Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++14 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparision between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparision I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

Benchmark extractOne

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-2.0.11.tar.gz (904.2 kB view details)

Uploaded Source

Built Distributions

rapidfuzz-2.0.11-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.11-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.0.11-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.11-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.11-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.0.11-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.11-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.11-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.0.11-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.11-cp310-cp310-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-2.0.11-cp310-cp310-win32.whl (1.0 MB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-2.0.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.11-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-2.0.11-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.11-cp310-cp310-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-2.0.11-cp310-cp310-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-2.0.11-cp310-cp310-macosx_10_9_universal2.whl (2.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.0.11-cp39-cp39-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-2.0.11-cp39-cp39-win32.whl (1.0 MB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-2.0.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.11-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-2.0.11-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.11-cp39-cp39-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-2.0.11-cp39-cp39-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-2.0.11-cp39-cp39-macosx_10_9_universal2.whl (2.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.0.11-cp38-cp38-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-2.0.11-cp38-cp38-win32.whl (1.0 MB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-2.0.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.11-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-2.0.11-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.11-cp38-cp38-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-2.0.11-cp38-cp38-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-2.0.11-cp38-cp38-macosx_10_9_universal2.whl (2.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.0.11-cp37-cp37m-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-2.0.11-cp37-cp37m-win32.whl (1.0 MB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-2.0.11-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.11-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-2.0.11-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.11-cp37-cp37m-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-2.0.11-cp36-cp36m-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.6m Windows x86-64

rapidfuzz-2.0.11-cp36-cp36m-win32.whl (998.4 kB view details)

Uploaded CPython 3.6m Windows x86

rapidfuzz-2.0.11-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.11-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (2.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

rapidfuzz-2.0.11-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.11-cp36-cp36m-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-2.0.11.tar.gz.

File metadata

  • Download URL: rapidfuzz-2.0.11.tar.gz
  • Upload date:
  • Size: 904.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for rapidfuzz-2.0.11.tar.gz
Algorithm Hash digest
SHA256 934b65fea75e3bd310d74903ec69ff3df061b3058ab5b7f49ab772958109bca8
MD5 507648265255c10128d202f47f6e6e26
BLAKE2b-256 834bd2e6134c71b0e035953b299e6c599aa0169e8f36963d822e470875ba0bdd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.11-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b2d167b1bf92a60eefbaea3abf646baa2a3aa7125595e129c8890072706a80ac
MD5 3074af7d6288ed04f5d54df8f96f554c
BLAKE2b-256 6b9dae0e58faf89135a0616582148dde145f111dc2260ce299e4760782e43cc0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.11-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 537b72d954ff395cefc210fc7e41810a26e84ed7f1e93d0dffe3669277d6ea23
MD5 94da3aeaa06f92f891c8c6344b8c63f1
BLAKE2b-256 c109fdbd5db41b9e86d47ee1377e0b7523c0e2474607f29cfa53b5970b7cea30

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.11-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3933a1cfdf6ab4e059d8eb68460fa430a4f6be06431d1a8b05f7fecdd63e586e
MD5 d931dbcd71cddf887ae7dd921d7ea2a7
BLAKE2b-256 100eff98fe89fa10f3b2159a6ce352b175c8c9dcdae8868fe170719037a10bc5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.11-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6ac8ab8106bc7b0ffab539baa5279a850c61b71ccad86dc11503bc084f6ac1af
MD5 3d370f7c81283bc13aa1cd139b3655b1
BLAKE2b-256 d95036ffeda08d559ae37fe4223da536713762d2b57a3da4b24d38827d1ac10b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.11-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a80efb64f1b38c64f04f4ca6881c9684d7912dc9124ecbf953c9b541f935b33c
MD5 77f1bec8adaff3491a6fdda316035ab5
BLAKE2b-256 1941c529fec3644d97fe1601aa3fe9e2f6905a5a501879d8d00b7e3427ec2666

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.11-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 081415323e94e0016109715438d4ccb233ab038b09ba3cf79038e50601a410e9
MD5 3bee67d399ea6a20eac0956a24d93b94
BLAKE2b-256 7772450f889b375e0ac29178cdc46ce44b765f9af189d00689456bf10570dc08

