Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++14 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparision between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparision I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

Benchmark extractOne

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

This version

2.1.2

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-2.1.2.tar.gz (1.1 MB view details)

Uploaded Source

Built Distributions

rapidfuzz-2.1.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.1.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.1.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.1.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.1.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.1.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.1.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.1.2-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.1.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.1.2-cp310-cp310-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-2.1.2-cp310-cp310-win32.whl (1.1 MB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-2.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.1.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-2.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.1.2-cp310-cp310-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-2.1.2-cp310-cp310-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-2.1.2-cp310-cp310-macosx_10_9_universal2.whl (3.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.1.2-cp39-cp39-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-2.1.2-cp39-cp39-win32.whl (1.1 MB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-2.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.1.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-2.1.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.1.2-cp39-cp39-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-2.1.2-cp39-cp39-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-2.1.2-cp39-cp39-macosx_10_9_universal2.whl (3.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.1.2-cp38-cp38-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-2.1.2-cp38-cp38-win32.whl (1.1 MB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-2.1.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.1.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-2.1.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.1.2-cp38-cp38-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-2.1.2-cp38-cp38-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-2.1.2-cp38-cp38-macosx_10_9_universal2.whl (3.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.1.2-cp37-cp37m-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-2.1.2-cp37-cp37m-win32.whl (1.1 MB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-2.1.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.1.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-2.1.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.1.2-cp37-cp37m-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-2.1.2-cp36-cp36m-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

rapidfuzz-2.1.2-cp36-cp36m-win32.whl (1.1 MB view details)

Uploaded CPython 3.6m Windows x86

rapidfuzz-2.1.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.1.2-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

rapidfuzz-2.1.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.1.2-cp36-cp36m-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-2.1.2.tar.gz.

File metadata

  • Download URL: rapidfuzz-2.1.2.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.1.2.tar.gz
Algorithm Hash digest
SHA256 4cdb7ad70770a3d9342c1e2541a8cdf07629ba53464babe20b8236ef9a7ab0fd
MD5 b437d00bccbba5b974a064b1ee0a298e
BLAKE2b-256 afefe938b6e0e7d9b3f894bdaa9b444ffd43a94b58193d31085749143e31dbc0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5d9de9ac2530a8ee1fdf18ecf5c102144444527147629dba5ab34feb367f786c
MD5 958f2daa2cabc8b930969b77087937e4
BLAKE2b-256 e214aab008a5ffe0987891529153f782ba34b77c80ed42c9f7150bc60ad3af72

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 53adbe15b0344d9c03a9f4d54245368df4af5c5b0811dc989ed0e1967b442778
MD5 6b39cbabfa657fd00b690a2ed09fe11c
BLAKE2b-256 dee853a9754fc883c1557d4d1f75ef84b5bded2a750b70488385d9115e25e92e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7c1f85a86177c6a4f9a5cf7e6ef052a4e044b36f3e97980080e85b1c5d010566
MD5 add35aee09024d5bc7e41e670f9c29d7
BLAKE2b-256 fc129e74b53ac21883efc53da0e9018c8e34e4cb24b746962a70b0d4d651c324

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a2b5687ffdfad43c7d3f484f1b5755858d05ce3b7b04404ed6ab6d27b98feb70
MD5 c99ad943fc67c9dd7fe64aeff377c289
BLAKE2b-256 e5f529c87adbd8e14232f7f2432339c52fbb05c6c80381b8b3bf2ca4bf096046

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2e4a2368ac9cedf45437bb338e14606d0d6c531788f32b7a209b153ee2d28aa7
MD5 3a0ee8b92aa58f3f143dca3d2ab530e0
BLAKE2b-256 0cb0216c55a3f0a3fc3d323e1516a722d7f264316d33176dc2e9b025508f9857

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 be5e6ce4ffd7a8e43b71e3e93b73f7feda110aec8b572d342599c589a21e848b
MD5 990571c52c4ddbaf5a3a0a46eb4755e7
BLAKE2b-256 6688d77e49e0139f3a81532f040877688cf2a5954a4f449568689e602f69bdd5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6bf76a89a252d4d12c9599e4db3abcace5150ee030febc1ea8d3e3dbf4b3b7b6
MD5 d23c246454f359c404ebda2c789c8fa4
BLAKE2b-256 00c7f05539ad8c754ee51c9c50a97d8adf3aa21aac42f493865a02ac3447f730

