Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++14 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparision between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparision I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

Benchmark extractOne

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-2.0.15.tar.gz (1.0 MB view details)

Uploaded Source

Built Distributions

rapidfuzz-2.0.15-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.15-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.0.15-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.15-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.15-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.0.15-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.15-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.15-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.0.15-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.15-cp310-cp310-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-2.0.15-cp310-cp310-win32.whl (967.3 kB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-2.0.15-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.15-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-2.0.15-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.15-cp310-cp310-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-2.0.15-cp310-cp310-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-2.0.15-cp310-cp310-macosx_10_9_universal2.whl (3.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.0.15-cp39-cp39-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-2.0.15-cp39-cp39-win32.whl (969.5 kB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-2.0.15-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.15-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-2.0.15-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.15-cp39-cp39-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-2.0.15-cp39-cp39-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-2.0.15-cp39-cp39-macosx_10_9_universal2.whl (3.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.0.15-cp38-cp38-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-2.0.15-cp38-cp38-win32.whl (969.4 kB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-2.0.15-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.15-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-2.0.15-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.15-cp38-cp38-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-2.0.15-cp38-cp38-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-2.0.15-cp38-cp38-macosx_10_9_universal2.whl (3.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.0.15-cp37-cp37m-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-2.0.15-cp37-cp37m-win32.whl (970.0 kB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-2.0.15-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.15-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-2.0.15-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.15-cp37-cp37m-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-2.0.15-cp36-cp36m-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.6m Windows x86-64

rapidfuzz-2.0.15-cp36-cp36m-win32.whl (957.2 kB view details)

Uploaded CPython 3.6m Windows x86

rapidfuzz-2.0.15-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.15-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

rapidfuzz-2.0.15-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.15-cp36-cp36m-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-2.0.15.tar.gz.

File metadata

  • Download URL: rapidfuzz-2.0.15.tar.gz
  • Upload date:
  • Size: 1.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.0.15.tar.gz
Algorithm Hash digest
SHA256 1761c55109b91824c633eebe7b392eb097c9c7d44d04163708bfd59d3e275a35
MD5 9c6a8ded31c14547c33025664edbf4a2
BLAKE2b-256 2fc90db75008387def90ad9b452f2933492eeabd37a871f6d9898896606e0141

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.15-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9880a2d37503f24b528d3e4dc5530f66ef4f3a4fcb96515c9d4002eafabc5a90
MD5 c3845609e5700560a01778ce2995e636
BLAKE2b-256 b86644f2a2f3eff20c43adcd1ffae30676f8d46965f3b93e6eecf5d2b247f75d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.15-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f992437500a41b2f6cedb21f2132f29206f20fa10f1f024f88e5c7ebfbe70e7c
MD5 8f8b3f717f1e3dc9a4af366a08668b84
BLAKE2b-256 a66376bb308c60ff8c8c4d9df2c37ff743b0171792e22bae822aafe1e1aaee72

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.15-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f3a7bb28fe99b5bf093e1cf18a359a9df7825cc0efaf1dc5b74b4c1b0142538e
MD5 27289a85d09694d415c870b1e362e62f
BLAKE2b-256 2a33bb228600355c0d980bbe9ef00eb210c1827dba23c930747be067b45fa09c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.15-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 96009dd0bfdc5a88c80cdc3839bff6c6b60d6884dca87b676e210dfe4d6d5ec5
MD5 57b0d8d3df36a8e60f3f8beb8e4b46d5
BLAKE2b-256 54687de84cb66aad1eaada8590f286c194ed54a3abf4f8736d507969642ccd04

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.15-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d511bc48e3bacf8eb3dbb314bed7694bd610536bed881b12cec246e790e7a4f0
MD5 a128ad0dc739e96ad0efbf7cc6eda5fc
BLAKE2b-256 e5fc64f15dd679517ff791dbd13e0ec1fc513ae599e12315763ec5adbb4a7eea

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.15-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4dfdc901cf4d16d632b908c2c7ae99f4e18f64d1b2d4c44dee5d84b8ba88fa6b
MD5 38ad383251ce3ec892d8d803f5050ff6
BLAKE2b-256 95e3f74cd7837ece1ed92d5d17d0125681060df2832f5c6cef504a57d4ebaf96

