Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++14 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparision between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparision I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

Benchmark extractOne

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

This version

2.0.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-2.0.0.tar.gz (155.9 kB view details)

Uploaded Source

Built Distributions

rapidfuzz-2.0.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.0.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.0.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.0-cp310-cp310-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-2.0.0-cp310-cp310-win32.whl (1.4 MB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-2.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (3.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-2.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.0-cp310-cp310-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-2.0.0-cp310-cp310-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-2.0.0-cp310-cp310-macosx_10_9_universal2.whl (3.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.0.0-cp39-cp39-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-2.0.0-cp39-cp39-win32.whl (1.4 MB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-2.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (3.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-2.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.0-cp39-cp39-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-2.0.0-cp39-cp39-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-2.0.0-cp39-cp39-macosx_10_9_universal2.whl (3.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.0.0-cp38-cp38-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-2.0.0-cp38-cp38-win32.whl (1.4 MB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-2.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (3.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-2.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.0-cp38-cp38-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-2.0.0-cp38-cp38-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-2.0.0-cp38-cp38-macosx_10_9_universal2.whl (3.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.0.0-cp37-cp37m-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-2.0.0-cp37-cp37m-win32.whl (1.4 MB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-2.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (3.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-2.0.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.0-cp37-cp37m-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-2.0.0-cp36-cp36m-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.6m Windows x86-64

rapidfuzz-2.0.0-cp36-cp36m-win32.whl (1.4 MB view details)

Uploaded CPython 3.6m Windows x86

rapidfuzz-2.0.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (2.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

rapidfuzz-2.0.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.0-cp36-cp36m-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-2.0.0.tar.gz.

File metadata

  • Download URL: rapidfuzz-2.0.0.tar.gz
  • Upload date:
  • Size: 155.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0.tar.gz
Algorithm Hash digest
SHA256 9fb561a4cfa175b37af5bad07fe79f35c24b7a9b8b5175fc1e37c639c5d3ed88
MD5 2d8ad5f593ec49a8b4978def5092b5f0
BLAKE2b-256 9237ae3b8dbe3a2d1359a53830cb7827734d806f2f80b72d4b730020e20b5970

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: PyPy, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8885bf846b5b72bf9e2b07dadaf28bcfb78fe2f89cd4a3d2ec6be89fb8dd7fcd
MD5 7631855de1244cc5236f605689da2628
BLAKE2b-256 e47a3e7510b4b4b8843e3a888a69d1e01c9a485d28ed4c541a02ce78655e33bf

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: PyPy, manylinux: glibc 2.17+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2a57e417839eb5fd53dcd91f317221a433e452dbf2b49ac23f69b5487116cc4c
MD5 9cc0c4244ca38653baaf38ac609bf71b
BLAKE2b-256 fe133785f1803c6ab22abc3cb96cb2a2eadc0becdbc8794f3b400e5877e98f2e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: PyPy, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6f7f80df613c598ca3685fa1bd445be7d0fc1ef34dfafbf4cf1209fe73dee899
MD5 a7201b7234fd6e581e28d81b7ac80fb1
BLAKE2b-256 02377a413faa4d9c3ab39cd81b1ba2db314e5316f545d80354def72dc63a3345

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: PyPy, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a5f304919f54aff5bc6d904e2ad03e64847d06555d0569a37eeff1dd9b776c7e
MD5 efdcc7af007422259b73ad50973bdf42
BLAKE2b-256 a37bb2573865806c7c6c80ae63a5027faf1bd07bf6333fb676e91745f1311b7f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: PyPy, manylinux: glibc 2.17+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f0bb2b3ba04cdece4e5fbbd7723ea538d0ece0e53fc56e2799006123d6c60add
MD5 0ffef30d741444947f7e573f51885447
BLAKE2b-256 ee0df17651ff73186b313e9e1f226ccc49ae58d386826c999c3dbe6bf201379c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: PyPy, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9219a1a853656c19ea93e05854d03472890ff692d979b86551dd930efd3db835
MD5 215f6657747f6f8020cbf8bc87ef35ec
BLAKE2b-256 dbbf185dbad2b57b781f36dc2a6b213b0a0b98f61d5d1192562db74c91a09653