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.11-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3fbb649a978fab0232cefdeb67321d853c676b3ebb7481b8b80030905a42d799
MD5 4e52a22a8f90244a1de5799ae7ff0cb1
BLAKE2b-256 75a2de790d45b350121602edaf398c3013c77ca82218cda2662a4fef9b1ecc5a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.11-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2dca3c02511d23a58ef14f2fbcd7b311eae1bc40e3d36be493ef22b9572ebed1
MD5 785c296f4371dc179219e0637ea3f8b0
BLAKE2b-256 6539539f9da866b1c2dcae4870c1ed7e8a5f8189266660b60a46b9b760f7b69a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.11-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2542f0a3c4079b15c0485ece589e5a248633de84326e4a3ca63ea024a0b59775
MD5 0467a5f596847935de02b2e5406a448e
BLAKE2b-256 991147bcc84216928e42786f583932a8117107f3e6ce72a822d7dafa7f4173d4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.11-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 09efd5a02a33dfb18ec6f28b85f102b51cbac080e624924f3a4f36d3b08962ef
MD5 0dd5ed6ad598b36dd6aea0b7c50502db
BLAKE2b-256 e830a11fc283a47ad3ec08b764cd2bbecf40825c4c4cd260a26ab5c49e95d3ef

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.0.11-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for rapidfuzz-2.0.11-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 8e583595efe5afdd68a7b5423cbd5fff0d1870d60cee16af17897f701f39d933
MD5 e5922cf03ead5ac8548c33aa6457d012
BLAKE2b-256 45f857bf045b7ff5410a37ff2eed5b598228edf0a042993ba09cc5f556b5bdc8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a545627a7d45ea4ad1cb66fb6ad7b951825b0e97053056cda9d2f5fbb30abe3e
MD5 cfca70f99ab96dbe2fd52156fd40c708
BLAKE2b-256 2e7e85dab51b20f2523c333f91617366871449deefc6c639defd141f7165876f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.11-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bad453a76f6832a99251beb89c352a4f436f4e7687a5843b080c294dba68d8d6
MD5 717bb44921da9a2407d9b8b90ff4c203
BLAKE2b-256 91b2271c596c8a56547336895aee9e8be3435a86fae9f13f9225b0c7eec50ab7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.11-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1ee9a057b7638e91377b217df3724d4adefec3936617180b3df1f64fa64cd995
MD5 f83ba867e8dd7d33ddf528dd08dafb60
BLAKE2b-256 6f86fb5c6e952e388ad0d090414d7f670ecfcb23f977f4392771de63a63f70a9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.11-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 aea72586c08ba8ce08c37c21bb7c383df740dc7d6e921423e1881570be62ed15
MD5 276c8c493a0179a7c717d4b1d6aadf43
BLAKE2b-256 2a43c99940b5b3cf84c52dc45b97617db0d1b275720fcb1f9890f10e711dc112

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.11-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8093b5f234be618bb8cfe34d65c072fee362fbd13f6c1b37f80eac0f30c24cfa
MD5 836661f505111a0b31aaf2dce2e16f50
BLAKE2b-256 635c32262f25c943623987dfc2d6790cf81c6b581e248e0c7bb270e04c14a0c7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.11-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 eb54edd0fa8620d37a7c0762895260bc75a6cc083d161b14d40a562b6f303975
MD5 b294ffc08da10af2d6ab72b802cac956
BLAKE2b-256 c55c4e297f5cfc872c036269d8304365691bd85228ff499c5da4d6ae92e63a7b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.11-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f4ea654ef221a57b47523fe70d7423254dd285f73948b9d8c1215610d2a38e9e
MD5 5f52f1ae1477ab40890969f7d8031a01
BLAKE2b-256 44639e1cc88184a6619b159f8a5c02280e56e20f4d45eb54f9e4988f64b70f9f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.0.11-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for rapidfuzz-2.0.11-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 1bda150aca38c4d4739780c3a99c190c05101839adc10ab7804ed86000440267
MD5 66f21fbd47c320fe7af875a4f41ffb95
BLAKE2b-256 8afedfe6163de47534b09ae467aa3a85fa0b86878a35e2a01e4aedae12828ca8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5b10de1ea834be1f26d1f35f3e1d1f8c003c7951a7475ab9b28b5a62e9f6f0c0
MD5 d2a75fd942c75381052eb56925ee16f2
BLAKE2b-256 27dd8a6c44b09414fa593b7aa4adf0c231732ea273729e3b485072bb0ed3eef8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.11-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 23c79ca555f188445f2e054b40a89c82e5d21b22d34f00da6e7491a6d70feff5
MD5 37b0552d49ff00f10ff463948b718ab0
BLAKE2b-256 2facccb25d6e335516693efd89e15fe964dcdc150fdb6313a9db5c62f8495213

