Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++14 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparision between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparision I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

Benchmark extractOne

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-2.0.10.tar.gz (904.2 kB view details)

Uploaded Source

Built Distributions

rapidfuzz-2.0.10-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.10-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.0.10-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.10-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.10-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.0.10-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.10-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.10-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.0.10-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.10-cp310-cp310-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-2.0.10-cp310-cp310-win32.whl (1.0 MB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-2.0.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.10-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-2.0.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.10-cp310-cp310-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-2.0.10-cp310-cp310-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-2.0.10-cp310-cp310-macosx_10_9_universal2.whl (2.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.0.10-cp39-cp39-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-2.0.10-cp39-cp39-win32.whl (1.0 MB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-2.0.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.10-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-2.0.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.10-cp39-cp39-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-2.0.10-cp39-cp39-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-2.0.10-cp39-cp39-macosx_10_9_universal2.whl (2.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.0.10-cp38-cp38-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-2.0.10-cp38-cp38-win32.whl (1.0 MB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-2.0.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.10-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-2.0.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.10-cp38-cp38-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-2.0.10-cp38-cp38-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-2.0.10-cp38-cp38-macosx_10_9_universal2.whl (2.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.0.10-cp37-cp37m-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-2.0.10-cp37-cp37m-win32.whl (1.0 MB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-2.0.10-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.10-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-2.0.10-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.10-cp37-cp37m-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-2.0.10-cp36-cp36m-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.6m Windows x86-64

rapidfuzz-2.0.10-cp36-cp36m-win32.whl (998.4 kB view details)

Uploaded CPython 3.6m Windows x86

rapidfuzz-2.0.10-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.10-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (2.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

rapidfuzz-2.0.10-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.10-cp36-cp36m-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-2.0.10.tar.gz.

File metadata

  • Download URL: rapidfuzz-2.0.10.tar.gz
  • Upload date:
  • Size: 904.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for rapidfuzz-2.0.10.tar.gz
Algorithm Hash digest
SHA256 6c8fe3051dce837c4deb080b438b38efc8268e1c14b9e6a64b173b35f4e32773
MD5 5abf0aff1f00d9b705706803068ab777
BLAKE2b-256 b5d4807560b462c0d80617746a91a95404a800174fb1fc1ded7882ace328dc32

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.10-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3c00164fc33f2b64cb7cc33f1fb714924e1eaecd0ce92b8f68b2891072910082
MD5 9f33f384d55629c1bbce72f484887e38
BLAKE2b-256 832fe18ebd008bc27c7cbf6e4fd3db142b1372a06154d717dc3f8fdbb533f51b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.10-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4fea35a888cdd8f2db5d7ebb02436ac4892ce1eaa33e2b090b29bdead4cc41f6
MD5 0c9c47c659fc7c723b071d7ee39c693e
BLAKE2b-256 96119df4e14aa8b23f1013c900082217a184f9e0ac3a8c4becb3785694aea597

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.10-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 628cfa67d48d2fcc9a97ed2612ae166395862fb2aea3a810d5d341c3d3490f29
MD5 d4d03fae3280e72620ba5ca2ccf3ef0b
BLAKE2b-256 01cf42c5ef49ec05a26f8ebd01c5a295b2ed2568f369d1538254daa8dc312d01

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.10-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2402b91631c5c8e48055a8551692b313f6422fece403e2a8020ecbcafef140a7
MD5 afa658d312aa97dd4e51860559846591
BLAKE2b-256 9425c076d6d5b8450d5ec6eb1d482cecb3487f87045386529c3912c2c0e4feff

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.10-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ba5d72407122e7c4131aaf8ddb37cd05496d80418796a57bf90db976d511a74c
MD5 66ffa785f536d294db7bed0211d8b0df
BLAKE2b-256 6eedfc46aea7f65a778d5318c5b7a70a7f9962ceefce785f1c5f84f43ad38a87

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.10-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5ac7864b52714ef183d37c9fe50da806ad81bdb47f72bbe3e7c629932af62c66
MD5 aa76b2264e9c5cd08a20929a6e91a0b1
BLAKE2b-256 fc9d8689a4fe401d1cac01305b6e33db73f978d431433116853e1cdc388ab880