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.15-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1dcf92c2521fcbd3b74386be62f5775ef13670e077cb451ed90989475c788b03
MD5 a4cb290accc912e014e33745ae68a87f
BLAKE2b-256 bc4cfa0649858545c529939835c7aa49e46fbdf0eadb4fdd3546b30a878e991c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.15-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 385df7fbec6441a5aa356a0f72b599b51aa3446d0a2ff2c4fb066e88a02de561
MD5 8ef481cacb72ff3763ebf27e8dc4ca9f
BLAKE2b-256 d6d3d6b1ff6c63767e075b9e40fece670329eb0c14918e9ec9219e4c93e13d7b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.15-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 89f3ea686b8e1cf41b5197b47d682d42c86159378cbe3c78d2727ce6a135b4a7
MD5 f7dac95a6aa304afae7fcdcd02d79ced
BLAKE2b-256 2b185bec7b6053a6296c8a25eed85fcd03db0ab8a6b02c14d1fbd3a9910c8523

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.15-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f0d77504858f9dcff701377c6f2a717b18f3bef17398080f84d8543282e8542d
MD5 f8988ab6679c1a6dfe5bb2d45cee0ad0
BLAKE2b-256 33e69fab9d972c0afb8a39ba605fc564e145c2d39d464ec447bb432371b1add0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.0.15-cp310-cp310-win32.whl
  • Upload date:
  • Size: 967.3 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.0.15-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 b7e57e7c628122ad4367b6c8b750f7b443b8e1c121dc0d3ed7543544a80b02f1
MD5 db312dd7e6a9dcdaa0c9ac46c69a3e54
BLAKE2b-256 7309291d6a4402b18cf644d3e05e68e080b70c3744c11f3f8dedd49c23891809

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.15-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5dfcbc8fa5eb165efe63dd9ddb5adf5d6f38c1a833df6288d87bf23c339a3f48
MD5 5e7963f6ce65fb388d2cb1018a265e11
BLAKE2b-256 40e573654fe4016935a1ad15a745a4d7c7826ddc00cc8e94a1ae2c79fe3eb137

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.15-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b1d2d393b6e54ed652d44cefe94a79c7ea93299376b0eeb4ecf2780363ab9c7c
MD5 33a9f31afa1c106414a925da591cd4d0
BLAKE2b-256 f4c3e7b6faa9e8c22048ace33a815aacfdd390781bd2e2a2284614521eeb9087

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.15-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 02bd45a606329aaba76c4b8ce427e10bc87226907a7f1fc5f7551ff17d418bc1
MD5 1e0a23ece6d8c6303d29dd4afe46684e
BLAKE2b-256 ba8b52dc2ed7b3ed04a3f5faf7802c66d87ade65e623dca78ca66cac239b4110

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.15-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c67cc7f0d0da6e6e2adfcd0d77589fa6051e35fc65c3007639b23e518d759a20
MD5 9ef48f53e4d4f2a68fbcfe4f1d11598a
BLAKE2b-256 d02631eb5c91f6acb08496ca3837c45c0346ca65d0feeffe2b96e001895ee001

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.15-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bf2fa77c6c1ae9677293940cbdfb96afbb8e441a36f2fcf53d8920e304f73dc4
MD5 f8790dc52a7079472aea1daae95c7322
BLAKE2b-256 3cd1baf50a80c91513c164bf32097907d2006a690f31fba022b36ed946c04825

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.15-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 df007f0318f84e2f895932ff08d8e7f19fbce5c598b626fc1e3c9023657aa82d
MD5 2f8d4cd2c3ade5ccfb62aa3b55af06b2
BLAKE2b-256 108092da47d245a03963360ff29005a69fb85f8a260544056b8519b7b9e70b40

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.15-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ced7406152e675c2a8b8abe33221abbc2c9dffc57c6d6375b74f227cde34d3be
MD5 06e7fe96ee9a2afccbfd0b1099b238d5
BLAKE2b-256 6f1bec5d595b8084524c0b214fdd19ddbe46cce6ea7303c0a1e6cbdda30b46ec

