Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++14 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparision between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparision I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

Benchmark extractOne

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

This version

2.0.8

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-2.0.8.tar.gz (930.1 kB view details)

Uploaded Source

Built Distributions

rapidfuzz-2.0.8-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.8-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.0.8-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.8-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.8-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.0.8-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.8-cp310-cp310-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-2.0.8-cp310-cp310-win32.whl (1.0 MB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-2.0.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.8-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-2.0.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.8-cp310-cp310-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-2.0.8-cp310-cp310-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-2.0.8-cp310-cp310-macosx_10_9_universal2.whl (2.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.0.8-cp39-cp39-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-2.0.8-cp39-cp39-win32.whl (1.0 MB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-2.0.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.8-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-2.0.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.8-cp39-cp39-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-2.0.8-cp39-cp39-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-2.0.8-cp39-cp39-macosx_10_9_universal2.whl (2.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.0.8-cp38-cp38-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-2.0.8-cp38-cp38-win32.whl (1.0 MB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-2.0.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.8-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-2.0.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.8-cp38-cp38-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-2.0.8-cp38-cp38-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-2.0.8-cp38-cp38-macosx_10_9_universal2.whl (2.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.0.8-cp37-cp37m-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-2.0.8-cp37-cp37m-win32.whl (1.0 MB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-2.0.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.8-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-2.0.8-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.8-cp37-cp37m-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-2.0.8-cp36-cp36m-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.6m Windows x86-64

rapidfuzz-2.0.8-cp36-cp36m-win32.whl (1.0 MB view details)

Uploaded CPython 3.6m Windows x86

rapidfuzz-2.0.8-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.0.8-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (2.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

rapidfuzz-2.0.8-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.0.8-cp36-cp36m-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-2.0.8.tar.gz.

File metadata

  • Download URL: rapidfuzz-2.0.8.tar.gz
  • Upload date:
  • Size: 930.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for rapidfuzz-2.0.8.tar.gz
Algorithm Hash digest
SHA256 8c10fe54a34a3df6e1ae8b36d3a4d7582328b4f85c8749cdad3218c94298416d
MD5 c899976c8f274273645de5252310709b
BLAKE2b-256 4281e86beb237db7329b3d2b287db15480a67140271547f682192d08150cf079

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.8-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e66164ce9ddbaeedb50b24f2e1b24d50847bdef4684d2f5c29fee72f066cfd63
MD5 87ae32a08272e17bf07abaf131a0e5cb
BLAKE2b-256 9f372211445d52ed9eec6619b06a4461aee41b372c79eda7ccca3706da61ba22

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.8-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 67d8a9506ee6d770c344d0bc222eda399920d8031cc55b6f8f69fba9e47c3274
MD5 d68af4050fca1908bbe5ede3d6b764d3
BLAKE2b-256 b6ee42d1e2247a4fed448653c16c53321fd03f2519d19fdd8056e7b016696c89

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.8-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b973b52b02ffeee5bcf0a20f7eb1982d6f09cd23e05f2cfd79953610e7fe4cd6
MD5 28dc653fe3a502330a08e41159e1c476
BLAKE2b-256 8a702ea7e3e59804858e11292ea50aa5bce04e534d9e0ff97301b756b9333415

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.8-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 920734e0d9cc50b490de887cbff4799972b0a189d16e733fc7a5b1051f2195f0
MD5 4e5f5d7b71a0f69187be1f0a938c6475
BLAKE2b-256 bd9bb632d0721cb4c1711ae2a26e68b4e27f6ecfb0e16c88b06e399f64dd071a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.8-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9a5fbdb702290a83760f517ca0b1b0593afc5860302ac35b922e4e54b9aa18c2
MD5 5bc366170a8c3e1e20bd2af1fb3a5339
BLAKE2b-256 673c5a8bd32941c053a7d7b857346dfcd1f494a8a2a246dac504645ed974c216

