Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++14 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparision between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparision I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

Benchmark extractOne

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-2.0.12.tar.gz (912.5 kB view details)

Uploaded Source

Built Distributions

rapidfuzz-2.0.12-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.12-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.0.12-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.12-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.12-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.0.12-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.12-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.12-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.0.12-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.12-cp310-cp310-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-2.0.12-cp310-cp310-win32.whl (1.0 MB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-2.0.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.12-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-2.0.12-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.12-cp310-cp310-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-2.0.12-cp310-cp310-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-2.0.12-cp310-cp310-macosx_10_9_universal2.whl (2.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.0.12-cp39-cp39-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-2.0.12-cp39-cp39-win32.whl (1.0 MB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-2.0.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.12-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-2.0.12-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.12-cp39-cp39-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-2.0.12-cp39-cp39-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-2.0.12-cp39-cp39-macosx_10_9_universal2.whl (2.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.0.12-cp38-cp38-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-2.0.12-cp38-cp38-win32.whl (1.0 MB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-2.0.12-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.12-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-2.0.12-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.12-cp38-cp38-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-2.0.12-cp38-cp38-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-2.0.12-cp38-cp38-macosx_10_9_universal2.whl (2.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.0.12-cp37-cp37m-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-2.0.12-cp37-cp37m-win32.whl (1.0 MB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-2.0.12-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.12-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-2.0.12-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.12-cp37-cp37m-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-2.0.12-cp36-cp36m-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.6m Windows x86-64

rapidfuzz-2.0.12-cp36-cp36m-win32.whl (991.9 kB view details)

Uploaded CPython 3.6m Windows x86

rapidfuzz-2.0.12-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.12-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (2.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

rapidfuzz-2.0.12-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.12-cp36-cp36m-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-2.0.12.tar.gz.

File metadata

  • Download URL: rapidfuzz-2.0.12.tar.gz
  • Upload date:
  • Size: 912.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.0.12.tar.gz
Algorithm Hash digest
SHA256 343b975c7a9dbf7e7d2f2028ca40ba41447bd6f2da9b606366af273e24b38a68
MD5 7e7f80a306992e179754ea30b5aa188b
BLAKE2b-256 4e0f849e4175aa45bc1e70bba4903224c1bd145c178c620400e392493ab834bd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.12-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f3a63dea8d5a4bf652704e0d6e2be63230afd35f1800c31802bc34be3d69a586
MD5 e2fd2d1a31864a1297c77fa386775266
BLAKE2b-256 a5231ffb556983f3f72ea03ff4801ec4c1b27adfbe6c99d1a3967546ff780319

