Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++14 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparision between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparision I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

Benchmark extractOne

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-2.0.2.tar.gz (1.0 MB view details)

Uploaded Source

Built Distributions

rapidfuzz-2.0.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.0.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.2-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.0.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.2-cp310-cp310-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-2.0.2-cp310-cp310-win32.whl (1.4 MB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-2.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (3.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-2.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.2-cp310-cp310-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-2.0.2-cp310-cp310-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-2.0.2-cp310-cp310-macosx_10_9_universal2.whl (3.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.0.2-cp39-cp39-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-2.0.2-cp39-cp39-win32.whl (1.4 MB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-2.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (3.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-2.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.2-cp39-cp39-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-2.0.2-cp39-cp39-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-2.0.2-cp39-cp39-macosx_10_9_universal2.whl (3.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.0.2-cp38-cp38-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-2.0.2-cp38-cp38-win32.whl (1.4 MB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-2.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (3.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-2.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.2-cp38-cp38-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-2.0.2-cp38-cp38-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-2.0.2-cp38-cp38-macosx_10_9_universal2.whl (3.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.0.2-cp37-cp37m-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-2.0.2-cp37-cp37m-win32.whl (1.4 MB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-2.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (3.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-2.0.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.2-cp37-cp37m-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-2.0.2-cp36-cp36m-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.6m Windows x86-64

rapidfuzz-2.0.2-cp36-cp36m-win32.whl (1.4 MB view details)

Uploaded CPython 3.6m Windows x86

rapidfuzz-2.0.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.2-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (2.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

rapidfuzz-2.0.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.2-cp36-cp36m-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-2.0.2.tar.gz.

File metadata

  • Download URL: rapidfuzz-2.0.2.tar.gz
  • Upload date:
  • Size: 1.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2.tar.gz
Algorithm Hash digest
SHA256 79cf493f033ad83bf3ef9a71f2b5975490fd5fda9e3a3257c561355e913d26e6
MD5 63e692473b16b775173b7a7b052477d7
BLAKE2b-256 12a07752382d3ebd538051fa648c8b0a814edc5d313f6490f4bb825705fcbb4e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: PyPy, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c0ba2a1065cf621fd66843f6bb3941f34af929a6d277db6b5a20114e6a422c61
MD5 72b83cde6bc4e474481a91d8e80b06b7
BLAKE2b-256 0dd62cc6bb525b560976f7b8ad0ed3de51ee66b1a40bab970894e266107eef35

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: PyPy, manylinux: glibc 2.17+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 db8a9d5b54cd2549424a4b483a0ab4f14d073744092482843e960a021637271b
MD5 ecf1b657d8506297993d0bf30d51169b
BLAKE2b-256 fe05194aa6b165d16c7ee24cd3cc0c106c20a5ef79e9376d9262d5b8b0b23132

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: PyPy, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1cb58ba256e88f57e4e101a91b41c2637eb17b186648dfa2727951222ed08981
MD5 ca6465789bef9697dfcce7b3cc1dd80c
BLAKE2b-256 b5042c27218231736e95c2c62ffcd1618397c7b6cb53ffda330764449577f146

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: PyPy, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 47e7355112edfa6941cda7a95d3721f283ebf7f1f15355733a8f09dca633a294
MD5 dc24ace1c0a7e036a12df510fe0a3332
BLAKE2b-256 41fdc263a2a186fc79cbfe39a3bb0367f74a0643ea976222ad45ed08454f7bc2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: PyPy, manylinux: glibc 2.17+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4610c66c02c0809b8776bcd74be2b8fc1009ee7ea5f18eda3ec3f72ee08fa1dc
MD5 0e5035ee5d56ccc7d4159ec679dcbd4c
BLAKE2b-256 d0c36dc22be9f64bcbad92e51f573cd78e1a51cc455b1418d6cbc15a89c3d5dc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: PyPy, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e1fa5a40307da56f0eafe2b4bb698a419bbe02b5105c8519794fa5def5bdc3e1
MD5 bd83bd1d8d82e4f75a017068cb04de75
BLAKE2b-256 f8c707db6a4fd980cf24631b56339315612d7948a1fafbde89153ac49026013b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 1deae2fdaa57afd99023b065a3c1815bcc308b01190a7a5bdc868cf0ad55ddee
MD5 8db15f72a5cf90d51ca12a4bea614b28
BLAKE2b-256 43a3d76556f188ae90ecf6475a6f8feb79a68c8f577689f550989b2b72e0ca1b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 cbc2dd28b002b9410ad5b91150229acfbf187d177ea9271c482afe57a6565d46
MD5 b961f95e00d1f104d4aa31faf8f785d6
BLAKE2b-256 164991ad3dc4094e1aee45cd0bdf5f712c854e775bb287be93ca7573f6e27337

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dd0d300c6cdaf18dfbfcb2073907b8972db97a61283bf5e7a0ce39a382487cfa
MD5 931bcebbe3c862488ab89388743509ab
BLAKE2b-256 7e780f1989f6a52b5c5579ca39e0bb247e68300e54ce6e1863e1647927e44938

