-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 561.1 kB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 402b2174bded62a793c5f7d9aec16bc32c661402360a934819ae72b54cfbce1e
MD5 6f5b7c82ac8d7f674eb0ff6bff1dc1cb
BLAKE2b-256 721982b3d8e358e1ed3f08b778dcee77e09c34f2adc10bdbf976ded28511cf38

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.1-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 662.0 kB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5ad450badf06ddf98a246140b5059ba895ee8445e8102a5a289908327f551f81
MD5 9d7410379b5d4bfbb6120304e7337cc4
BLAKE2b-256 0ebd0b76f92553fec049cae2dd57878125c1b25cbef27b74bad0be908be780b7

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-1.9.1-cp310-cp310-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 8ab7eb003a18991347174910f11d38ff40399081185d9e3199ec277535f7828b
MD5 be6eec80f612f92d13997a7eea53c325
BLAKE2b-256 a7b40418eaab14009d4869d9a4d93c8b2fbdb01ce3d78fce5ecfe37b86854a6a

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 550.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0bcc5bbfdbe6068cc2cf0029ab6cde08dceac498d232fa3a61dd34fbfa0b3f36
MD5 fc46e31fc722cee021500575df2528f6
BLAKE2b-256 c3920d691b43723536472a2ee47e94089ae4f6a9337d86a3af85b00233709e41

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.9.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 442.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 01f16b6f3fa5d1a26c12f5da5de0032f1e12c919d876005b57492a8ec9a5c043
MD5 6906c330c1f6c8861e8b7d6ecebaab26
BLAKE2b-256 be5d246f5705991e6c76ed0917000afdc505065135c0262dbd2679b7392aae55

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.9.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3d69fabcd635783cd842e7d5ee4b77164314c5124b82df5a0c436ab3d698f8a9
MD5 7356455c250f6a36207e45c26f70eaa6
BLAKE2b-256 9ef0b3a33d0fef2eb6c7da30470bac153e8346c07bbe447e261f0275d6f64ee4

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.9.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 bbcd265b3c86176e5db4cbba7b4364d7333c214ee80e2d259c7085929934ca9d
MD5 99554f0b4eb56719b5b6209080296ca6
BLAKE2b-256 9370642d023b47510bf33ed7ffc9e4f043a6cab7c4f4f523561ed58b9ada3fae

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.9.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 8c3b08e90e45acbc469d1f456681643256e952bf84ec7714f58979baba0c8a1c
MD5 eebe4f013524b526f9b25a4ea7dcc833
BLAKE2b-256 68d1ba04b61beb02733d842c668af7f6b131f83a485ec25793fee047d9ed0b06

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.1-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 562.8 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 433737914b46c1ffa0c678eceae1c260dc6b7fb5b6cad4c725d3e3607c764b32
MD5 ff6dd03f79aabe543a2bd052cc88a31a
BLAKE2b-256 d38a771b19835d814e3f3e2f81ae6b60e95f099e2baecacc165c5565385bd175

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 663.7 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ea10bd8e0436801c3264f7084a5ea194f12ba9fe1ba898aa4a2107d276501292
MD5 03810f22cdba0490b65df4c54f0299ec
BLAKE2b-256 e222330dd7a40cb2c015abd26947c64ffcd8e1e93939cc5f98fb755b011bf19f

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-1.9.1-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 8401c41e219ae36ca7a88762776a6270511650d4cc70d024ae61561e96d67e47
MD5 5b8ffbdb60669d5cb0b1f691a3474f05
BLAKE2b-256 1024b2289f3b3f8eb318ae9f7f7e741ccd3dc8b6b6addfc2a1296a2cefc9aced

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 551.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8e872763dc0367d7544aa585d2e8b27af233323b8a7cd2f9b78cafa05bae5018
MD5 4b2360dfd6fed334c0f4f1bcc0cd0cd0
BLAKE2b-256 ea5cfc9c97b7fccb291f58c7dd52c87e60d8545b4a0f8551d76605ed64751579

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.9.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 442.7 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 477ab1a3044bab89db45caabc562b158f68765ecaa638b73ba17e92f09dfa5ff
MD5 3fd0eabd69681637e0025a94f3678242
BLAKE2b-256 1eb34062bb90165048b62df0bb4395eb4c9576217076f38647e311d8701f2d0c

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.9.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6ebc0d3d15ed32f98f0052cf6e3e9c9b8010fb93c04fb74d2022e3c51ec540e2
MD5 fb8ef7a591c14f18ec76109d708cb0a7
BLAKE2b-256 3848fb4b45a7b6b6b76fb8e55bedd41cfaff86ad59b9a2538344e13cfd07da6f

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.9.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ec67d79af5a2d7b0cf67b570a5579710e461cadda4120478e813b63491f394dd
MD5 ddf036f1df300e08b3f3a753c9f19a90
BLAKE2b-256 4a48a5187643d712ce65c06042fe083f6b41de6c33790671485a413a8ce5ba9b

