Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++14 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparision between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparision I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

Benchmark extractOne

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

This version

2.1.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-2.1.1.tar.gz (1.1 MB view details)

Uploaded Source

Built Distributions

rapidfuzz-2.1.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.1.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.1.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.1.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.1.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.1.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.1.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.1.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.1.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.1.1-cp310-cp310-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-2.1.1-cp310-cp310-win32.whl (1.1 MB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-2.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.1.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-2.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.1.1-cp310-cp310-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-2.1.1-cp310-cp310-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-2.1.1-cp310-cp310-macosx_10_9_universal2.whl (3.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.1.1-cp39-cp39-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-2.1.1-cp39-cp39-win32.whl (1.1 MB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-2.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.1.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-2.1.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.1.1-cp39-cp39-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-2.1.1-cp39-cp39-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-2.1.1-cp39-cp39-macosx_10_9_universal2.whl (3.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.1.1-cp38-cp38-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-2.1.1-cp38-cp38-win32.whl (1.1 MB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-2.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.1.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-2.1.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.1.1-cp38-cp38-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-2.1.1-cp38-cp38-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-2.1.1-cp38-cp38-macosx_10_9_universal2.whl (3.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.1.1-cp37-cp37m-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-2.1.1-cp37-cp37m-win32.whl (1.1 MB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-2.1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.1.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-2.1.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.1.1-cp37-cp37m-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-2.1.1-cp36-cp36m-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

rapidfuzz-2.1.1-cp36-cp36m-win32.whl (1.1 MB view details)

Uploaded CPython 3.6m Windows x86

rapidfuzz-2.1.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.1.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

rapidfuzz-2.1.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.1.1-cp36-cp36m-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-2.1.1.tar.gz.

File metadata

  • Download URL: rapidfuzz-2.1.1.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.1.1.tar.gz
Algorithm Hash digest
SHA256 5f24f1e50c7bf0907995b3436bdeab4bcbc033ea5d2e850be68d8da910728dd3
MD5 6d816ba6b047268a088a0288327be588
BLAKE2b-256 5c9dcb0d101f975d3831b7f41742c997150a7c960fb4a1d8132a033e55152734

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bba370d456380976ef7ee601ca85afc000eef55fa637153651a57a61e3d0981d
MD5 f55ce3e6a075ea5a27220701485a81ea
BLAKE2b-256 2a90b047f3ac0655216d022dcbb4f90fa60f8e5d0fb5346a06e8e91d8fae1df9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b247cf7ec86221dcaed7bb39e9e115750ddf9d4c5842f4dafa4b31ed481efcef
MD5 6cbbb927311f29e16dc8fcddb50df7b4
BLAKE2b-256 4b183cc7a03fccb2cb80e1bdc03c869c520826dfad8938dea3dd4dca03bf5bff

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 eb559cd4172bb283ddf3c2872dead126d12c338a6fd12362747412247f91f797
MD5 86a66dcfa049d3ec149e2eaa1857c629
BLAKE2b-256 014cc5068a8615e5e1f79c151b03c4d7583f213391fb8140d941af223d65e8b7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a6f043221775705dc14f66d675348f0535f9580ab03e4eee54148e9169dacca2
MD5 574c2451a15546dea31d64e35b0e814a
BLAKE2b-256 67d722ef6f3e3a45d7528cec11c67d53f52c29e209083d1fbb22b85c357acbde

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 222f77c93d66439470f96d2e6642e50a233eb1419d33568aae13116202a36005
MD5 f3469e849828d500bffbda7dcd20f24c
BLAKE2b-256 1e9238529e12979f58e3719308d6d47abcb03bd623e739ee1541af5b16b48fed

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 40d2d78ef4647ac512465827b920a95bbe4bc7f80987550ce869b05ae74cc440
MD5 afca025caba46bbba63cf31748ef6e4e
BLAKE2b-256 e7967632f7f5ba6f721135f8474df7bdd5c1568c726fa2ac72eac872e958de90

