Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++14 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparision between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparision I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

Benchmark extractOne

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-2.0.1.tar.gz (155.9 kB view details)

Uploaded Source

Built Distributions

rapidfuzz-2.0.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.0.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.0.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.1-cp310-cp310-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-2.0.1-cp310-cp310-win32.whl (1.4 MB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-2.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (3.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-2.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.1-cp310-cp310-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-2.0.1-cp310-cp310-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-2.0.1-cp310-cp310-macosx_10_9_universal2.whl (3.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.0.1-cp39-cp39-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-2.0.1-cp39-cp39-win32.whl (1.4 MB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-2.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (3.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-2.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.1-cp39-cp39-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-2.0.1-cp39-cp39-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-2.0.1-cp39-cp39-macosx_10_9_universal2.whl (3.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.0.1-cp38-cp38-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-2.0.1-cp38-cp38-win32.whl (1.4 MB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-2.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (3.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-2.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.1-cp38-cp38-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-2.0.1-cp38-cp38-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-2.0.1-cp38-cp38-macosx_10_9_universal2.whl (3.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.0.1-cp37-cp37m-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-2.0.1-cp37-cp37m-win32.whl (1.4 MB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-2.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (3.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-2.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.1-cp37-cp37m-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-2.0.1-cp36-cp36m-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.6m Windows x86-64

rapidfuzz-2.0.1-cp36-cp36m-win32.whl (1.4 MB view details)

Uploaded CPython 3.6m Windows x86

rapidfuzz-2.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (2.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

rapidfuzz-2.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.1-cp36-cp36m-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-2.0.1.tar.gz.

File metadata

  • Download URL: rapidfuzz-2.0.1.tar.gz
  • Upload date:
  • Size: 155.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1.tar.gz
Algorithm Hash digest
SHA256 8b817154aff4b56dfb4854d8a535f41db0c3f99b134506bc9e7196e3459b2f3e
MD5 2a1dfd594aee339f61620806095ee1cf
BLAKE2b-256 3a939465930e5338f1a7889095d1fad14d1a9bf83026d6cf53b9033261a8a441

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: PyPy, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fdd9b7e38e2aaf20e6281325bcf3e6086609455108da09edb0d8c37c669349ee
MD5 f6c18a3207cbac74e8bba4425cd4358b
BLAKE2b-256 3caa27d9ea87d0c573883d5ba3ee91fe364c62b8930e6f1846af4988a16d5b7c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: PyPy, manylinux: glibc 2.17+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 13eb3984b29a241578e480b16edc8200aacd5e154028bef5b2a35ac8c701a90f
MD5 f09754dfa3359bbcded4e78b2bb91e90
BLAKE2b-256 39eadd53a14902312547898f50a8d46a53c5081bbdeee5af5d6150ff9e3df837

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: PyPy, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2ca3c435311389d057dcf8a7ad405a0190ddccb4933e8668197792084b38f9b2
MD5 1ca5201123aeb794413bfb6bcf8e3376
BLAKE2b-256 9c70a6b344d9511083b1b0788859e6dc5116606137c23cb8d60f03da2aa0f9ed

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: PyPy, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 32baaa0e0a8c3eb192daf748d3896cb89836613c864fd160ce3bc0821a4d4df0
MD5 7938c577037fbca6292d05048be298ec
BLAKE2b-256 e6eb7e728105033983e65d027318f5e398f3957592311046b46fa81bfedfa5e3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: PyPy, manylinux: glibc 2.17+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f2c420b96854b823f06fc2bfa58d86ecb75ed92fea6172bcdad6f2b0992b148b
MD5 92b63111db4924d692e4a0578ecc6bca
BLAKE2b-256 c0852ca04ba32f6c1cc50f01493055b5a0da4abe2a6c7dda19469c950a5333f6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: PyPy, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1ed364172cdd5a2f66d9d1cb2f66fb77930d46769af1a8213a7005df90895f1a
MD5 0f5d651711c1a185dd511b5bcb29bfbd
BLAKE2b-256 e8c64bda37f80b94da7310b3e5d07e2d14c342f8091f3bb4e4f5d9d3fdbcfb93

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7ef9e3f21985bc8fe84fbff22df71716845bfe161fd2614ef508bb0b62b1bd06
MD5 afc4621132d321cfa6a22739e3d2d2d0
BLAKE2b-256 467aca4caabbf04ffaf2c2447524b2e9c4eddf734e0ef5068a6e053a32b136fc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 dac800ffcdc1c2af0b6430b2d5eee280edc359a094f5baf0d3420a9816303078
MD5 7dff3525498423641e5550155453e3f9
BLAKE2b-256 b0f107447d8075c917e4c42db4a3ae7381ce1dcc23feaac29eab25cbea08e6ae

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 46ac99f6cd8baeb694017918f957c3043371d67dc3d1eb07f707f647e4353b4b
MD5 09d5dfa92613a89350af5b36527468a1
BLAKE2b-256 0f7158b9c11b98bf67a777b260ca7f6d8678addfa4624b8b193fb91bfb7fd6db