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.9.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 31474074a99f72289ac325fbd77983e7d355d48860bfe7a4f6f6396fdb24410a
MD5 4366b9a8443e9e031adee9c62ff2476e
BLAKE2b-256 37658214ad9df11fd612817b5584783e7d0782f0572b03fd61d699478a1a355d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.1-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 562.7 kB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3f014a0f5f8159a94c6ee884fedd1c30e07fb866a5d76ff2c18091bc6363b76f
MD5 0259ff2f37831c4e271d816684006c73
BLAKE2b-256 be17553b74fdf5cab69eebd7da89ef930742f09a60212c41e42ae0f897c9da31

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 663.5 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cb92bf7fc911b787055a88d9295ca3b4fe8576e3b59271f070f1b1b181eb087d
MD5 1522848b9efea43972c141d702262cc1
BLAKE2b-256 2c7f72c65b2f46d1a4172b41b3b4112312809f466e445ea44aec0155a6eb1c74

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-1.9.1-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.1-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 1d98a3187040dca855e02179a35c137f72ef83ce243783d44ea59efa86b94b3a
MD5 e76952545960bb87264092710bce52a5
BLAKE2b-256 9fc0404f6108336a35aa575d8d2f1925baadfdea7373d01b351b3ad8c654f579

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 552.5 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 103193a01921b54fcdad6b01cfda3a68e00aeafca236b7ecd5b1b2c2e7e96337
MD5 997393fa343a9ef251505279b670d6bd
BLAKE2b-256 606350ff4dfebc275cd3b6c6ce8a39d38d3dc8aef182fcb69afc799438016dda

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.9.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 443.6 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 a5298f4ac1975edcbb15583eab659a44b33aebaf3bccf172e185cfea68771c08
MD5 de93d99a0d9644574cc7105d11f4cde2
BLAKE2b-256 655ae896d1f086b4583eeafac3faa0aee73546ce2cfdf4c874bd9deaa369a6b2

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.9.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e903d4702647465721e2d0431c95f04fd56a06577f06f41e2960c83fd63c1bad
MD5 a73b6b612def8933288aef0223ca52ca
BLAKE2b-256 40e0f07edecca2995b3862d01c0f350bdbc74429ae0512eb75063c841b5e1bcf

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.9.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f9439df09a782afd01b67005a3b110c70bbf9e1cf06d2ac9b293ce2d02d3c549
MD5 a3a4933e3a84fad34c2491ee51ecbf30
BLAKE2b-256 eeb3ff14acb8c61d16eb1f6ef72d6badaff49b08fa57ae9525423dee8dcaa57a

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.9.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 e5de44e719faea79e45322b037f0d4a141d750b80d2204fa68f43a42a24f0fbc
MD5 0af82852cfac8d1aa613862bae04b04a
BLAKE2b-256 1aa36431f49fb1e54b644efd1f793d3f6e0b4d6db447f33e7d4d95b9112d1cb1

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 664.8 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b06de314f426aebff8a44319016bbe2b22f7848c84e44224f80b0690b7b08b18
MD5 3af6ef56ba2afdfc2f7c53a7943d740f
BLAKE2b-256 2c9530bca441b980534f584d8cd38530616f5f90e71b2107772782cea4435098

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 545.3 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 fcc420cad46be7c9887110edf04cdee545f26dbf22650a443d89790fc35f7b88
MD5 60bf0c30031954bd9b26978cca3d15ac
BLAKE2b-256 e9fc9fe04f5dbac58dc7c8cfde48fb92d5012888cea95af0c3cc8438969da82f

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.9.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 437.3 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 36137f88f2b28115af506118e64e11c816611eab2434293af7fdacd1290ffb9d
MD5 b543b6b89720b5493c0eff4f7fa52d89
BLAKE2b-256 5bda54ae8ccf85991fc5d3e3e9649895aeec0382680da311898f6a7b5cd8676d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.9.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f6e5b8af63f9c05b64454460759ed84a715d581d598ec4484f4ec512f398e8b1
MD5 eb6d50244a15ef816c9073413fe8efef
BLAKE2b-256 3d0937deae64b5c94858cfd0805fd65f37fb0dd80211ac86e7de316bfac5d9c6

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.9.1-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d5187cd5cd6273e9fee07de493a42a2153134a4914df74cb1abb0744551c548a
MD5 0bd227cf3e420e4826b608f651db6bde
BLAKE2b-256 20c298b99cacacd185756fecf4e631cedf336b1c6164cd94097a93fded4d6278

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-1.9.1-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 eb0ea02295d9278bd2dcd2df4760b0f2887b6c3f2f374005ec5af320d8d3a37e
MD5 3a46352808a4a111429ee2618e13cb81
BLAKE2b-256 a6464c0475fc1d8937ea74e8645c3102ee62fbbcc430a1895162da027adf5cc5

