Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++14 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparision between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparision I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

Benchmark extractOne

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

This version

2.1.3

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-2.1.3.tar.gz (1.1 MB view details)

Uploaded Source

Built Distributions

rapidfuzz-2.1.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.1.3-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.1.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.1.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.1.3-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.1.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.1.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.1.3-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.1.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.1.3-cp310-cp310-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-2.1.3-cp310-cp310-win32.whl (1.1 MB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-2.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.1.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-2.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.1.3-cp310-cp310-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-2.1.3-cp310-cp310-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-2.1.3-cp310-cp310-macosx_10_9_universal2.whl (3.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.1.3-cp39-cp39-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-2.1.3-cp39-cp39-win32.whl (1.1 MB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-2.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.1.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-2.1.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.1.3-cp39-cp39-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-2.1.3-cp39-cp39-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-2.1.3-cp39-cp39-macosx_10_9_universal2.whl (3.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.1.3-cp38-cp38-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-2.1.3-cp38-cp38-win32.whl (1.1 MB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-2.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.1.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-2.1.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.1.3-cp38-cp38-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-2.1.3-cp38-cp38-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-2.1.3-cp38-cp38-macosx_10_9_universal2.whl (3.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.1.3-cp37-cp37m-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-2.1.3-cp37-cp37m-win32.whl (1.1 MB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-2.1.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.1.3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-2.1.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.1.3-cp37-cp37m-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-2.1.3-cp36-cp36m-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

rapidfuzz-2.1.3-cp36-cp36m-win32.whl (1.1 MB view details)

Uploaded CPython 3.6m Windows x86

rapidfuzz-2.1.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.1.3-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

rapidfuzz-2.1.3-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.1.3-cp36-cp36m-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-2.1.3.tar.gz.

File metadata

  • Download URL: rapidfuzz-2.1.3.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.1.3.tar.gz
Algorithm Hash digest
SHA256 7c32a83a28476cfe8cfc9a955f535c31ad0499493a6ab316c3fb31eef58e00d6
MD5 0c3368ef62022a2035eb68cda5049959
BLAKE2b-256 e388cf29bcbee7de754253f6c48b09adc672d28009f774a0e705d91ea78768fc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6a2740596e7ad6d9b75505a91dd232ad852e54c33119673d8721fe47577c0060
MD5 0d817cc366a125a8c918f92fe5bd437f
BLAKE2b-256 82ad86f3f3007700110ea7be53a68643e008cd5eebb0428c547a0c9d2379bb38

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.3-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 87d23282427bc1bd8316af5e4fcd9498e45b639a7a0f07ea74f608e4be4666bc
MD5 eb9742a963b0517bd3d401528140c237
BLAKE2b-256 27fdcb8cad26933e8cafa95eb78b30637a94e0b8e04ac05d0323a34e34938402

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d3ab89972c0056cd9191c32d9d16d4ce46e6971fe952bd7f8d62607f72156e08
MD5 f3f063c83fcd266699c8cda378154f62
BLAKE2b-256 d5351809945da366ed34d4fcda126f7359dff355f4649d1d205aef87d2c49a6c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a0c60b2b151b6a1da5a11dd9b47dbbfc8bc9699b46b94703c5dc70ab8ab0157c
MD5 fca5d8653b7082b95d1e6d57109b7840
BLAKE2b-256 e0f58daeaaa91087830f28c975170d2ec679cdaeaf543822228d5b324b84b15c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.3-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 10ef952a7704d872a0587187e374478cf05aae5dbf88360acf024115da78af2b
MD5 f16f727f6cf257d7718f647e9f5dc507
BLAKE2b-256 de5ebf7994dbecbbf1f80c3ba29c6a2c964a639debc4488135af76a225815a8b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9f4074857944df7a18aae4f11e0c563c502c494084708e57abfe61279fe90f82
MD5 2c12be5aec91f74b19cd7f59984c5663
BLAKE2b-256 aeef40d85b487dc9299f4f9313f4258195a0a5f9596f94f2328342ecf4b57d65

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 23a223b2dfbd77e606f63540cd4e18785b920217da6995a99ad76ce7bb34343c
MD5 c596c1d2ce671d3bef5a0a737b6f6768
BLAKE2b-256 27d6e27ef5adc4dd62fa01f1eaa01d8787460985564e2683f896b949feb4e7df

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.3-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 be0a7230d66125209a927865d114187b15ea5bd6401521161946e28786c360da
MD5 68d0f7fe3d6697261c33dc615cf27364
BLAKE2b-256 530cbf65bf8b296a87031e361546488e45c556416449d83a4287efce6d4f1099