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.10-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 84a49b857c1d521691d64bbe085cc31f7b397853901acf0eb06b799f570dfbd3
MD5 f0a92bb84381e8d0852335fe1e920d9f
BLAKE2b-256 296ed16ccd04e8bde0899883382bac088bd8e9829dd4ef6c322b4c17aefedcca

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.10-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 16fbc2686eb9310ebcd77eb819743b541cd1dd2b83f555e0eaf356615452eb89
MD5 7238fba2da496c601cce0796dce25244
BLAKE2b-256 5200adc1ee1cd5a82edf4ffb85da9bafba54f20a2d90f5488d1959bac9a69e0d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.10-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 148e931c28aa09532c99db2f30f01a88eed5a065c9f9ed119c5b915994582054
MD5 c70e56a55881285ee2cc66bbbf8a35f8
BLAKE2b-256 ff05d97ce4229c711b1f3c3523d5e80e0fffc17f519e27c3486564fecb781917

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.10-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 270194fc82f055fc4fb63ce0550d9bb384540aef699218df330a30c24ce7546f
MD5 063d381a15b0c524b4d135e9cfe3696d
BLAKE2b-256 5c1989ad657bfc1919648f25ddabd0cb7a5181832c8d7792e6dee1c861075551

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.0.10-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for rapidfuzz-2.0.10-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 db88723b83436b7188ad3f02f53d67ff78fbdb0e6a0b129cd7f51d18ebf52da6
MD5 7160467dc38f61bee0ef4f64639de3d1
BLAKE2b-256 166bc64810285acf8d0d62a6c0e9104c76418ba9cbbd964769a24aff8a3906e7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3f8d5c2d593557da37632bc5c84b05cff69b14bb8255210fa27183e35b848542
MD5 31845f803a1570d5df34e89f70270af0
BLAKE2b-256 6a951790802506b994e8bc18715be1af268c6e0e23bdc3137d41ddb910503573

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.10-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bbbb8e0abd7944254f62e510ed13fa9b5189c11c8247a77d5c7dc12cd58c20f1
MD5 1edd1140746f438796cb6e0f4280cd35
BLAKE2b-256 68c3b828542b4f1cc102bc5b238d213ab4606b88ab6680bbee786f905a5d6dff

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b3421c6b1dd36a4a5f9e4c323b9e3116b178430ab769c61bce77e7aa85c53575
MD5 d9b98e309993df14d08c4c41f7dea4a7
BLAKE2b-256 afba24728c1bf015f25684784361b45cf0fa3c0275100821e3e4e780eda5e12f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.10-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c6738210e4dec381f41513e41eaf3a87124188dfab836459c6b392b121244a0f
MD5 b8540f9eb33e1b3139360d4743777dec
BLAKE2b-256 e7bc5e76fe50f840f41d383fb616b6f583afb9a42a1e4acdef35ee333454ddf1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.10-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 263b7b9b7f9f68a255f2dc37c28c2213ae03903f5650dbdd4a0e1b44609ed222
MD5 3f8b9d2bd954c0b3d823c6b6dab527df
BLAKE2b-256 3a60a9361899a1c9609ab0bef346c9227255f2944f4e87221974323c074150bc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.10-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d7297eeeb8b50aeeef81167c3cb34994adcf86f8d6bf0c9ea06fb566540c878d
MD5 21a87e86c586cc21aec523086a489615
BLAKE2b-256 955d1bbaba882c6c61125e072ef40e8dfb697b0dd4a8ede03da8c3190257a9d3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.10-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 be743ec34a7f88255c6735780b35578c03a6192ee2f9b325493ed736b0ab2cf3
MD5 f35a9cea2175e8311c038ac5d5b814b5
BLAKE2b-256 58a5d646873a7f680533a1d93ea313ffc32d6c7edccb5d7435c253d41facc68c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.0.10-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for rapidfuzz-2.0.10-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 a6fd46fe173a5bf7ec85819a1d2bb343303bd5b28a80671ce886b97f3c669ea9
MD5 60ef1b9c4003613d5c70a7bf4827e836
BLAKE2b-256 31b6fd8a28d75aa08ff2006ff12f3fef6d62c0cc88be0287ac1c0d63a9b6157c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ad7aa0510c2291751d3bd90b38cf11e9c60cda41766927a25b169698fc2c2689
MD5 2cec9721b3f40f7b85951ff3eefd002a
BLAKE2b-256 db3e3b3b78d3442b5daebf6ce7a65d1de95803a07e8a5f3992aa83d214aafc01