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.12-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 743bc6db6a72941414d7448774c132787444fd1c22c75d9bf5bb763301262645
MD5 10b28c11bbc84ce2e032554b8d5a9e49
BLAKE2b-256 81de25dcb24d80c3bf26d9a355e3b91a2251d81679061a45d4c0cc33a03f94b1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.12-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c9a32c94ca4f3bc8ad738830ffc7d671218fa988b7304ccf42a98557986bda48
MD5 ba81551805998d5d9c5713291afd08cf
BLAKE2b-256 f7fb764a022983fa56e7640bf846ac8ff5a9e4bdc5fc267dbef282b09d3004c2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.12-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8639f5f9d1fb951d80b8902e427183353b19f0e37602beb2dbce6aa6141cce43
MD5 8e5afebe5c2d7cb4c700e25bec0db983
BLAKE2b-256 65f3a9bbf89a1c5174cc47a1df2c3ced44e82135e48785d2f473374c12c9c21a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.12-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2cd332122f3a6efd786ea2b918ae409c3ee7a80337726c2a52aae1fa1a4bd1b7
MD5 94d7b39a1c07579a665cf76994b5db61
BLAKE2b-256 97875acdd67c8237c447412692b3413a9eb3e6d2bf486ddfeac8a62127a6755b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.12-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a42407f47695a154c728a4888ef12e9db374274259ceb9b2d6ea3c2287ef0764
MD5 bf67c43363f038330f63091e3c564474
BLAKE2b-256 2ad79a7d9a8bbfb5b9bbfebf1ea1f9538f10c4f68dadcc632562a9c10cc0e8cd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.12-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 920e1b9c634f2a6996911314043123880abac8b4a97698d7891ff1c9791e6557
MD5 43af2176933aa76e8a02c9a322a7c318
BLAKE2b-256 48f3833d85a33e58b2509b8a0e1f530a7755c6d295a3e35fe847f1ecfb87f02c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.12-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 99def80512a61675a00ec7f8d3ce6e0b1944a7d206c4638b4f666dc71a650b41
MD5 e7f633e05458afde95a4c532799eac2e
BLAKE2b-256 950a837004d5d59b651f21bc1c62b23b8f5535cf6ebf577a86b2e9390a25f72f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.12-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a43460d36ade706904f94fda7c668d0cc55206290340d41907a1e90eeb4e82a3
MD5 609e0e8157da6a60031e02b49c4e8e04
BLAKE2b-256 fa4eea943ca7a27ea753c8de241c49fc84bb35696ac2d26e6a5c94fd45922b1e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.12-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 70b2600f51aec38eae1fda10690bff40678963b24721d95520eb2d85c20520c7
MD5 20085dfa49277f87b45d633d4da8bf33
BLAKE2b-256 78f95ec3a7d3f68dfb25183ffdd52c0aeb135a69dcbefbd4daa0c3180f1e5a4f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.0.12-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.0.12-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 f86b3159fab22259d303992012baac33812eda73be735b61a66eadeee7312908
MD5 6018032b9fe856585076c0803bef93dc
BLAKE2b-256 9c1cafe5017fc28e152982c356f8861e2e5c55e96db3bd99e1aef434000057f6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cbae395fe1913b0273f6c240abca7c8ccf32581e634f48c8a7bcf8e1fd807c87
MD5 8299e7e57bf97c25accedcdfe79dee11
BLAKE2b-256 6dc76ef8fd37e6ee8d88fe8b136a34c3df2c16689a3727dc4c41d2a2206db10d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.12-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f6e37d14bd1749927be147e4e4247d5dabcea99deb1f4e4ec38fb3e902ded801
MD5 5d6f7d6f015914bb5e071329df2b40f1
BLAKE2b-256 df8933c7cc7049ffdd6c78e09fe64ae20c6f3845fce360c2f4931b5bb8f664ff

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.12-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 de9cd4f64fde2d64c6f9a64f7feccc16f80553df659b60ab4112080227731189
MD5 e41b79ffb52e674fc76f3dc660b06cd9
BLAKE2b-256 3ce10fb0e4b7b7f6a280fef16f8686797f14fe9e411ee78d274c4956c414c3f1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.12-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 24f0a3fb42c3689f6b3a948011cff93dc6461df754e5ee8298d88e704ee39e4b
MD5 de5254e438d8a05a6dc7533ce7602282
BLAKE2b-256 a72af5575b0ea4c17a653bef90f1da8fa51cadcb8621b76b63ae6806301224da

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.12-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a7d0f89d27bcce9f90fb69498814295eea6deaaa283a666fde813b7b7ee7872a
MD5 87ba0d17c19654fa738cefd243e4a185
BLAKE2b-256 e0df369170adca06dceda7eefa491f2e2f84e2f566c54841ea4d732117d28c7e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.12-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 a4ca7be0f370c1e3ff828bb38146e9cd54de54bc7f5aa88c1db521a368ed20f2
MD5 16a6e843963553aa39a340450ea76010
BLAKE2b-256 6c1157bb14cfcf6db463de42bd84a606477438bd405c6253f2c201e77f68edd1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.12-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7d22d5f32190025312dc0b185c086ad94c0b6274d7f5808e9a895da5c458dea6
MD5 4d6b1c44521962d3d3feb32398a91b50
BLAKE2b-256 7c96c28366dfc8c416d12821115a435ce9c6c8dc93771a060780772f0c07f3bd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.0.12-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.0.12-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 76f6809bb56dee6f86a053eebd32e04e5ee8f57cb81f6fc273ec06aabe5a9948
MD5 c14fc6a8e3d62555be53f08f4e50ae9c
BLAKE2b-256 d63a3c13a3e15e1d88ccfe9baf139597431cbbe51c3ba1917afb4464174c6936