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 56f67ddbae3d4ea3bd190bf8ba8911d8b162a558f75c276d5dfc9633371f3dbe
MD5 a9d6e1033edfe2f6bdc85a22476854c5
BLAKE2b-256 cced3317954a4ce5e46c0d3039462c4707cde7361e39843cdbf4a30478e7ccf1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 240f118a3cd4777d7003351629811192f42421a749f2cb161f6fa8180341552f
MD5 718726762e01b7c8f0c68525c7b981eb
BLAKE2b-256 dfe5a0090107ead1bcc07175e5ff9d1e49aa9819d3f108fb0a21fa59d1626d1e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 68fb448677d7552d652752458367647e900ddfc9cf5b229b9a5fdbb01c80ef7c
MD5 2e4c3279f3802535246833a54431845d
BLAKE2b-256 f7f10bc8f9e80ebabeb49e4238cb95c350d398928698efefc4d96bb5f57dd9d1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 64b9fd6911812012d129e20fe043c93e0440006da02bb398dc9c1ed3d90d6565
MD5 72e4c85210cd215669314317b8e266b5
BLAKE2b-256 9043992e948b73fe7a2d2b8ad5759989ab7a6d2445f69f4cef9a6f4279ab8148

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-cp310-cp310-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 1f540897bd8330babfb7e0048ab77d833629e3c07d60cb32cf16dd27c65b8f31
MD5 711eb3493c23e8aa576f0a33408b9d12
BLAKE2b-256 d84d5c4ed07517bd9745fccf7400a639db529918c879e51d8c235aa843802087

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7eb15df73f932340953532dafa5bfb0a0f79bbf18cc9984fe3eda83b71bd4f75
MD5 dda9e32fb87833579ce3aa833f7b117c
BLAKE2b-256 86ef7da76d85ccbed8ccb75ea1b6d600cc4e1b014906ba8c6dae3e626713b5fe

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 b4dbc2877a163861d30f3ef397819785faadc1bde82f4812e1ae05acf14c350a
MD5 769d5b035272cb219f1c7a7c833ed3d5
BLAKE2b-256 fa3b4aa5ceac3529dbf33f6184c74a8ceae9f3cb0b9f218ae0882ab722819307

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cda882a5d5bdb08b55a66db869e7d442d6d5d1a2196a9e2cf8f92144158d960d
MD5 181492596fa7e6c4051b984ef4392923
BLAKE2b-256 17cc40c17dc7f6f3d7f17b0a8722b76a9c4f1daa021f9685898d9b9d4f625c90

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6e02dfe0a3d4be4b06e65ab8b7384bacb985e0d131bafa48d385506e192ea1f1
MD5 d724bf1eb0dfbf6fdb0efb63b94f840f
BLAKE2b-256 5ce3a4b13a6e81f295dd9439b4b55d82241d96e47af94aafd563b0fd8aab0fa2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9b619463b23d75e9ebc8e779ca96f654bc85da02399e1815610e7d1de1cc0685
MD5 7d98aa5ca530a79116899031732305ee
BLAKE2b-256 c9ea66220f3c9a8dde7de1c33d4a26539a83020dbc5519ced9b3f376aa9e403b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9a166e236bb1744ed75c330c67c3fe500293fd980c6b92b4d86fa8ec162b8192
MD5 920e6d5ac1e2ababfe0035a3b90771f2
BLAKE2b-256 b1feddf61c8fe66bbc130f6b6b2d831b2064bf1f8f3799eca1260e0c73dba693

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fd48685325af24fa5c5707ebeb0f76e25d75ec1283dee2dabf334e0e4fd336ad
MD5 1391ce9ee7f865c9aa204ea35ae25579
BLAKE2b-256 97aabbf0cd4568fc43ad3970c2f2c3ebe236dc916a35aa9436239f2af0fa0967

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 fd7816e7833eeee68196c038fd530e5631f36588648c33b396f3786bcd04bee0
MD5 c137fe7edbf7e98e40d8b9639e69961c
BLAKE2b-256 476c15608749ff71deb0a1fab15b09362166e1e753656cb5b5b79def58db9c50