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 584e4d832b5af684f49570abcfb81020713b4e8dc1a3bedd67592fcb6e32f3e4
MD5 cebfbe80e5bab10cef5df9be0f4470eb
BLAKE2b-256 28b916ffdc1ca63406e5c6da9f733b96f045cf4d6b4f0298bf9b489ab0e162d4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0911965617c142f84db3aed10d34d784ea5b553afad8941d6283cf1b8cd86a40
MD5 b0bd0530483ba52551195fdfbe93b566
BLAKE2b-256 90c5940e94a0bd93edbfa053d6b5d0d2eb1b47e6c15d1c9d4f85a255cb287695

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 465a05f78d4f2b724c0bc6a7d2877e943d81344a94320df72a6e25842cac616c
MD5 bd9be142bcd2bb094d13ca016e34413d
BLAKE2b-256 0d1252b3cd44efe28a5b2b34fbec6573c35237621e833b764e4f2d4f1a91608d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4cd10706718491c12e57491f6206896ad10c1bbb860994cc868c38879edb5d17
MD5 c076c559d66587de5c1e2d66241d82ff
BLAKE2b-256 4be3f40d06468a9d54cddcd821e7b84b22f1b486c3b7e3031c90685c772aef0d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-cp310-cp310-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 09e1fd5e01ea3c48e08007b730b6318c3b7aefdc30ffd15cceecddeccc587a56
MD5 29a412623bab979e18a1ac80f8bc07e4
BLAKE2b-256 683e921ae107450a0f4886f890b2a4df3fa73f52b2581a16ba22988ccbc37c4d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e964b1b4d9d1fe02775638ce9a7aedb61050e5db95a11b9265769c67d2b5e9f3
MD5 0124bc2e4d2e183ab2fae4d11f974d89
BLAKE2b-256 34decc7fb071bd0f9d8193c54eef62acd9d16d58a38452d4d5ecb6d6eeeb6ff7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 f28b1367d8eb6e97d901ad9141988137664c3fe674a54482b7d61fc928e559e2
MD5 add1b04d9b79e03a10d0de84cf8fea63
BLAKE2b-256 e5c654dac1a26c1572f4bcf6a0659af157591eebf17a418f2703e2c262155404

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f0b51f6da54a49c0ae2448a7c9275fe60fcc13020a6ca50d3351e16713c7e69d
MD5 8646e1057bd2cf90013196820972488e
BLAKE2b-256 b83b53fdca4d3ae3d8d5e70e4139dd80841691139ac6ef0acdcf54974f56889a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 748166db4a58397173b72ad071c4a3aa99bff6dbe53fe48cb480a7dd21a24b0a
MD5 119373c1dc2daa5b5d9679a034a55d78
BLAKE2b-256 6d5f22bb2b4ec65279179bf12d073131a0cdc7255d27e15163d8ea1d7c97e76e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e1901a2e8174bd02d11a9bec3db2fc2e4a11faf9f1f2ac5f92ba8091b0890b29
MD5 c3fcbc8c61819bed1b2380eabe51008b
BLAKE2b-256 5571e42d0a65936bc9e7dac2fb95056b2dda3da82318704a7d97e34557e93b8d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c8784ea6a2d20e2b7fc9c1b7f3e64f44de219dcf6ec8aace0d36f93f20f580da
MD5 3a5eb20032832923f3beb626929e08ac
BLAKE2b-256 5e17a04d98aea7f1f47e07ea4567cc16718081b02b23c405c4cd90ac8267db6c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0d3214b547634c06a51f489ba37276608fdb1298e00752278a37183bf9d3e57f
MD5 d33b17525aa97a6f7c5c55bf9a030a78
BLAKE2b-256 15a0afd326ca9d341f9a6369a5f0712ad241cf8aae6ebf5861e2f3b7d8acf477

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 ff0df9505c716caeae369b95dcb6c6b06433e073a145278adaa972a31c2a1130
MD5 630d29840ba28b6ea0e098a8534fdafa
BLAKE2b-256 b33ab41efe640ede435866c009ccdd872a2fc68119d5e4f21c2cf38ddb9ac4c2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9fbaac648a472bb0da0559eaa94d7ac3b2e1e2d15ac1e00bc6748ddd8040e703
MD5 c5c98d1aca2cf9be5455fb00f6f9f210
BLAKE2b-256 080e94f9614b574bbaee1fd376599f6630eb25826e5df5e0eaa0b2cbb317e609

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 ba0794a4406a756dfd42bb0580b294af9f785d39247948b0722007f977e1fc44
MD5 089f8356405e7dd95bd5f02406c176cf
BLAKE2b-256 bcbb53764553daf32615ee6278244e06788360342e776e5cf3685b25c8852426