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b99b7af893baedd4fdb2e3f9f1bf6274e08ff1cf6cb4ed241d10070a52b2f80a
MD5 ac70cad696310bacab0f682180a3a9d2
BLAKE2b-256 624c3a4727ad56fcd95e5a537c22923e8583e082e1981e2904faa35af7dea967

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 777d8fe1a16bebb41d829326771cdbcc8c3eacbf6aba20c8f84c1e09466185a0
MD5 2ba1655334f8f942f29e738bbca8c06e
BLAKE2b-256 d7d90bd0b0c40e0110f5a55fd742854a75fac99919e3cd76ef0278d3790e7f82

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fd902806d770bbb8acef1e86b9e792b633d1cfcc494495905fcbe486941fee8d
MD5 3c77108d71346c2c56be0c33a2a47955
BLAKE2b-256 b52fbdd6b4a443fc74ea8888828cfc12c13658ec0d2eb440d788a2653262b0fa

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 29252aa47c4204ac38247fd7c420ab81492bc53397a4389a43e7da90f09dad6b
MD5 e6d16b0e41c69e0e86bf4f6d2c86cbb1
BLAKE2b-256 9eda087c136f55b8adf5f1e59bc32eef056385fe8a0753567bb0850893106c57

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.1.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.1.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 3a0c73f6a71574616e35b410011083df10705d70d90100e8272236ddf64abbbb
MD5 1b4aedfc486e8fbd5f387a855a60c870
BLAKE2b-256 705cf64b8fcb924c338efbcdda557b4c5ac17aea4bf18cbf9b61dd44b6d7d20c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fb0ae3a242c261a78b17707b2fd7062473cee22ac9baab987f9feafc8b1763e7
MD5 94104b623f51aa74afd7a7630b087acd
BLAKE2b-256 1c3fdab085c11bbbc5b89999aa2b164ebf237576d260a46a6a1e52324e402618

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 fb294e809846f52f13600b608cc8db3a7fbb9f683b7954f819bc67186af1a9b9
MD5 fa2e852f1c14059ed5c78aa314187d32
BLAKE2b-256 117bff69f2299c90683dedb5ab8a6c26f15a5c28f0a7e1ca7ac6fa95581e3891

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 77d56481807927c8cc2c949c42295b75c2d2ed23c7e4ad7cb9fdb67076ef1d8a
MD5 7ab8ffa391e5280aaf9154bcb694aefb
BLAKE2b-256 29e49fe8c9170113ca5965c8bc64482af3191b3aa62e67a67db6b9b1377dd314

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 91200fd4a7dd031ab15ab8947f201f8a3193175ace75ec93caf5b9f04633441d
MD5 58f75162bc3c64dd78ba9be88aaf6ee4
BLAKE2b-256 2a4900f74c3497567ce5443da95733880e04d8d6e1856ae7a7603bfeed318e1e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b34fef17ff0a0b2fdf0c1cba8b1fee7f821cbe41a77b494b158aabe5ef00e6e2
MD5 5d9271230d2d04e0157040d80d88af8c
BLAKE2b-256 b24d1fb4a2d0bcc2e30d7b923e2409cf5a160927e6a8f48ffcb520c7904c435e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d671438ba246a24a2183bee718c726a7800c93998008ce5621b2d9a6127d209c
MD5 69c7d6db745fd2a7a6482e5761294119
BLAKE2b-256 207d82d347a4d0c1d4e97bd3c7fc3da9c71a3ec413439c476bab6e2e2683e986

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.1.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.1.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4ac7033aca903ec62c987a7dfe47591a3e1eec83a3ea9342abcd3c52135a14f0
MD5 f13a77c16010039ad30afeca4d29b850
BLAKE2b-256 b6c16969a28c8a3635f56af5cd180e2e6717f6269a30572d3fe7d67bf434ffe2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.1.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.1.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 7e8e7718ecacb7e2baf2cae3cace51b07c7b2756255e4be96b7bbd6aa55bd32c
MD5 2857be53b97392c0685c286bae6d9c52
BLAKE2b-256 ffa072822f58c1c4700b13699199dfd0c978f514fb4f43d5d77a63d7251416f9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2103f58bf131c1a5622d393b7c75242fb9306d868e5f0730471acf328d0a453f
MD5 417cea92950047acca812e9f7e97089e
BLAKE2b-256 729b1cd3bd5c4b450b12cf75c721fed0963e77ca53c4b5a7110a65e98f473bda