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 262be393ed25f15400a8763651f77a7aedd36a045bdf4b05eceee0d03de36823
MD5 53551ffce3397044384206c1411227bb
BLAKE2b-256 73244e87a1c3a847ce607a201c2054058553e733b4910b190514b638f8194682

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 15256121e128890980dfe3f32da4f94f9a4697356c2a42bfd8aec2628e0891ef
MD5 69f96392604aa69870f9f9f1f16a6db3
BLAKE2b-256 251a7c4b5c863625cceb782415613be10f37cc0f59654b438b181f8faba53040

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 079cf7f6e48d48f3df9f4af3bfb99781ae6c1684daae9ddf62caf005f2a6bd5b
MD5 482f9ed9a1ddf1338b4427bbf36fddca
BLAKE2b-256 412616c755448a262b51edebd81ebbdff49b301403c95abceb2b75cb1bb35cf1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1eb23efe7e942e29bf0a4247e9cb7707026a0a3378c2b563554d1e9a9c0c384b
MD5 074a3762936f6209feadae1ce398df64
BLAKE2b-256 3bfe62174dc7d8acd2c577a351c73ef5a779fdd66ad50cebd4ade418c5705da3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 db2005964855670ad94f32444a2ada444a0e1be51c7d8192ba89f0ebd16ed35e
MD5 85c9dde5cbf47804e1c5f3f638a1d21c
BLAKE2b-256 52ec49b3c8d05481259e7b7d1d0d37780478818fcbe7e7b93dddf52963be06de

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 407446fe39983cde15d0dcde9d686c9d95cc1fac0ac7d98437bfdc9f11218713
MD5 16d75f8f69e6bf5ddd743739073b06fb
BLAKE2b-256 6c35a0db63b8b1279b700234ef0cd5d4652ad89e282afad131301a06f5126ad6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b3fea3408a12dbedf0162e82fbc5621dffc1f62d20acae4bb10bbb94fc5bca7f
MD5 af66ba5ebeef8daab3dd62ff02a1ae2b
BLAKE2b-256 2e1b749b4929713f20c9f013e60fa2fd9e9f0addc3bd0e314b89ee89acf1f00b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-cp310-cp310-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 7ce2ab6bb4f71c6d8c299a2a913cb447fdd5161a18e144906643992e35fa2213
MD5 5d01880e2636e4eb68267e372c8c61bb
BLAKE2b-256 25eecdc1beef8bc5c7946341f387ebe8771efec625f8f75a33c29e71faee63a5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 69b689e83945fd9d890967a7a192e3c56e6bdbf9b482787144fa4c7a0c07e110
MD5 d54e438acea8db8a04735fed618b1322
BLAKE2b-256 8bf9f5139594f53d78c564b12354970d95c456aa552a8329ea2f7afd2d1c471b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 c490552cf3e0c0ed4588a6436f6980e124f28e698ef850448215a806a97e9f2b
MD5 4c4456773798270e94facc51573d1cbf
BLAKE2b-256 fd7ef8e7ee88b7ae3e1c953bb2d997d344b48028387c9f266b902c7e6076073e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 33c13d619f8d4bb2fc74da5246e085405158e05ecc4ed3ea89b77cc66ce6bbd4
MD5 e7815922b3101ad45ca943bde1644e85
BLAKE2b-256 2d4bb412addb14f78520ea99d7eb4585ec3b644c5b9ea74db4d5dd7c458e31f3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 02890d338616f924004d590fafb4d928e8cee552043c4fb324510b8e1a89309e
MD5 d9c087f4fee27d0e59b62031d43c6fee
BLAKE2b-256 0cd11da2500ee4232079a73f44528cc7df0c74a9cd8cf7d3822a8a36e3311a8b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5c072ee87c5b6a289b7c3637c0300fb16b92eeb4cc451813f9c4f3529edfad22
MD5 8765d929b7816af70524d855bdc8d72e
BLAKE2b-256 b89e5c025ebde330c6adc20345301697269e4c9d0fc7267f3bd85928f55befef