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.0.15-cp39-cp39-win32.whl
  • Upload date:
  • Size: 969.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.0.15-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 5f9795c70eaef1a3949debb5b1050dd93f1d01d2f32712e75219e628de27fdf3
MD5 5b8bd7e22d3569187d09344746c3f3f2
BLAKE2b-256 0d0da14b11ba54cfdfe255972e8c34767695867a9f3c0fad475a1ee41587f73f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.15-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 80f53ca916ac91d48cfc4d9e9c32953f31de37a26e2fe4c3c6395ba98c394dfa
MD5 ce51cad5bd1a72f8149938879e26b618
BLAKE2b-256 f1879e4bcc3c2f4a4d502e45c5d0937d023cfc2f71d4875a88e0d877ed88041d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.15-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 07f914b6e10e5820f9a8279900139c408beabd99bcb59f6239f4bbc8e07abdf7
MD5 0c69622cb43d80a88c3962a4a62934b0
BLAKE2b-256 1fa1e3c0478ce62ad67d6364b7ec54537627e4420452c034a42fc1612fe0099f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.15-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c540e5e7257184a7752e6d6d20a6750be0e87e5eff2413059958d8367cb05dfd
MD5 33d0e2567767ede3246cd70f6025c2b7
BLAKE2b-256 675feb109552541ab4180564c8ecdbc92a8b64893b691b1d0fa40bd626b43587

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.15-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3eb78760c49738d804f67baadb53b3817a263d976ee5b70aa73b394961195e99
MD5 5630b4cabafb33f5f1d271015523fdbf
BLAKE2b-256 f375f44022d03c7da1250f6cc44cb65562a76c4bf75ed879ddc9855df45d6f28

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.15-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 91ee4ed657a7fae3fed4dcba73408c7cbb98826c410c3d5382a950dcbbdcb62d
MD5 0ca3fa66877c1fdd274fe8151cb6ff38
BLAKE2b-256 cb73b6b40fef38f1bd63e6bb8995a3702c9c3c4f498574b33fa3f69e7ffc8b45

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.15-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 581997f15e1277ca8960afade2a3683feba76470f85719687c0bbc09a50d5fe9
MD5 581edc22b0472b1c034588b1c79542f2
BLAKE2b-256 9fe1eb70c2ff8d6cf79b0837ac266d8c51cf1ca01dc77beb979614d8a55739a8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.15-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 616a46950cbe44d842b7f26e60aed961de8cdaa63c51dc11dc5de036948a8c27
MD5 d7fa024653967a59f37bc4f25304400b
BLAKE2b-256 6a9a51de98afbc9b7f4b131dccd04491d174505c77f31f5e803f92a32dadb626

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.0.15-cp38-cp38-win32.whl
  • Upload date:
  • Size: 969.4 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.0.15-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 af67c654cb483a87cd6a73c3fad972555c4061165cf7d8ea2cb549bfb8c2bd95
MD5 dcd512c18ec57bbc7e884d0e7bb71ffc
BLAKE2b-256 404b36d5cef76581a1d8bcd2f678a73f7df43e98e0472d64345eba260d743dc7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.15-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3aee0c80ae51d8ac4fdf54ef57fe4f76c161500e42b989b2f16144d74af8f04c
MD5 8a84935800d48403d81ad355883d1aa6
BLAKE2b-256 5a11d32d5fde632dd36cac47332d21e67a77565031eee17354584b6f3abd49d7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.15-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 76dc58bf54879b5d84c74862e6c4a3ff8ca7a7695996f9a27302e5cab394862d
MD5 568cf3066f46dbfc01a259012a5028c7
BLAKE2b-256 94d43e25784bff2d2383e2beb81b6bc6f28faf8b000c13e3675873afaac1caed

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.15-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4cf9291d4e8e55f36ae4578a0bb3fff0139af5e42e4851025890fe01253ae338
MD5 87e159c1df364d1fcac6072ba93769df
BLAKE2b-256 75ac95f5320f7adfff5d447bbbf7bae764a2a1ec5d25dec5ed86f2e18579f7db

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.15-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b87d1c54898427c7a8091c0cdc87de3f9b3813c361e08f0c771460b539eeee8d
MD5 1b37fb4072a3bd473be666b320dd47d6
BLAKE2b-256 dbca55080e1b714b1edc56236913acd843d8219dfcdaaf9fa0aa1be4f3f3da0d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.15-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e72efd7021c9e9b92a145e9cee703d5441891f2c5cad12e7d95e9429651323be
MD5 46cb2761a457aa0fa9c30fd20444784c
BLAKE2b-256 d8c7b3b9037174a785f028444019c2a202c479f2c1496b503eac1cc6148e7821