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.10-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 13e584cd7879e8528913a30d69d83cf88198287a7557435361f31f794a349878
MD5 21d429f1e0b6f4485f322ea794b91485
BLAKE2b-256 a6e2394b8b8af1d900f3168b405f4d7fb1393e59c40958c8c0532d619bbcb635

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8495ec199402ffa5b6b8c724675e1c0fb7e5a6617ea3c90323bb56449df6b36d
MD5 7f849877a7f8099b113a61bee672c0e6
BLAKE2b-256 9535a3f3e23fd1e11f085dc8268db0381388161892f2853688a438593d65b750

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.10-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1a5d9bf9d03bc64720dc0ad4a10b8c1fb0326bc6883d3411181a519a3ccdf779
MD5 a9f589cf79c4592b6230a51369c85936
BLAKE2b-256 d3dcbd09104e7a23ee129f50c42d69dd2288d00155007c330ac971b7c32ab0ae

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.10-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c3e7e5489fe1915950a663c8f6c572aa390765db96a171f36215af2d4bb19a6b
MD5 20b2a3bdd6a59d30417f0b3d1af8be7f
BLAKE2b-256 64d8308bc4a8a9cafad20183346e1394e586ac7f335fa76282a6533b13d828ff

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.10-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 9f0daa98b6f9d69811d64cb2277209c56ba7b68e5f50d6903795a2b0a2a4d9c2
MD5 8c188557fca35b432ddec26625bb75ed
BLAKE2b-256 6909844d7685cb203de17a007e669d8541020199b16ba6e02676d1c6535974b3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.10-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 16e69fcc7009659ee8459a9ad4605651b1cc7071e64698da1a5568f473c0ee3f
MD5 7349b38220237e682ece79fc66056c3f
BLAKE2b-256 bcbb9f0ccf00f6d79ed6d7f265766539f6b2e060cb2a4bcb027547c2a7d837fe

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.0.10-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for rapidfuzz-2.0.10-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 3a0dd9a837288a65a74a819b0d6f0d139daeb7f6155c3158f6eedd0af1e6d021
MD5 e271560c6195bb8889eb58d487db1484
BLAKE2b-256 a46cf2f29f3d47387a0207b6a3cb09c1c2f20b37b6fc4fa83be2b7656abc0fba

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 84391cd3fa17a6655abd83961f4720806b64f090dbc46426ed4841b410dbc841
MD5 580e1b09411ee45366688fb06b5ab3c1
BLAKE2b-256 e0b672208a0c2f944e5b5a61ab5f5a12f4dabe4087930ff16dda504667ce2941

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.10-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 fd8fdd75ad347b35eef562f39f5f8ad8c9784c5d3890bf49ecc24f5c1e3d16c1
MD5 f03ac785de4f508335ec3b9bfed1c16f
BLAKE2b-256 08724cd7358762fcbb5b3f204e1ad3b6309001dbb1d419c749f3f4242bb806b4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1400e029195f511788675144f1aab01de43aae7d3f5ec683f263ee13b47f6b16
MD5 99d172836f869af986a390ddb21f23ac
BLAKE2b-256 171c99e7f61843c1a56150bb1b279cd44a6e41421f26a0aa7edabebf8ec9640f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.10-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8748f89974916b15e8d70c0ff7097e2656f3aa89cbeaa810e69b07819481f84c
MD5 00bf713588f1883830241180f85e0632
BLAKE2b-256 673b40ce8def06b914e2830c6dbd540866ddddb9812dc32c9960c75683453f59

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.10-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 de02ce4d7e241f3fcfba3227e1f9665f82b9af38c5d36190df3a247fb2461411
MD5 575aa0199c5dccb91040e576162bfeb6
BLAKE2b-256 be86dc24f01f227d16701e02c95f2e7ccab1ba9ac374f409d3c882481ea1a5a1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.10-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 48b92a056246adac535d66e34ae7f5b9ed52654962f90d39c94fcb11dbeb6f0c
MD5 ec23541716bbdb978835caee598b3d7c
BLAKE2b-256 6ba13caf55db7d881cd258e185a1cd7ca9782a8f2a892a613b0fe522a7d85d83