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9e22310ef5cd3bf5375aa938894afba936b512db224a4b78815e047c5cc0d8f5
MD5 a7cd9503e3c640de6e0add3360412554
BLAKE2b-256 a4f585ae78ae333116c9d64a98d0a9aa93d7ffa8003a55f65a32390f79f3a8f8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 507db27f9a435953fb5a3e8b4922c0687cbe3801443d422b1f8e5562e2301a56
MD5 5428a0db5c410bccaab44af73683cdfd
BLAKE2b-256 5774d3fae488ba6e3f74965e9e81edbdc83603417700d8417b4f9ee55b0d7f6e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 71c1477deec10cdce3df02ad2f85f28efa27a65ae9c191825975942de83fddb1
MD5 931a6774b7e2b31e5d74fe1ffa38e5ef
BLAKE2b-256 ee2842f1e35e0fd44f4ce3112c47c8585f703110164481151356e3e53b60268b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3b7bcbca68fff52dd5116078d8d814bde046816e7fa6bc72baa62d82ac04d115
MD5 2d584538041fe412995d67a3f345e6a5
BLAKE2b-256 07adec1b158a330d2b3a34c7daaaa7bd18bff6dc0611d0210cef4642b4cf4385

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d488abef986d21ef43364d153e3e77d3ca82cff6b17d9c53eed2ce4c46765085
MD5 55bde93979b26b501aae34cd1b066272
BLAKE2b-256 c1c382fbf1615def0ac8189c84b43a1cd403f078350c3474974b3a5d8f75eca6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 38778dcb1fbe0c416231f77250a00bce75ae3749e952cf30ddd06c3f6f23ab77
MD5 44f6cce8189adece40ddb3e6f25f99cf
BLAKE2b-256 1b240da56e4cfb4bc0fcc88cadaab8fbf0570a7462c61be6a6637ee1e1242012

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f1ddafa2dab55f4bae644d989b9c52a532a18716f298a3c381616d893b78e425
MD5 0a46222eebe0243818c0246f4ccbdf04
BLAKE2b-256 191c34f11835fd1cd49b6df53017290cd812fb5311857b48345c575f78fec576

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 59ad8fb4c22843afe50cc663cd430eff9ff92f4a0dde716f12afe2f24db89eef
MD5 b1d13af3a35c6cfda39774d5296c2805
BLAKE2b-256 25155e2a88913904e09fd14d3115a079a527f539e4e2bbf3aa587a6152af1a00

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 157c7f7b441163be9cb1a427a35e74984936387f415b7390db64b90e1b737ac2
MD5 53c03aaa991ab47911549ef39b074675
BLAKE2b-256 10a99c35d15e2030a55d418450f7e2bfbc74991b38776371b875be3302c037f8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e0d0e5eb5a040447cdfed9087277dd021e1be94f484acc9e284fb4e5ab08e51b
MD5 b4d9335e67078a259482c8d85c3700a8
BLAKE2b-256 d1d25b4113a2c6af00f9d854d349673e61c4d40beb36e07266cae6e14444d992

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 27d366b76f9394c2fd3bb4270d1823eccff144810dd1c2406542264b24ea6b6c
MD5 1741570e8f2761c9a0ed4697965b5e38
BLAKE2b-256 801dfb177ecbbebccc11c6bd6005577ae24830b01a208d19097d0d4a4fc5f0a8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 70b981fcb19e79fcd833be09af46dd51c035d3d9ece77d092b0ea3ddf822a889
MD5 96b1d8f62ddbb82a9a4d479d7920adf9
BLAKE2b-256 de95fa54b969f280caa5098652cfdfef5110a5406b2af287f3267e408c532ae0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 c06fd4f21a31226203d581073f67eb13941fe3596d0cb25640f8c15e1a152362
MD5 bae16672033b899f02ac122f984c14b9
BLAKE2b-256 24befb1951b901a96066fbd8a1e584ce1a287e1db0dc783073ff1963d9e281ec

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-cp36-cp36m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 f93d9455f1755d290971f97e7a88f7e87aca251eda0bea224b16afe69e5211cf
MD5 c7bc72ab6f04eb0f3087ab441c505291
BLAKE2b-256 1d277b6a9c2ed0cc8b3b6b9e9085fec3ace950ad0c7e6c03c9e584a46ca7b414

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b50018b30fd1f5db8dbb5b8b89c3bf022f0a42ad239fb14fbc1948cdc37ebe23
MD5 7e937330558796cd05b9afbd3a6b80d2
BLAKE2b-256 33d23c404a79386a8dc9453f34d3a3ac8462312e73bc0e27dea6beb37d8b3de0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.17+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b1c832d7cc1392beefe2e33486d5f190961448f9cd2f12df2d534a94256bfb97
MD5 e9c9e9a86c921e73583a55e857eb3ed0
BLAKE2b-256 124e402abb87cd75fbb6441bf707b39b1de492b5d7f02e8ec24d690e379a36c6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 613cea226a148f1ab168df296f485b50b7b0fd3d74198cd0890a5650f0273994
MD5 7c76281ad4deda25fc11f5dccd5a71f5
BLAKE2b-256 edd1988f24b6f25a1f77365d955322e2c8d3f652d3a3d0b6cb4a1890acff0908

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.2-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.2-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for rapidfuzz-2.0.2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bac49598a8993e14fe4259c05c141137391661fb36a0917fbd6632841a583fd6
MD5 3d310da44087e5238e9dbdfeeb7ae373
BLAKE2b-256 74de3febb5b427f4218423d837890c830fe4524441b4a593331d6f133fcb9556

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page