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.15-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 a1f9de49b795da0118dc4f19b7dc72e077d03aef1f00b69320e1386929e3c3f7
MD5 3af8827704b1b6ec9bfe88b70e80a2b3
BLAKE2b-256 f84ec0c9286a12e80b563ead671cfa9ccabb6d810334c0d83d8dbb3e1635960d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.15-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ae49319b9677fc8c878a4a541c1881a4b92b8899f3acfefb2d9951573e072ef2
MD5 11f6914afa62ecb3fc81220d9f1f492c
BLAKE2b-256 1deee739a5e04435b8eb07d158312857ea89b46ca70ba9411419497d2b5095f2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.0.15-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 970.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.0.15-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 6ef3043e40e58e2d9ebbe5b9ff3bca491491abce0d87e8ecc4ef7b60fe15a0d4
MD5 0f1429879e0da1ff7dee3d19b1d87b8c
BLAKE2b-256 37e71b50ec04271b4af66b3963f580bb039c22377ba594187235e26238a25ff3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.15-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 62415b62a90f00662361c70223f76d27a88bcf2132553e71405104001b3bf943
MD5 3ba3f519787a5be93dfe257d37c7e049
BLAKE2b-256 1e48d71890847b422ac58849914023c6df362186d9c2ea4a5d7b1431f9666bbf

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.15-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 063c8230ff427e7c72a34d71ae0cc35ec659a666bfaadd6c96c9ca1f39234a51
MD5 896a754caafc2bf4ceb51de09bf59f1f
BLAKE2b-256 d8b0ac299a6ee9f93f0c9981eec4e1c252b391033408fdf8e03047ed35cbb2e1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.15-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 427395d6dd317ce5b653242a4a83ae184753e3f988113bffc41c9f40ea47da02
MD5 65c7b273b9d818790547b59050a7de98
BLAKE2b-256 bdfc2df86386a84d5c10292da1573e542a690d60e5daf3cd4fd66b8d0e1ebe1e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.15-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f54ce848e2cf7cc08356587cff35a89dfa2d5c76d462964f775f1ff83b135287
MD5 f4a7c13ea3b2d56d76273609a189fc4d
BLAKE2b-256 cb311a107f8cf01c4672d7c022cf6e061ad09dceded395581d7622de04e937ae

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.15-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 0fb95ce1654d931302875312624bb99642b74ab52c7d21511b14992601bfab3a
MD5 faadfa95cd4a87309936b12a1d547ee6
BLAKE2b-256 c3db6661fdb96a737ea20879a089074f78d675705337ade711fca432e2a56a71

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-cp36-cp36m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.0.15-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 957.2 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.0.15-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 78100609973c90ce6087e8314d578272485e0e43694a0dda56c1fb06ddfebeee
MD5 0872409e8f049ddd4fec31f34a64abf6
BLAKE2b-256 7699d476e62ce267c1e209f83b6ec4a9ee0d1dc34800d5835a8417d14db37b92

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.15-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 814eea841fae691e81e8a6ca4c0dd22ea00af03a4d793bfe90882c7f09d7d61e
MD5 d279f680d527bda3c0ca8eec39e858c9
BLAKE2b-256 06d26359a38cdfddf2508f98b9145d39fe4f49b31d3f09e129c9678539239c03

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.15-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f598bc094dbbb715ea3b4996894d885d9184a337e5f5479165e4dde72ed9419c
MD5 3932360f6f4a91d35ab1d815a1906a52
BLAKE2b-256 94d1554c3a14153cac0b45eaf6830f4e35cb7193f00ccf25ce7eab957ddf1aa4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.15-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d3189ce87f73c1c910e9d46c1e967eb15436ed90f83fd5bbbeb09ff4cf2a72e0
MD5 318ad8668a5ae974e5eaca9a8da27a62
BLAKE2b-256 b9da3fc90e49761850e50afa153d364dcf3dd4e09b3052965c9fdee7e5349403

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.15-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.15-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 54208aaca425db655960af13850b30691ed82de039d08e78772a33f5051fd659
MD5 7ca27df67d195c36eebc17e65b0fe3dd
BLAKE2b-256 a81d619729db1c3c89f44a088fef37295ae53630a1f32a3612b9ca47154c31e4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page