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.8-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a0fd2847e649310228a119859247d997ad7339eea3b7bc9faca5cb35094da39a
MD5 664a6ee13ec22d4dd0f6320efd060ad6
BLAKE2b-256 c79ee7bedf010c0cca4f81856cc95e7b6cdf5517539c96f3f3226fbec3a842d2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.8-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b61545b4d87a24a7b8946300243c04cce8bbc9d545215829c4c725719d68ef27
MD5 6e7bf2d3f03ae25e91b122a809d623ff
BLAKE2b-256 fc6279d52c0d8471779ce3e0b94e894f548bd79ed559af561cb50495f3ebc1f3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.0.8-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for rapidfuzz-2.0.8-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 20d7c17d1518909176e04b4d4f1068fbf5da2bae7eb9a9d0cc377524a0e6b95d
MD5 79aa0c50f6dd62e952f6758242e75bb8
BLAKE2b-256 aa0c852c22d264a4b9c3890f811c29d6a94431fcf76f4cb5fd8b33ff65029d7c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c6713c399c145b5bc37838adaef3815e2e5c9b45f0a0203855630e821d3b3324
MD5 83dd060a1e49ecfbcdaecd8423ffaf62
BLAKE2b-256 b40913c385a946fa706049a3899c6cbf947790b1545d73f8c5f3ed1c4dbc2dc9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.8-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 847d69f1f46eb45a155eb7500db79e7beca434141c516c25f23cb060c4f92535
MD5 ec4a1e0fe25bc1ae68591197076da2fb
BLAKE2b-256 1b197696e6d3c164e134431655e103fdb72e370be4aa7a7aaf9e3130414bc7e0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3b851cead49a2e7483c80fa945746c78d44d1e424eee11ac85663c7145321cb9
MD5 18d84e79f9781f5f02e98fa0ff8cb4b7
BLAKE2b-256 eacb4b910eb5482e6e01d7b0bd49086dc22308359b9b155803a62df0c88de22e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.8-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 eeb7ce2762898f1818538798b0c6953c8bfbba625f22fa8fb92d1bd06bb193d5
MD5 5a3c4cdd9edfc12d1bef9ab9d80d333c
BLAKE2b-256 654f5e4c7d4e1445f3beca070e3517232c9f148ee6bf0b517350412ce5dd0463

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.8-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 679dc5e206f5d9f9e3524bf00af946b32c5f255be8e8fc590c2fa0e2312f715f
MD5 21fe4a14523e69df09b26edf732bd154
BLAKE2b-256 74471be0431baa308d3d0b2e9e6a3640046a750d8b6f11f2f0829a9eed3e0818

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.8-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 cca9ef6052dff9929874d28c9542e74aeed0180b9e4885802ff34bbadd989ab4
MD5 c183806706c32ddf58fe2005273f0174
BLAKE2b-256 7efb2c86d28c277535f43c769e8bba41f8bdab88ecea3ec016b2acb37f4964e5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.8-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for rapidfuzz-2.0.8-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3ecdf92bea9e2103ef4e23d5717be21d5940eaaafd7ce93f06adcb0693d54afe
MD5 6d19709a696f3fe55ac51e071bb611f5
BLAKE2b-256 c7a4b56388954dbcb7a943a2d95aad0fd77a338d14378bce07d0c27e5cd601f1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.0.8-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for rapidfuzz-2.0.8-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 5ab7966672841af30dd1567334a641089be5c1aa38c19f8903902d5e28ac711d
MD5 72f4efa50495592690b2c24a684c2464
BLAKE2b-256 7af2f0034883802134ef982b0a3f71c01c07699938661373a0626832429d3e15

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b6fb5fbf088fbd336de3c1fa7e68325b56df2026adc056c85bc3b4b49f3a2464
MD5 4423419f13d4bb20e1307d8f707fc71f
BLAKE2b-256 4da27c09348b3be918be7fb8d680d7a44ed7f189894c960dc47473e19d778cce