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 aba929d9fb9257be6239301c53db128b710dd17ef5931d8aa7db60b931e9b5ae
MD5 28fd364eb2f886e06ecd7312cd474740
BLAKE2b-256 9e64ecef2930c8e0147e1bbabef28c87c7d823eb8e767c76a5f832cf408740f8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 73e38802e4fe0922c652f731c4c4e2b263dd05a983a3ea986cbde9444db3ebe0
MD5 c75437ebb660a4f5344c23ce4c71e14f
BLAKE2b-256 d3d633d4b93c17243366e1e4be58a400d84531de7effa9d5c5fe832dd84c86eb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 aa3ad4504147de0fed57e92fa9ee4a797e4e234157f75413be9f3108454606cf
MD5 9a93e12da96f8f0eb0e4ca19cfe32287
BLAKE2b-256 77151ba80af0748338339891d3a7d8c5fa86c7d2542f656c838fdd65c2efcdad

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 748a7f2d03d0c46ab6549aa42b2acd07fe1b3489f2c048a121c92832c34cc851
MD5 61feefb82b2cdf5a22cb800c2b71b160
BLAKE2b-256 b3fec90ecd639cea8984d7915aa35df4575ac8cd6ff648ef05458918db663306

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 1b165acdc54d6f1216c4d328d3bbc5a8526807cc05fd845eb831858217b7d66b
MD5 3d82772487c9fceb3fb396c13f651715
BLAKE2b-256 923cff54a4f4a9ba369be655ae39b7115df11db81e406bdb4751e2c0cf5cab29

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0a6591944704db53f4cd870dcb34845e794b0c3f62b4c827f954b6b02e4621ab
MD5 27016613a2af6c2a58d8b1bcd4f7163e
BLAKE2b-256 5e0ec5c832e334468402419d36b3fdc47a63a1afdc3b2ddab6bc277204dc0fa5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1aa78c8618eb58174e769a2be4cc75a4ef52155d8264e310ef22653145cc2362
MD5 5fbce255e08b0a6fcce877df7b7a6085
BLAKE2b-256 2eef3f9a36e2fe970b698cbfd44a0ff63c8eeda7fee5a319477e01bc26e79d81

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 604d02755573a0cef3a0c63c34ceca0b8f6ee408a43a67afb32f40ed4d352d8e
MD5 fb3baf10f5375e90e0c04b382bfc9662
BLAKE2b-256 11f8e1621a6e80cd09e6c59340f40e7f39061cc348ef8ee904d6117784b8c38e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8908d251f1c8728e885f82b28c15287eb324cff06d9d2dffd4e6eda72e021624
MD5 bba6e1a7352c7ff6d06609af80b480b4
BLAKE2b-256 2a972432b7e1f5206770b8a0d5098f5b9bdc3da5e29d16e05e1880fe80adf74f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4085ba868c310427f8b4840969576afdf6d3a1d59ec49d893f0d8cf8d33dc7f1
MD5 60590b9ccebf8885a0fef634180d023c
BLAKE2b-256 2341031dd1d59c1dd65fd8d71db4d539b8d3015c4b106fddec9b15dd41a9d376