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.1-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 655.5 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c6bfa4ad0158a093cd304f795ceefdc3861ae6942a61432b2a50858be6de88ca
MD5 a6af0acb4ea001ab7f61ae425392f1ee
BLAKE2b-256 928b94c0c1cc31981096fa66947526e2788da68726e063952d1988d6f6185405

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.1-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 538.8 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.1-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 b4cfdd0915ab4cec86c2ff6bab9f01b03454f3de0963c37f9f219df2ddf42b95
MD5 8e21956262baa968a4ec50fb15f3812a
BLAKE2b-256 e94d0fb702142949b81cb942861ef81e0c9fbea30b2ec17a37c3181f9edd42be

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp35-cp35m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.9.1-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 433.3 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.1-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 aa91609979e9d2700f0ff100df99b36e7d700b70169ee385d43d5de9e471ae97
MD5 f4a2c5d7c248f1bacb1616f11f6796e0
BLAKE2b-256 c2b78908900c0c7bef9886b494d384eb108b7fb7123ffd571e0529066dcb36a7

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.1-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 873.6 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.1-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f6a56a48be047637b1b0b2459a11cf7cd5aa7bbe16a439bd4f73b4af39e620e4
MD5 16e93761589a21dca283267fcd2e8da4
BLAKE2b-256 2f2528ef73afc51e1f584b8c95e3407f839d5d26dbd326cdaeb14f72e54b4674

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp35-cp35m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.9.1-cp35-cp35m-manylinux2010_i686.whl
  • Upload date:
  • Size: 967.1 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.1-cp35-cp35m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 d9faf62606c08a0a6992dd480c72b6a068733ae02688dc35f2e36ba0d44673f4
MD5 274e451350f091ff9ed919c4f0fc14d4
BLAKE2b-256 3a12cf0dacf1f775ada85d212dc054175a6e4312f70131e9dbbd386d56d6d63d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp27-cp27mu-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.1-cp27-cp27mu-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 776.8 kB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.1-cp27-cp27mu-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 67e61c2baa6bb1848c4a33752f1781124dcc90bf3f31b18b44db1ae4e4e26634
MD5 eb8c9f273f6e971bc00ade99784818f2
BLAKE2b-256 2cd44c28b921781a1b33f0140d0293357329b654fdd6589130ae84056898f337

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp27-cp27mu-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.9.1-cp27-cp27mu-manylinux2010_i686.whl
  • Upload date:
  • Size: 863.6 kB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.1-cp27-cp27mu-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 c83801a7c5209663aa120b815a4f2c39e95fe8e0b774ec58a1e0affd6a2fcfc6
MD5 96af3888c807288387f5275586499d0c
BLAKE2b-256 9fd3335a1f93dc6d75f8a8620280c68196e11629bb608c9990715d0b72f071c5

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.1-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 471.6 kB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.1-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 f171d9e66144b0647f9b998ef10bdd919a640e4b1357250c8ef6259deb5ffe0d
MD5 4456c61a1195578908fd07fc932f3937
BLAKE2b-256 4a6c16682bbe538f962185962f5c90a7cc07c9c25e3f7ef7748a7c5dab62bd5c

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp27-cp27m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.9.1-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 382.9 kB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.1-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 364795f617a99e1dbb55ac3947ab8366588b72531cb2d6152666287d20610706
MD5 74f5baaedc52e87eba0666b05dcb741c
BLAKE2b-256 d2ea637552ea93bccea12df1fdd98ce659a05cea02940bd26d38ac1fecf20aaf

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp27-cp27m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.1-cp27-cp27m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 777.5 kB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.1-cp27-cp27m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c2fafbbf97a4632822248f4201601b691e2eac5fdb30e5d7a96d07a6d058a7d4
MD5 a9347c4b9636c15514d8e5e95cecaaad
BLAKE2b-256 744ce5eeae3383057268d71852c8aad12ed508b7690d3bf04e92a38a3fda156e

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp27-cp27m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.9.1-cp27-cp27m-manylinux2010_i686.whl
  • Upload date:
  • Size: 861.4 kB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.1-cp27-cp27m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 c33541995b96ff40025c1456b8c74b7dd2ab9cbf91943fc35a7bb621f48940e2
MD5 f26ac55801c7c948167e6972ffbdbc67
BLAKE2b-256 b9b6b40fcd4205aed4d7a67ba788bf1fe65c62c0708443f5ad434eaddcda3c21

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.9.1-cp27-cp27m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.9.1-cp27-cp27m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 553.9 kB
  • Tags: CPython 2.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for rapidfuzz-1.9.1-cp27-cp27m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 68227a8b25291d6a2140aef049271ea30a77be5ef672a58e582a55a5cc1fce93
MD5 0d4642392e8fa88fd0e6aa5ba8a75772
BLAKE2b-256 d2156492e31df0e43d8ec6ca4de43174a4aec9d481f748f1f93a1c070d1ebeff

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page