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5a12a604d7ba60e7fc00a04216335ce0e35b96d4df5aece653c3c5897c5954a6
MD5 3fef1fd3022f2391c31da4e43d389f8a
BLAKE2b-256 62d3084d4bb9f5bd32c8ea9a7024f22fc3c8a32f5037ff251cb57a0cf439e6e8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 325153cf3d342f3e67cc92a4cbeb34de1e5e5b3bc2c842616e34023c9e238264
MD5 a90629a9307b2b791c422dd16fbf3e62
BLAKE2b-256 5c2ce09d5a64d53b3a6ce3559353010ee714e035487edee86632978e3a59fc4a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bf9f51b23a153bc55649a0fd0f65244aaab748001be5f67b203e421a3b839c81
MD5 e16d715483aaab7c42df2967f174b976
BLAKE2b-256 8a4e5a94a65348cc142fd9d892d70fcee6ad7776e61ef02c5e78b562c527a4f0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 500353ee6a4b1a67c921e65a95bbf27194e3dcb37bd9f20bba50dd92fe291368
MD5 1d584d40c1fbafe0fc94976f84f135fe
BLAKE2b-256 989509081f00ccc9c9ffa7b09686528ebc7f682970bebe8efeca7ea5249b105c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3c01733baa9af49fae5cb03965c9ece4cf408b2c2983be2c23ad05b3605dff1e
MD5 bc182a651d22fc6e6e9bb2505c5af41d
BLAKE2b-256 4ea5a728ecf82037221b5a589ab3b697b9272727c779a9e906b1a7365bbc43a7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dcd8df4eebf10922e827fc45df7db01850e61785c5359f907d2b44f3b9704e37
MD5 d0fa8c6da04624c5946274602f69718f
BLAKE2b-256 ee26c9a2cde119783c59a677d4f94dd59a95b37c97c350fcb93bd205337e6de0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 baf884a4d26f874574541e46b3b4a13ff5c2739d8c98730c8857ffb279d13c31
MD5 16a4886236aa950c8ab186b598a10709
BLAKE2b-256 ff0c1ec6ccf02f8c0f54cd3067377693f48d536c973e8a39e858fbf485ad3687

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 ca82578562c933ec7ad443ef5f9438cddae16009318457320d15cea307466a32
MD5 1231b4324dc91edd57ce89b4f4065b31
BLAKE2b-256 81f75686b44f5e7f554b2e0949d0234dad4ca5dbf9091f999be5710383d30acd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 aa934a2cebf6e67508cadedc93f000c0a8c84948a9db40a0487b91e304cc5d05
MD5 eb7e36e203f96c4bb0e04cea5e14f3c6
BLAKE2b-256 e655a6cdac1c0050d4f0c9c222f4a37e2e1c47b3dc19883c837a268ffe6dea2c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 c6410a6895f2a1c8a60d4006de70f7efdd091f18279339bb6713e8b96c684088
MD5 fdee184900e13cf7b0c9442a939cfa05
BLAKE2b-256 57954ad31bd5fbe43bba698d3e409cac3feb8eac6da15e071e5fb1abee3453ae

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a41edc85a136460df19527662363a077f1e9cde9442aa21111b1d887d802ee51
MD5 79015c7837d6f3984efa8a6c5f470607
BLAKE2b-256 536f3ae435a8b5ea505f11963384398bb03a9e0501c54604eb396fb7e85f07ac

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cce3144bd2f1197c3a6e5c5731c284544a8cd33ad4b85f95fd4d7fa1d61f9426
MD5 f0ac7ef62bd153875e44a7f115295cf8
BLAKE2b-256 80a4729ef6f5ffd6f42b503c99b108eb446f91c6b33fc132f58a18705a0b085d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 04554ef5ba82d20ac910a813b0fa183160ce3c5131d2b447864146021bf64566
MD5 36df32d0e98bb930333f31b14d759910
BLAKE2b-256 f0c6676b7a79773c56ec45ca91f8d3b003d3411b188144f0fb3ea55a77529844

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e1374c234bc1b2602f9f8bcdb79a9fb0d24f9ae66ad8a5619eceabd344a86898
MD5 0f2d55c27b9869fa77becf68310b7201
BLAKE2b-256 c345d0a2a148ac8ec99e1356bd44ed60741f59e27132618b744f71430a5ed571

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 d1771edf2dc27fe2b35a27960da3184bf4bb28174bd56342e49d98cff8d8c094
MD5 571919a1150d43ed47b7be36c4cf1f63
BLAKE2b-256 eda189e37b3a619ef17924af11e9c3dafcdcfd2435f37411adef3e99af2d953d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 96c112b00214ef3c9ec899b450ea0a848f6289aa4c2fa6c54e42d344bf063abb
MD5 6b77203162f2276b28a7579776276c92
BLAKE2b-256 cd59fd5bea73b202513c42da2b1fc97c12b462dcb7598d8daf2ad050a0e90604

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c03f9162e16653a49739be047ea1990730557daa5e71ef795204980881f49a9a
MD5 39de543856ac3a0e39f5eb5fa3e85aab
BLAKE2b-256 a6200a9ed7d0ec7b84798327325ba5d64d326c1289000f38adfbb92865f413a0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.17+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cacd38a3300f1c4c8327bbb80bfa1439d30661043d1d2b29d0d695ee83df351a
MD5 c5ad81822414292c10baef0f6ed8a2d6
BLAKE2b-256 38b0745b63d20ee3e4cb74462fc31e334cd28b3ff2432e2d9ea082426876f9bd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0b90a41d98d0d4545ae241ea90205642f5f51e052aae2bcaa47720ae7a74b8ae
MD5 f7daa04fffcd81d3b5a8dc6a43320e5d
BLAKE2b-256 ac79a3d9b8364a4aa270dfcc523c2433d457c41f42ee1c41298a29edb96f8a05

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.1-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e6f7b4c036210012559649f71606e86ea33c4c4b8cebd6c6487833fdc656966c
MD5 76491d8a2757b9bb198b5b800f5e6e2c
BLAKE2b-256 16ca2108020b97a542f78da862f8e00d613c7a7c772364a6023e1385481b5d6f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page