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 4760dbe48f43c6c4b8ac305c532e3425adab3d281cf2a0a4999420a1a8390229
MD5 0f1612b420243ea2b7b14907575e5b54
BLAKE2b-256 e79bc1f00e6a6ec539d530976614e2c4e842370b1fd80cd3a79c24462f9da14c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 262e4fdf6c0978549ad4a0caf93147e902693f2d5ec7acd8352d06fdb7ed940c
MD5 133eb6ee0350999ba2d3af2ab8723871
BLAKE2b-256 4b51b0308fe380fdadcf3c2f0ed436872c7f4a6bb40198e46143d16d7ed28966

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 eb382a1c59b6cd49f2a3f7986777fadb8e0f93199c6fd4f6cfac512f11f197ba
MD5 e473dcafa34f3f90f04f619bc41eccf4
BLAKE2b-256 d8aeafa8001e0c32f19a1a9f0e6dd4c8ffc6b6effd349bb063c6de87c3c2a364

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e42ecc84f7f975a951131b295ab06f7393e7d4a897f985e46e18b6ec30c5bb7d
MD5 3599e21e3d687cd8ea14514f1e62e4df
BLAKE2b-256 09e829b79e77c7b4b3e18cc36413513adae848040e83a97828d5f88e78cae4bd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7dd7d669e49467676024b4aa65058b0ff3f0a01e1644cb22dbd1cf400f36628f
MD5 558658002d546ad8e7d41651ad31b1b3
BLAKE2b-256 7d7f3a6ed343322def2afa190f899df98694ce88d613a97b6c47be82e029b003

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 26b5afc3efdcc342a37ee56494b054f1bdcbbd07535b471ad7c23daa7e3f9ccb
MD5 03d0bb523d236a765d155540cdef1b17
BLAKE2b-256 7f258104f97addb8c5598a64298fd4439fcbec420db936c71cddc07074bc07d2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 176d8b0ec8dc7e828ff5cd882a8e3b96a6d57c894a9759c0863680073dde00d9
MD5 ef4b28357a70e12adb0c8173f2d6eca1
BLAKE2b-256 2bb80de27505513b218b24ffa8e4284ec53db90a8d8d7f4b7d3c5c832896d73f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 ace1234a45065bf0de0a5a8af413ed13b8f6eeb480fae3ae625766b03001ca7c
MD5 d8db154b03552c0358847a3a7569de21
BLAKE2b-256 0cf41ab84ba56acf9b9715bca004e9a132a3e8b59caf5433d5f6595ae7d3c077

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 b2c47ae3a464274672df8d69e8f435682a5dd636f93ebe2b70df9f82322d8023
MD5 b58740f1e2d4ba81ed40142193ca53bf
BLAKE2b-256 d660f6a793970ed7503a9e5fbae785556078cdb31b89e6ffa4422d7614126ca1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a91b44e4c75c3102685f70ea1f3060694d42d48a1c9e28f7fcfed262ac1e2203
MD5 ce1a9ca70036a4aee8bdab8ad723ba62
BLAKE2b-256 8a4751f4aa84e28dd8c614b9612e585708ccd9911c446f118e4ff287fdda9db4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.17+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3d9c3605e030171441af354f6215dc862da4cbd4aaaa7d534f7c86a764a4b6d3
MD5 d8ef866764220431b6c4927f927e49f1
BLAKE2b-256 5879b3e58c5e8c05e6e08aabfde47051e5b07485ef51b76841b8fea46d6d376a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bec42915445df15969ea57eaa105f022a0a236a79f54c008bf0fa7dec20d5ef7
MD5 c1b9d41b700945f0a2f8037c45d7d9e7
BLAKE2b-256 3a5395c8869b022034cc71d5c075959d75da4d668ad3c3886fd1f9a9ec448a84

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7fa80d88bb0dddbb51a1e581ad5fc7cc82ae42f6ff905f3de1a94e92e9936477
MD5 5df0239ad91d401e641fb00db844a77f
BLAKE2b-256 97ee847aaa0e2749a6ed15cbfab1c8f0f69df6d8fc2d0f2568adfb73d71f5ea3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page