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.8-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8737bfa7bf49d30f2e0fb9dafcb4c54426c217832f8ee14213c681163cdfe639
MD5 8a3191901bbf7186f36834bb17cdb19e
BLAKE2b-256 d3d8fa9301a11eab4dcde48d806ddc1b87632a48142382be12786342796189aa

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bf790625db6fb2a986a8e9f82d7eae0510b44fa84ab320bd6c71dc4d60875342
MD5 6d9505e7c7929db796709920d12a6ada
BLAKE2b-256 7df1af97343e678df595f58a65e90b0e1ce65791b5c9ebe93d51ce4e77a67386

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.8-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 95789b2dafb2264917b62e313b12a64d33906fbce33a22ebcdb36676da262922
MD5 9b4e097a0c0c2b4e6afbb82a9d282d9a
BLAKE2b-256 7f369e7fd305e1d0b94edc0f351f401a62677d387f76ed23c580e3d5b47d05bf

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.8-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4b5eada5abdbd103b9b53abd0325234cbee6f200f1da57542072cd6bb0cc3c6d
MD5 2d93895f440f605b63bcca94e26e14d0
BLAKE2b-256 6feb10cc323c6ac54af61a79f1af8fe2cea192588e3edd527ed8aff23a02b754

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.8-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 095039ecd635329a5d02b017afe88eceaac18fb38d4613b233013e1aaaff4309
MD5 455a7ad2c09d2efbe9ba70582856fd78
BLAKE2b-256 3f16567837776070fd7f6730a0cbae2d20da939208ea70c4edae36058030739c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.0.8-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for rapidfuzz-2.0.8-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d1df1c1432c2e67b0018f2d8a0eaa088456a6d6411844d0169bdc5e94c9c561b
MD5 b34d1e332524b2b2a5e76ef2c90b1e2f
BLAKE2b-256 e35b7552e5049ae45f0faf12481a8a5c1f721be235b033b148db6d032690541d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.0.8-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for rapidfuzz-2.0.8-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 8aad5749e3db4de20680905f1fc1438a0715fda71f447df685b336ed4e10881e
MD5 482ce75942b4684a5512050f1d3678e9
BLAKE2b-256 d0d55d275e81951f8bec001345ae3cdc3804ac79d110cd45cd23d811d7e0cbdb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9eed9e83074ef7cd70a726c41cb1d3344387012094afec607f477cd58a2acf5b
MD5 cd45700d9b7e501e972e187facff2175
BLAKE2b-256 80d06df2615bbb5aea398184c1e021e7f2a00a7fb150686f16043b9398ecb92d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.8-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0a37f999090f4948097458f713fb075ca1dc3599bcba7492549c6ac7834ae0c1
MD5 c16df02b111f9992099d1eab7af87af0
BLAKE2b-256 a2977ebccd1ba8795454d98c5e45524a947e3004b1e3ae264c47cc6b47a7acae

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 af58785a038aa559dcb2879133c19fcb15cc4f60b836c5090a125c70b9b082f4
MD5 45c501630f0aadbc49e2f1230d768c7c
BLAKE2b-256 3c38a60e75511c4e97e1fe494666c62c2afe72fdc980c19396df212ee0eda796

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.8-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 17ec3ae195abb753beec7158988a77df52540b8df5faa5e30ed1eea4f4baae9e
MD5 ef93b5e274d735ae6145ebbc10213426
BLAKE2b-256 974b2c0e670232e7bae51496677e7b9df4eaf5d708bdd71cd66eead98033b3e8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.8-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f92141bd6689b5fe7ef6a336009196455a0a588ce7f140862e42d97919b8f085
MD5 1021e02d6e9f7fe391642d58752d5b01
BLAKE2b-256 e152b8a562691070a67493fb709d0b6838276bf9795efe4049a506dece8cf4af

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.8-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 87c5389186eb11eb3d1773a8ad2c9f7a174c03707653d564e2664332dc012629
MD5 c1f1e0ba81dd867219df26d600fbe76f
BLAKE2b-256 4f82687a20543490e08a6956e9217af902b6090e826c9c3784f08b544ad090af