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.2-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 22d832762ed58e91996cde0744056bfc88b912e81e7353f548be079e0e875de9
MD5 0f4faa719afebe81adab1b3e602cd637
BLAKE2b-256 772e20e1ccb8cfed9f900b801cbcbc4a5843a99a3519dfe52de4f75652f41b81

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d534607a419e6be8a3a182e4a4d6bc03fefeabacd9739588ef4dc652a7666f2f
MD5 5cdb7144ca5eecb8c586796ea5747bd8
BLAKE2b-256 ee1af38a37e6414f54ef82ac33afc9fee94cf632238f3d01529106e8785f806e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 21738c290aad390d592fca0feefced99a4cba55603999696b635906e0c045bad
MD5 8f447bd7136c90303003b8f975d88cb9
BLAKE2b-256 26d41c3fcc5d85ce44effc6411abfcf519b33e534fb3b43feaae68bf41dd2d72

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.1.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.1.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 f6a35dceb8af55b75f004c19dfd125a496f530197894638ec449527bcace1974
MD5 5b5270592d6ea7beac5beb3df63b46e5
BLAKE2b-256 a91d7f4337a617bc13a0a86373b0be0e9a3b8c3209637f5bb5267ce4a25b7f48

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ef12b7228df2da8c5e7e85ec1b44b156ed7e70977a8a2e2fa2dec6b68250e915
MD5 2d9a5749c6dd2702c92d90742a3e0a4b
BLAKE2b-256 8b615ec709986e817f557dd2afd037f0016503834c9d52d13bd7aa4ee48b089a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f5f9221f4f446e76331e79461a9799736576d47588509bf9b36b0efd8a104ee8
MD5 5d27c543d38841eba8ab70ceb2e821e3
BLAKE2b-256 837eb6fd8a3aff19447f1a214021b801be1990daf6619b25f015f46f3fa3181b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b8fce50329fe7ace1708bef373854165885645d701bff24514f0fee5428e00eb
MD5 6da4d8735a84b561c3863e034511d29f
BLAKE2b-256 669c9c22e2569d1a6783fb6d6e6ab7edbb0d044de2827e793e890b84edd01e18

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6ea48bd32d0192b1de55d79685fc620529ca6a89e1a8ffa0cb2d2bf81f23130a
MD5 b365212f30f7845e5c3fe4d22606b0f5
BLAKE2b-256 6512f2cf0987da58c70010ecca2e3a61b9c243c5a390730b5db23f5d59a968fc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 69dd34ac9afb395f8fd33358de46206c70de08f561f03e24aefbc6c171f776a4
MD5 25dea3c964fb6a98ad6b78140a34ea3f
BLAKE2b-256 00e4932280129f90011591552b327e5e0db916f3c37d46af7b8de21a1af6cac7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.2-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 55e1553b37e9074b2aba15f59d76db130f9c05f7e77348c93799250d52778506
MD5 cd91ce932a47c4bff3e0e560981053a2
BLAKE2b-256 0234e0d9f8476699f060b381535b1582759cfc55026f73a3c65553bf4202672f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.1.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.1.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d7a38f175221d0604e78b0b1ba43337cf1f2e130edef6f819e77913e8a45be37
MD5 5402f81ba24339b31fe6ccc2a99d162d
BLAKE2b-256 19246404b082074fe5a0696c617dab3657780ce9381771fbcde49c309a6ee7e0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.1.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.1.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 4e665b3fd86768b20ce2b4a467355dbbc5b0788665ba4406ba4c13eeea192a06
MD5 46480e8ee3222ef1d278bdd1ad7f58e3
BLAKE2b-256 7df39ebe49c6add891b5dfab0c13585b9ad19bfeb133ba2bcfe65ec5bc7ccd10