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6673149bbbfbd93c409d030f0846429f0bf6de0c7db047735d476f6f8436b784
MD5 6cb22891623d912f7596bcaf60bdc2ca
BLAKE2b-256 48a3f70cd72abf1526f6e424936072820e88743cbb6d0859ddf360d91a7c467b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d6150f469cce2f6230a2552e5126e5a74fb92ebc2da1a34af5ae0ad56e390daf
MD5 b218e58caa91d3df21b87f1e67fcfb50
BLAKE2b-256 da0adcefe8b1623a62baf47839ee762b52e5e26f45e8742db936f09fe7c647a2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2f2e87bc7a4c32efb911c6cc47954546787bffec6470164005c50a465764163f
MD5 23a16aaaaaf7335bd6ef9a702e9498f6
BLAKE2b-256 a0220752dd0999e96b949d9f1e384c1c512f3337a2bbec1339fb4c774689dfe7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 942e82693b0d31b772e594532e66fb2b841660a00d62acd3ad4ed2dd3fab3634
MD5 4f90af38f662401a71e50c83f3158a85
BLAKE2b-256 f33b0ae9de17925e662f929dc49269d783b237dfe7629661caac59f8b05101b5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 798ffd1ebcda90ceeeb5bb3c11744a53c5b08d63b28a7e8ecf7157bbb0f312f2
MD5 79aa6d93056a8f86fda3318eedd58341
BLAKE2b-256 a93fb4dbda1136302123ae47683d18d90dde062161ae086681f7f93a7ee48ad9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.1.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.1.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 49ac900ef21705ca5a1b2e1605ea96352a82fdd1b2733ab9728ecba1e81cdcbf
MD5 f63742f94316e7d38b9009e618fd5977
BLAKE2b-256 414ceb93fabb2996e621e03f1173c31e32098141945b32b601a8637382a09008

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.1.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.1.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 b32891928896d1bfbbf22fffa0129609630367a31faca15d563c13be21e35088
MD5 16259886d9251891926ef303731bf09f
BLAKE2b-256 16e25fa25de09a651c5aff6f8bef4bd8a1c06a59b1f04816640624da90477de9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e7980b065f42b9f4313d71fd5127f4f8df723ce1e017600c28f7e40058eabc2a
MD5 8d6be854096deb70f19612f1aca52d8e
BLAKE2b-256 f9d745046f4dec5539033479937cf4649375aa30b2fb097855803de22a27ed0b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 51eb831db50fabd99047ff27337af139d89ebbad30247b7161a8a899ae598216
MD5 32e13b15bff574a14658f2d47be3bbdc
BLAKE2b-256 09912007d688776bd82f0def7339727ba4dfcd33c6ab816384e5e652b6321cfd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cf0aeec4a133bf7fd14c28c338b4160ef637b69086bc1bbf00eb0fcfe49b32dc
MD5 acbcb9f7a934c6a374fbfb474ba99eb3
BLAKE2b-256 f82946c03f022dca569d2867e4e873fbb2d8231979b1f50eae4efdb6b634b464

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4c55fbbbe5e9b17a8286372115eb2fc69b113b1c4cf9b76f8eeee6996dd359f1
MD5 ba840a8636ebafee08f8fe73bd8204fa
BLAKE2b-256 4da0cf02f4121e6712bb47b44d9529569dfd70457a6122708bd53f63a089ad81