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.8-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ecf60e40c750576c698f410fcd0c18213d4083ebc97d8ec0bc9fba23938de19a
MD5 5cabf33b8dd25eff95f4ec062e634c25
BLAKE2b-256 fcab14290b042a286bbc0dcb0faeb9018cfc003b03029b7f479f8f1d0eea9b52

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.0.8-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for rapidfuzz-2.0.8-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 eb1ceb1f189d5f43326bf73dc921e72b134e1e3a3b66703100fd06903292815b
MD5 63313293bd0e824a7662233d55d043e0
BLAKE2b-256 133af19241d0ca976781c486809785ce762fcaf279cadaedabd02908541af63a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f927c4fec1a1f5b759d936892d4a92e15db430fbdb2441b400673b089156a9bd
MD5 38f67dd6a9db8757916059379144abb1
BLAKE2b-256 c7d12e56c9989d900ddf9f1f488893d0d4cb752bece0238ed7de83457975e2b3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.8-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 026246785c43ed392f6c67a032e714ad6eabda0cbd01c21f0de082b8e975939f
MD5 0cf6981c4c288b4a067e2036fb9b0310
BLAKE2b-256 96c4c39c675fb65332aa0666e8ad3798f45bd9498af9a60d7198e5dfe18cf08f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.8-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2226d8bb16cf18fd5bb3d7e26cee5553b702eddf5700880d94dd463c9c256fb4
MD5 70352d0ef58613abb8280c933023a2be
BLAKE2b-256 3d254c6962dc4d86c827646e7f28d2667cf2e3681095d4c47cfc66880cb3a7dd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.8-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 07e64fff5d7c7d83c3859fbc106f3ee853cbffca445dec61a7312cbd3edc1400
MD5 b6f7048d8da32a7be7bcd3b7f45bdf99
BLAKE2b-256 ce169db16d4830b00108a441499dbcd8f1e9d37cdf10153eed45789fe08ed895

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.8-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 83f02fd7e497ccf10a6cd61807915cc68f2771fdfe77b99cd30551661037e4bd
MD5 d5197916426649a2ae017b39744e3541
BLAKE2b-256 588b0125088953cf6257e899a86c5038d95546edcf746134697003ef34762348

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-cp36-cp36m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.0.8-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for rapidfuzz-2.0.8-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 03413d3d71a0491cd619834911cb8fcc8fd278eee56bd5b8db126e91e8e9d74f
MD5 91d39dc0a9c0a3b7b31bd4df938fd715
BLAKE2b-256 617472edfb8b15dffa4e7c118d1d33892e030de0bba046df7f8cc93024cb52b4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.8-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9937c1ea8af796fd171ca8d1c9a73097556578d4f13e563607f81313dcd0f54b
MD5 f6f62fd1b1b090dc44b07ea733d78239
BLAKE2b-256 fa83c2692cfc10b3100b5d6a7cd68d4b1b20dcf3529c7e2a109d71bea449ac57

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.8-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 91eb3e2551fac02b29279fab14e942706c28bd86f647193929e283f33ed9cfc1
MD5 4e6fff5deefcbfb0415df9f0e8e6b46d
BLAKE2b-256 6d9248a13417815cc03a70b85979c2ea2d3092922402d688ebeb6a7e28d745de

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.8-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f0c51a543263de32a004200b528297c3a5443744b864c329f5198a86e6bc98c5
MD5 fc20cafd1deb82f9ca482c303986f7ee
BLAKE2b-256 d149857233c512ee9521ef1c688ab4867fcebcd4c7e8271bc4496fca0a1cc9ee

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.0.8-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.0.8-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3cf4c7383190375a00edd3c357b303c3c082740a7cbf34bd9288fec462f26e90
MD5 feb6d6b4735b288b688f256f73d63224
BLAKE2b-256 3a166dcdfdc9860ee93262d06d58ea7bb6a122757c3069dcfbb58460a9154322

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page