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 017c16ede1ac4e280ad4161fdab513e15f09a28b0d7e03c15be4ed926247e2c0
MD5 a1bbe54db9569b28c412a46a40fe341d
BLAKE2b-256 1657fc908bb9f2c50db4735faa3fb5756bafc98a86b290449da9fbaaf075d308

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e66e98687559d299ecfc97b166afbc2821a1801daf12ba5b80b57e0072689a3c
MD5 f5a19ad3863ef0db934a080f7f4176ea
BLAKE2b-256 c4e9c875ab2bd9713a4420ad5c2f8bd36339c96ffb4beaf89798ecdef0a1f72b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6958f2842cb0c05f218a8fb4d40f4523f0c772e757e8fc32ccb84dc4e02c3ebf
MD5 fe14057eeec1263fb4f1390c394a50bf
BLAKE2b-256 0ddcfa7ce2af552e84880216c5bf4a1bdf8de2b240795298ab49e79764d9a5fe

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 397b5fbd35c0629539a49bbb85dd0510c5a1b8ca73068c3d60b6181d647a7e2b
MD5 7f24d75a03b053fa67595b97fd68059f
BLAKE2b-256 d0d4a5f65de905d5e8143b84546cb6a08ffe700560870c1ee4e614997a6a4c9e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 19bb5976944a65210c425c8487a1383db5307c918de7a0988edddc2d9621dbc6
MD5 51eeb40c0c806f7544eaf9af92bc7621
BLAKE2b-256 e6ada49efc7b4e4f47efbceb714baf7c49455ef361ff5f2b9ed7d517cac2a75c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.2-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 83cb4f00c5df3ae01ec96f33c35e2c026e8c39c44410b6c0027420470176f056
MD5 9ec8e88941187fe15c1584cc864676be
BLAKE2b-256 1a053e32a42a1562b3d536689878df15aa1571748f60041567eb62cad1f1d308

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.1.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.1.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ea3147e4560b93c79aaf8c85ec74e53456ead8ac43dc2325728be74e2e0e435c
MD5 56a1184a493572339f1918a95ec07ea9
BLAKE2b-256 ab53bf8f39cc5d9e010d7a73fa1da1f40b7efea055cb22f38bfa9635f22472f9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.1.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.1.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 2cecdb5838caa46e5109f1ab24b9cb23fabc4f9b1e00f524808dede034b57ed2
MD5 289c88960ab5fbb5e58c3e20efa61430
BLAKE2b-256 a94efe8eadca8e658abf6f3134dc1229c9ede11f9009f27edd80b7465ad2bf38

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d4c9fdacddc25981264252f31605bcb93e2806df0ff643880b7689f6ab922d52
MD5 867d4199033ed9cb5d90e52e2eaa659f
BLAKE2b-256 3282163a86a74af3dfb498ea5489d68784b74afeb9414664017f2f6b8c8b6dfe

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e7528fe8640a17de39ce878088a420acb2588e5390f899f8cdd613ce57e0b1fe
MD5 b52825bf0cd422cd1bdf978115601bf2
BLAKE2b-256 a0e1c07f3681b3045ff8e2b0b24930169e240f8f8ab8cd7f64cce692cbbc007e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8a68c058dfc1ce30a59e11f4330ef7b8ad56ea7f26eef379f1527adeb9a670ce
MD5 5fe8319339f1b8e6a17a3bd046878415
BLAKE2b-256 b5df7960052f9c6dabacaad980e5ca34f6d5250e65b9770350a9440c42bca200

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 60a92c7acd3474666e4c8ce67d298fec71ba5a4a9b1ee0b66aaa6a3b204f5e57
MD5 921cb357258e0644756bb793f40d6287
BLAKE2b-256 e238f8c39677f5cea352afa97617a41b6bf63d745b065c5e7c7c91f89652fece

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e9e912ad5fc5a3ab18ebe0e2084bac3d12bcbe0db182ba273c8fb098c0c981ed
MD5 6e4b98a681f1483ae4f4a15ae1808008
BLAKE2b-256 e8abe32eeaf9d1638c07607e38b8ccc029eed7b1d620acc5702e19f4622523df