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6e4a0befc7196d3feca164dd705c06c957dc8546836ef09c315454225f955b24
MD5 7ea3f5b96b8fd53f8a320382eb295d3e
BLAKE2b-256 e5cbfdcdf94cbdd801fdc65c8d8c8d35a433fdb3f97773b7192f9886629072b4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.1-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e4866f8e7036dd16df8f4d49925e5703182b560fdec5f3e647bf7a008361a636
MD5 4cdf588917bac9a7748c276086ba115a
BLAKE2b-256 c30ca77903be71adc9854955600e2b5c8602eb4f02ff948bc32018f93b94d53e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 1699deb07191776ccc32688c63c20b7b46248225c0c1b355976941a95dc22358
MD5 f2b6b25d2449b39a5b96add5a5ca3c80
BLAKE2b-256 c052c9ffd9517fdfe1e539213c4c39a3ffa6fe8db1e5c8cb0952b5c519fd664c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.1.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.1.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 1624080c181322a945ba743901f72c0678b7c18b9305d263aa77339bb5815d6b
MD5 5910870dc2a9f28c6d516f2e3070d296
BLAKE2b-256 fcdcdc42b590f95f3877c88e7a3dbd87f756e10b1a7c7a94f4962250a0319a5c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 849134521ddaee58c550256bb8d867f534867ffbcb316423a07c6554ab19fea0
MD5 976265c3e0f2b252bca69373a10b62f6
BLAKE2b-256 f3de4db5b139572e05e91bba624f8b8d73f79858e453f53d218a3ae8767b008f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 36812a8c21198b90df12ecd75ae5616f12a2c747fd6d908a8110e17afdd4a564
MD5 7eac94fe836d6d6cbf799c968022fab2
BLAKE2b-256 f3f0240ee59aeb8ca8ef6e6fce32154b419d613e6c6a5678f01b860bd7a2f7cd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0e2951c307414c897ea58bd88ce5a41b8997c95f4e1e0179e898da1324cecd18
MD5 1a9288e2f2fe5854116e1439259d2377
BLAKE2b-256 280419d83dd9e3976ff388ab157dd7b428377803750f54860b40528398a538cd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 16854608ee5cbb785d8acd6b3142f41ace9ee8a8ba9e5a738c04d62dbaacc3f2
MD5 f6fdd8359d19e03f0a5bbbca4b664e86
BLAKE2b-256 4ac207c71bd40ace77a623c776a5890967575042a88077046c24d1ab79bbd770

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 e31ef49bfa94ac911ef26888569856d80e97b9d45336839110aba9e79bfd7793
MD5 6f8cce4646ab488424a51d76448550da
BLAKE2b-256 f5922b0b9232fd519c9124bb9635a2e5dd2d5be8fefeb556eca89d4c1d1d7ac9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.1.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.1.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 20cde03b30dab5823bc4e26f106844f813a5b06469dd3fbd928ba847622f877f
MD5 4b3de0988fa8bb2c4135ce555dd29ee5
BLAKE2b-256 74bcdc4f45344947543f38d9971fc27153396cb8735d590d2cbaec3a9aafa9e1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f7eec3652fe70c3697abcb62222f0ab9560a3979a2ae7d227b5b948d84a063d0
MD5 23771ca45e251a48563656c2bc01f579
BLAKE2b-256 9c1c6a460f3f069011079fd7ecef39d52f96edfd4ed76045c01a2f3bd8dfe864

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b50bf9dae2a4a20611390c0844766695a5cadabc721298f84ab808e58079acd1
MD5 a00b13cb3217a5beb3bf6e00963521d4
BLAKE2b-256 1b4923eaaf6ddb0973e05d37c6b82108ec6e5e51f8b463264fd355ffb56cfa5c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 803b2ad02f0c04553efae8c61f85aed0081c3ca81da6039a19212f6d976433df
MD5 ccd37022faa33e779e2a35322b9f0f78
BLAKE2b-256 003e77b68686668b21caecf85346aafc1acd865bceda5864c3da807341734dfc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cf3417eae74d271bc08501516b4529b8196c922f99cd44a8386f498ec7e91111
MD5 e30795ef18d0a8eaf9069cb8ad4fd9d6
BLAKE2b-256 824accfa89543d8a89cfd0d60a8167f25f95c1ed5ed731c82b8150c6abf5d424

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page