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.11-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0f21d8754ee49ee8da73ad5e746495a27fd29ab769f5e45ede4d8232955e0237
MD5 3708746fe9a3d5a7ee5a6fa5fa6de958
BLAKE2b-256 271a4343447424bb513d1e0b53f25821c99aa611ae635e720f4c05dd93044069

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.11-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ebb03a6a5171233958b6adcada00c7521186ea4b78b6652b99d94d5dbf59c809
MD5 0fd111d0566785702b8ff28415f9cf3c
BLAKE2b-256 0d8373d7de2c0e6cd0338b097112095593881f2aec32051951d52fa0a497ac99

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.11-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fc2c8aa23de4a0bef2162440f5095f606052c289059fbeb03180740783e25e6b
MD5 14d04f90ba43dda855d9deaff828f4f6
BLAKE2b-256 3d27120b73327a8392ff0fe3ae6fc41e7d55aa61a3ca4857950f3e04cdefd685

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.11-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 1fe837f8b305c59549e2eec6fe8dbdd7344eeef0033fa4ee90af65f72b32c25f
MD5 34fdb3adeb974c7ea20c9776add35b17
BLAKE2b-256 c6f06c5656e1a04c1f14b00ae2fe2e7a952fd3ef26717b0fbe956ac1af53b104

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.11-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5b203e83adc10dbe961a3000fa09cc47f5672d2c98c3fd2f6bb7b0df225805ee
MD5 d34413bb2064acc089a2886f3f367fd6
BLAKE2b-256 7ca841cbf69211bbce8dcd0add9dbbc3fff5e4d5dd863da1229910cc519a20a4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.0.11-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for rapidfuzz-2.0.11-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 b3e7eea1dd304bac4ac74a1af71da35bb68bf6060f5d6b4ad8a3e4e2c84d5110
MD5 ead7454f052ad42b8d23cc101db8b493
BLAKE2b-256 6152970de52e97d8b2a785df9f0e850bc7a6b7aaeb26e2a5304c6179a8018c2b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ff74f3abd0ed473f81ba67d3207ca6db74b8b50ebae1a6734ba199a8d90d67b4
MD5 d5f596e6473befaa2546b35671cc3a71
BLAKE2b-256 a5e0d41005d189da74d6d914c0723e74b75a88372123cec86aebb8c42f858ddf

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.11-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9dcecc662df808ad051d9524608a3682fd80d882c93664adbaab4c7b0796e385
MD5 df643d77b7afe4867c565e5667f431c7
BLAKE2b-256 22e3391d7bfcfddb9d9da55a53b4277dafc32a7737d383cc4ea26b5c67c878a2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.11-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d96dba6ef863cba7efd22077ba28e19a8829b523c7c7e41304c568a6ab91fc4d
MD5 7b7e69d96739dd18c671a217e1039dcb
BLAKE2b-256 e386cb8d56e567c460f3254fe57f7679ea008936913ef8a365396dc41386cb7f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.11-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a13cea3303b444af49417352cd11830ea2245d4e5a82bb06b6895638b81c6029
MD5 6c235d873b265fe07ea1960488bc1214
BLAKE2b-256 435ce243c0e1e596b4205ff0bfe13e907b4a46eb1fb512970e26120dab4f9ff9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.11-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f5b0fd8f6bde8d89c07b76643c9f3a01e2e089b246a97b721e7fe97fdaa41820
MD5 71544568e9b3c3fca41f33dd1f625832
BLAKE2b-256 3ee7fc213b4d0e2906c8e4ba714655a8b21f7b3b7a31a1e7c3dfcc864138f808