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.10-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 db21778d648fa1805cea122b156c4727d3c6d2baf6ff0794af1794d17941512b
MD5 02019b7d48fa843118cc49f5e7ac2628
BLAKE2b-256 3fb0e45761ba253c27cfba8653c0193a95a264882d2b8df26957e7a2c4fdafeb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.0.10-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for rapidfuzz-2.0.10-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 89482d7436b3a1768e330c952c5346bb777f1969858284f2a6dcfb1c7d47f51d
MD5 1752caf4149b5403a8ca686edab66030
BLAKE2b-256 9b32a77227680ae5491e674792feededfc0fc242298afa343bfd2ea0661c1b6b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.10-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8156f7d8d7441c2bcb84ed9b5a873f5eee044fbdb3c1f599926a36663d323447
MD5 92d4d8b421bab33abb41a8f99cf0c73d
BLAKE2b-256 b0403ad2a444b87b9b88c0dd4ef4fc69c71d0d7fbe4972584a91346c4de7987f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.10-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 86fbbabd4176efb3e289cff65192a71e74475866c5738ae2039212c3b2db25cd
MD5 1791c57489c9e6c4f636a8e17eacfa82
BLAKE2b-256 e197ceb8b32e19f1d83aa38e9e226bfb05d52d368fe726d2f62292a51a66dce7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.10-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3fe107338825eadcda36ad3f50fe042e9e26018592af7c8ff3b4d16275f5fd01
MD5 09cb3a12ffa217f3930075b25482fe0f
BLAKE2b-256 073eface66db2c090f78081f876650f1f5e956701d55f280bd5a0be6d79bb7c3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.10-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ca08437f42047a3e8b1aecd39ba06debf063bc171d8375f0ddfa9b6a507853e8
MD5 bf7ba06845c0235b1ebb6633c650b685
BLAKE2b-256 3164c3de3f4d50aafb34ee23303c604567799d0447bba59e651addf6822ce6b0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.10-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 8d5ebda761193087d19606cd8026c7d3aa528ed13f4bc98ceecdd6da1d55fb20
MD5 e50beb3017cabc67459d19fcf22e9b74
BLAKE2b-256 508b3176831dc5aa59d225013d5561934ffda8be63593f58f9a2b08130cff8c4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-cp36-cp36m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.0.10-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 998.4 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for rapidfuzz-2.0.10-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 1dc06e50fb5410d2b3f607767ab6fc1dd8b9a559d40e0099a8f8f73d9d4d3db3
MD5 198c358f309be0c41cd6965d9c539d8d
BLAKE2b-256 c8c49451ab0b13cea93b9871f5a08ee57ee54ed8787e46851fa287feb63e5965

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.10-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 68a28b4cb76c422c30aff221a14009bbfed7134b3305966817970a0ad83ca1ca
MD5 26037c70ce52a4f0a8f6baec2d165259
BLAKE2b-256 1dc05093614472045ffee4bbd26dda38202d63dfa36bdc163a17fc2cfe53b09e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.10-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3d9dd138c0f7edc48fd16ac8ad5b14c0c47f502e40f86979d54205b9b24e4d9f
MD5 4a9aaa1481ffadc2ddbbb37775811e4d
BLAKE2b-256 702c36984d568d07e652e1975053fdc31a62e9b25524550537dd3eeb50e15d13

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.10-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b0457b4a652484dc8b39b52e56b0d7ada2550b262df4e52a504db3b34f060ea6
MD5 f979a6960ec5d3e309f836475210216b
BLAKE2b-256 b0910ab59d0d927cfd900f6f9f1307456de7d01926b6905d970ede2bc5b1c8d3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.10-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.10-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cea0dea5e79219777347a7c83c7953bc6ed3fc73d4ede0a931ea3362e99de0bd
MD5 b808912acecfdef9b4f8aeab22043f2c
BLAKE2b-256 95e18ae82624e84657ba57ce8a28c37fa9d1fd8c589a897b17a98f9e2080f711

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page