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.2-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f6a608296a51208dfc771889afd090bb56575ce96c010d09fa3220d8a7611285
MD5 03b38305bbd2b89b98d701d1b346c4b4
BLAKE2b-256 abb03ddd27bccc03e1baaede743f80ae02c5c7a17a4a52016fd5fb0cdc2f4e6c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 696baaaee711b623c8e8c73304152d65e852d5a8cd50db725e1d1c10abb16cba
MD5 797bae95b96312f7df03c038966e780d
BLAKE2b-256 b5a2b72d67ad00a2a39d8b2db491dd50c52e05c639522cc16a5dac9c95e52ea1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.1.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.1.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 814519b923c771cd5057bac08698ae74707a160c390ed0ad743f08977b9b8faf
MD5 7c9f30ac01bac747b356d47df0bb02bb
BLAKE2b-256 d3484484e0621ceff7717319f5e199caf4c0c1f2f51f21e1081a40a3ec774228

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 86d5f8d986319429b287463d2961bb8deacede5f24d10833324135537f224d20
MD5 490dc2df1fa3fdb2365c525164ac0c7c
BLAKE2b-256 15c126158a66b9395520c0fe6b64840ccdeb7f00d24c1fa6a6ceb4eb3c933434

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cfdf2e5faff11f1823583541592f066fce2145a180db0839ca9a8069f7959e70
MD5 0bff6193af68c69c9e8383377d2c0c32
BLAKE2b-256 e0b58f0fa97bb5a62d18efe36fda45df99aca1ace240a638cc27f714d64b7216

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 58c94527abc60e6c0dd09f7914baf6389f7e75bcb77380e9e1b8df6325359584
MD5 6aa41404c612cab2d88cfb53b658bb0b
BLAKE2b-256 49e51d4944ab9c53f2aa0c61c6c2a81a3a434d2fab7655499b48c0d3b66ab81a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 48494bfd3f8b2c74b567665671ae1cf2f140a51ac178008ffc73e50b00c8244b
MD5 c1af53a1a7727e60ebc22539b344ebc2
BLAKE2b-256 9795465f685ebb12b753b93f1837c14c3a70c66f67ec15fffcffb13cf9904642

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 c9ad21a0e057d279ffed26b979401002af4c243e8a0fcacdbcbe00def7a4f939
MD5 819983fb7fed26fc2eb1cb04e8299b85
BLAKE2b-256 eeaf799480a54ee508593d39e5daccead9a30b58182007243c5aeb2a7a914e72

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-cp36-cp36m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.1.2-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.1.2-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 c41fcb7155ef28f3574cafcc08598d8383645ac9de3ec4db6c181b888b33e6f9
MD5 726ec916e52ea325efefc6bf1d742a9c
BLAKE2b-256 7882a1b683ac9740335e5b47549a4879e428af10396b8716a864298e0210f19e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eb4017a771fcd5e9902bbf9d9414be4c5944153bc673f48c8ad99209ad2e5e61
MD5 a429f799b2fafba79951fbceb2ba0636
BLAKE2b-256 ed21a56ff318aaac458631dde3b4d150fa27471098976f996aa5bc102ddef17b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.2-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2ae119877108c83e0db61e627f9bb07ba42e83dbb8298a33038d24e4a3d7e6f3
MD5 e171ae0eae0fc9c5843798d2f131756c
BLAKE2b-256 859fb688bf070b1341737fce9a6f34f8aeac93ff0976bc69eaca68330ba0f9c3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bd4d1ecdbfe315d4d403190b5092d6ac361d7ab4135f8e50cb756cff48d183db
MD5 4a26fe19de6e654c8a6a49060403235f
BLAKE2b-256 db7133fae2660549bf1778f3f4dd26d9eea85b955aae8c37602b13137bfc72d0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.2-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 652d9a06c91ad302217f0182171cdb5bfa06ed758d56cdf4443c7ffd25c23fb8
MD5 aabcc16bc5bafc1a25a1a2dd07f5b795
BLAKE2b-256 a92fed449899fa40733905c3e5b0b905cc8172efb8d72ff611741a9f276260c7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page