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.11-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 757ae64598a93d0f8a21007c1abd6800f38c04e4b89167ca7b833ce30f54aef3
MD5 c7433baff17bb1b8fdfba71d203e0049
BLAKE2b-256 bb382fab1c75f7385cb4dedf33db900ec4aca0c2b0e1cc4c5636149dee3d2b16

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.11-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 1da580130b37a007684ab9dc6f85125e3c0d06c9f9df349e7bd52e312811c436
MD5 284f88d5fb39e74b5a40359cb7f4c546
BLAKE2b-256 4bf47387c111b3be8ed42711698a79958d2b081da61ed07bd8dc397466f494c1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.0.11-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for rapidfuzz-2.0.11-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 35c8f2cae3e2079616fdf90c6b6bcf850d3810c9184c6e89a4826b6d0af88974
MD5 7426de9ac2fd0ce645ab8a55c720a822
BLAKE2b-256 2d90d570d6f81822bc6ac0731247e8a853f4c320c91a1c5d8e395785a7995b2f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.11-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c9084a550719aff3752e5a63e32d381d64b09264cabf35d5e21e6a9f0e91baca
MD5 b0a93139af204d631957fae673d3e4e3
BLAKE2b-256 14aea391fc1be1ff77c744f9781ccfa598567f4d8230c8ae144f3b33f98c35c9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.11-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f3a53797613b53e93adbf9c410260aecde5ab1d7cd1b07792be1ee4800716598
MD5 904f258bf155993c05b74f5c072f1d8c
BLAKE2b-256 9ef07ea5e5d785bd54fbb50ad70e0f5e0cc068abb9a5a440afa1cc570e2e1b9d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.11-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 09d83e5ab57fb61a6003a3607494b1f443978e8d6b199fed3094e92f466f3bba
MD5 ddc6f2e421c667c26b4b547f0bd319b6
BLAKE2b-256 5a50da701dff68545870749fecf177e25df3311b7f37adca29f4ab3085a400a8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.11-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ace59b7857e5d5b252564dd60d840667c19c00d357c7ba32e9671b68615dc49a
MD5 08a1bfff973b643511168a4b5133449c
BLAKE2b-256 e69f3522e5f382c4fc4a2c0372d3dcd3c165d9442552d11629bcc20a9c26e54f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.11-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 de7559765e1da54d8d42495368e0a9852041cf8d4e077fb27811d6f009611a4b
MD5 ffee7e389a52224a9cb80f2f84eccb75
BLAKE2b-256 b17faadf37fa244eaf53a93ddb0028360448e6e4eba42d6099e59cfae508875f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-cp36-cp36m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.0.11-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 998.4 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for rapidfuzz-2.0.11-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 4b16147122ec4c5e4a31131b8530e674ba1b3e74e2b43b73aedc6bd0021fcae6
MD5 16c79c895f3770dc8dc5890ae494337b
BLAKE2b-256 349febc640fd0e465a547490bc2367d017cf1beac3c0b581c78d3f32a1f4849c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.11-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1031420c083681b41346267e26f9f76ef2c1544a0129fa67b07239d7a9ab9fd6
MD5 43c63fa0eb75496570c201b50b084603
BLAKE2b-256 71bbc3ebfbf44012f22fd7173ff3f4386ef4a8d2ea84b8549fb10f0bebdf26a6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.11-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a007fe85dfff7a961daba13884629dcd9ab45197a2fc40749a7e8f750e7715a4
MD5 c1e3dbc2988cb59323b7ad058313eea0
BLAKE2b-256 c984bd4f19e4e075848151d813207699e4baf5ae24e2dcb6c230f12eada230db

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.11-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4b555dbebb413ab66c2cd394338c860094a5464f9b63faeb40ebec44271c460b
MD5 d6dbdb251a3d138d63d67adb5c681f24
BLAKE2b-256 c3290e5d183a337acb277300e7d1677c24f9882843b9b076df6bfbf779831457

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.11-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.11-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c81216ecff325765bb441caf7f50a1f55aa66192aca12ec6d448b509c9387a39
MD5 12025ef4939bf74c5d278a712c1c18aa
BLAKE2b-256 ee70c621edd7a2f1d4fe86e88057095c5d0f59686d6bce203af9e1b2020cabf7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page