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bc5f954029bd743f26f84d9cfb72291281170c20635f5a2b6140790f162ad53e
MD5 e73566133c0e0496ea20439d182d7f82
BLAKE2b-256 6ef7feed5500a4c06aa5069dc87463a514a282d0e36d0526b2c7f27761da03fd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.12-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5cc95513835ff026b67e10637f97dbd7868cb203214eb7356fa38724c4db3863
MD5 6623d8065e2bbc85a3b4c0de3882dfe8
BLAKE2b-256 9740eb05667a5dcea718bc4a834b9f4c21486350dd433be4d760c9da32c5492d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.12-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 84023fd67259339739cdd118a7b3f676f07abb19353ff74a02c8e7006774471a
MD5 eca6c175f16b111266e5eb8668002cf2
BLAKE2b-256 4f317e52d363d2e951be768cbda2a8e0c3879bd5268051334267f02b4d318c60

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.12-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a3eef9613a746f93b27e57ceb42d77ff78c77e7987edbc618540b57e3a90fedf
MD5 d0e5a9adb764971d24d55a92326c6806
BLAKE2b-256 ce959088d0a9b6ea3f8fc0aa91e1d7451fb54daa6d899a9032f0f4ffc7fb53bb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.12-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 682dd953fbc0bf87be14e445ca1ab6a31b6c2f4be736c1d0f8db8972ea062680
MD5 c30e74959e24aa999bcb22d71ba6abf3
BLAKE2b-256 a384096347682a484224f73e117f110bfcd2ec1ef3212aebba9bf3f8d4a2a635

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.12-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 a7ae61a1bb8109de5053166ff311604806cb5df676a1eee9ac8d0922616025a7
MD5 80cd20d2d38560929307d6389cca7338
BLAKE2b-256 fd11459b3faae6ae7292a9d4f16ea86766dfa0cc2ddc91adb75489ff493225e1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.12-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 effa8baeea07c747c89c61f5878d20769ef6327a40cafa809f4c398659a7e477
MD5 449e4ab3d0530a8f6ed1563e249a442f
BLAKE2b-256 d8e136886b9ec651b68db445195e4934c446ffb7d9ae06c79f71b09f39759ce2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.0.12-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.0.12-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 17f0bd7d7a7f82efb36dc652bbe77982bdb4cce8b286e2bcbfbdd7e4bd5a714e
MD5 0a27164d6889501c9f0e97b3cb409008
BLAKE2b-256 dd2f5039a328987953f5cede0e57505846aa50e809244fe60757ac74c7c794ba

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.12-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 292eafdefcb8ad5f2a952e403ab94b299ec52747b988c8225747b33dd2e1d9eb
MD5 5a22a93afa639f979e851ff6cae75678
BLAKE2b-256 47d6ff1152054fd310109692160ac30a4d15320fde74926d44b86111e4920621

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.12-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7eb31fa03c122fe3487ca2e16f6cee3ed38dea7ed84febc4700ab16f71a9dafd
MD5 2899731bb62ccd12510d9a56918ad9b2
BLAKE2b-256 1e4c8619f3bc0d3d881db84ed1a925f39c95605e2428615b6d67918ce09c0735

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.12-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 038e4913f3eecd6dd8270854ccd7b663dd33f8ec54ff039421ca74ece46741f0
MD5 9b28aad3c4f0190a8e58c4d07cfb69ea
BLAKE2b-256 44a13f420a0a69aeac2e3f88da7fbef18b3186a83818325f1ca3056f2a198051

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.12-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0b7ea390f47d7918594582c11b2feb0b2524080db43f2b507ec2da60b87e9692
MD5 be1a6bc41ac073b3f2075b2992987116
BLAKE2b-256 4d2b84455dc45f2127984c205b7495c4c1c79712a0ecae9e6e75e900fbd29a2a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.12-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 69887109ff5ab815b05aa75a4727dec5358fda79a6e29c6f7ee28ae86edce320
MD5 2642f0e0e2277a71b7e0048c0adbc9da
BLAKE2b-256 5928c7358e11e5fabb75a8d46cf62d82290c0872bb71ecf072ac82ee725275ba

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.12-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e0e6c2e8f4ec31cc83284d61554978b02ab45dfca97845436bbd1c959370a779
MD5 b154344ba02b966d0659be8166418211
BLAKE2b-256 4ebce6978dd0f763b2c8e810be2623d5f1b1f27dabe9ec91da16ef85b850f7fc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.12-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 048303f8d4797bce3da4208b85e4ea52bedd4bd9cd010ebbac4c4979bc6c1343
MD5 deb31ee01db387a41c336f818da6eaea
BLAKE2b-256 2d04c693d0761a9e875045df43e41f2cc6348209874e35c9f36da5a39a9d694a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.0.12-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.0.12-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 849bf69e3bf032cf9d821797898634a446d9e6f3b53eb8c0b25c47f11a962b24
MD5 b5fde83c170f3389ad68306a254e1179
BLAKE2b-256 eeffe336bde10bbf8fc64554904a55f8fb3c6ccc02b307620f3786b02e13d072

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.12-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5aeffc9c30f26e272a14497999e14ee9b4763728b3e63f345b3528dfa01d97af
MD5 bbff672359f6ca095ae694aac419f8eb
BLAKE2b-256 d27407630b26f2dc2df5eb64e2e32ebea8580fb1516f60e67804837530fc5416

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.12-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b2a77c124ea46f7d28776006758926e4e439699fe832d465e98c93f84495430a
MD5 7a6875f0901e5c3b3d5763a0a9404fad
BLAKE2b-256 1a87eadf87c64b01b15c1febb6a6df2c6b03508e0a08d7fcb6f285160092f2a0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.12-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1fcc75828f4a5c751d470bf6530e6676a55b62e48e3bcd4c45d8fefed031a5e7
MD5 a56b4681a0ae4447528ce2cb9f04b4e6
BLAKE2b-256 098bc2239f83b96b563129f55d0c749a562d312f18cdd97bf3e40ca87d8ab0f7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.12-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 305bf438ab0e05b8f928f5078a597a7a2196ab5f683d7599f69601c3b13161dd
MD5 1d46f95d7d752f010b4783f309b976ed
BLAKE2b-256 e07cf116fca41e62825d395698145d5d0e8096c90d23e3c7dd93563e25a39ce5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.12-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 0042bfda35a366e63380a0a5e3b30da24d450da72d1963c233ca82f67ea9c0d7
MD5 5cb4822c644c1174db86f1cdc650beec
BLAKE2b-256 fc00b6138b50847cf9431f5611743b39e34e1b8ece9537513938b153c72a145a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-cp36-cp36m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.0.12-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 991.9 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.0.12-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 8f081c33bb71a5b9d9cf5ee82968892fede60af74eb045f9104feafd283c0fd8
MD5 2b3ba2249b82b35a04d084cd2e80307e
BLAKE2b-256 a24b243e83f58af3d93d8a28f7be7bdf4d083fbfa42780e375c2a4ae5fd9ec2e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.12-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eb22dbf87e7bcdc6ffe8b986adb5417a73ae0c49e7b7f04ade383a400284b446
MD5 da81990f4c3768407d10653a63b3bd22
BLAKE2b-256 7ab013c46c0fc66c0e61e38aaa6fccf89c485e66281a9b192f64e355cb83a77e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.12-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bbe631689857a5a80740385319e6acf2a10399e051b38de79a070d898e45437e
MD5 d99a17c87b4418561e175958ba4f3d9d
BLAKE2b-256 e1311eb2453970ac5ae39f32a2f293fa6c1b972fd5922ee9e01b607c36a9b34d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.12-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a64c1b261376d6f2052593103ef06502e1667dddacb0492d55c97ffbe647345b
MD5 321071060c5135208e0a345086183fb5
BLAKE2b-256 02b5369b731cdec37486763cfa8ceb0f6b926990e9bced5afe4aeb511416530f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.12-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.12-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 df58651c7dac95204fba31dce2098d645b6b074223549ebae376edfc2092dc7d
MD5 82d7d9a212c95e08eb2e4268cad4402c
BLAKE2b-256 6ed78a37266d106928e77b779b592b01c5f9c7b4b47e0a64d11e5da4fed0fa6d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page