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ad82a62afc903d84a584b1ddd66808ac6cbb9b660aa34c0436dda099efe61085
MD5 70d988358aba0eb1839e098e22cad4a6
BLAKE2b-256 668fc2702808552d3c366454e11ae69ad07ae3b23ec1f96f75577a095b6347a9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 613cae16cc5e68e5483c49961dd802d9028a6193cfb2bc05076740e65bd5a05e
MD5 3c5ddc11605b42509ed4aac33a4ec5dd
BLAKE2b-256 46c42ee9522e8cb77157c071583eb3ddecea826801f1a5ce1500d0fa386b1632

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.1.3-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.1.3-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 4a0ec3f274b4945c16d9d4005caafc839dccf06f7ce08e2635b3594bc685f52e
MD5 2a8a6922475ef86785b23031a704459b
BLAKE2b-256 d4494af8231c08c53868cb9aec744b25e09ed21e797694b544620a6b92e57c0a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5121d292df80f5961f9f3f3e09366927bbd9c772ab7f972f338903de4f59d0ad
MD5 5dec590356a2e7138543736b074cfdad
BLAKE2b-256 62c08d62a26b7f4437ee076e17388f8bb9378f6bfd5f6651beab4f5a33a606cf

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7dd064ac5026c13e02f2887aedcb6be3491423ba031a19dbc8a0e1c5ee919ccf
MD5 d14a8f819e98bd4d1c440f0c2896b2ac
BLAKE2b-256 51ad4016d6917b43a9593255124ab8ba70eb3e3df21343c762df8c99111b47b1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1ce57c2aa1bec8dce59e43dd7008828888ba0d3ae2c9da8c33f040fe651d647d
MD5 7d83af09135c00fa0108fab219a3e92d
BLAKE2b-256 a5735cee412a185e4ee7cf0875b468481934c1ebca9e0695998c8ee4c5b3fbca

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 39f0acbea2a8e0e66a25ee1686ee2a7df5528b8e2cf37a5bff5122bc0167c9cc
MD5 8cff7e3bc155854de549adfbdbeb884b
BLAKE2b-256 8aca68c7de5d085acb4ce9fff6b3dd2cb7fd88fbe9635870fdb23813269ac708

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9489e3b1b967ac9e4eed9808331700944430bec792c1f8f3669b8eb0a333d662
MD5 b9825b46e3ba6bff6ce3c5ce4641e9c6
BLAKE2b-256 8309c1dde193a364f5913eaf9b1d77de022034089772f208c80789e1469b05c1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.3-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 4b3445db51a572233b84c2239706f98793443cdfe379d69a8e8757dd05bcc7f1
MD5 dd9a9d7567572ef1756d1e706e6ad214
BLAKE2b-256 121526d6e84bc99d6258615f730909fb6e1a80dbbfa9b0549e923ffa64cd9c3e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.1.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.1.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 bee92ed269f13de2fa7c368b58de11a2fc80f316549366d0d5902aaaeb108d06
MD5 1b228d75de6401af211aa39f552a990b
BLAKE2b-256 06d39ade0919c6ae7df83a0810cfa9fb3f544138d15104b84d3f71efd4b23435

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.1.3-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.1.3-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 9783b4b2e942be810a5203506671496fe3441784acbd9360197802c5f5c54e86
MD5 b1155b6abc705c6e420639a2f7a79de3
BLAKE2b-256 28888024dc60f0aebf2540093298ed88598de8193704d6c771c6b998e9507b58

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2df9ba351a08d78561826ef4c0fbb3d1a7d14837a61cbceb3ff60dc6bda8d11f
MD5 ca4b8643f248b3293847be299d847f4b
BLAKE2b-256 21ae281dcaf178874f8fe52754ecb0114eb43ccdb5ad10f2fca7dc52afde8cad

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e104fae220279597832fd4e8003cc63c9b2b73a97d0bf991545fd4bfc689f8df
MD5 a0913a9fa3c154e31a1413b3f22b57c8
BLAKE2b-256 8611606c31241ab1ef757c5910e1df0d8145cfcf1d0685ef5db93bc07579edaf

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 45d192418ff947adf7c40f96aa90f07dab0579be773f6073f2f37e1dd88137a4
MD5 53dfcd241c18c567e6a6c07795e43afa
BLAKE2b-256 c22b4691f58b65bed253758ff5f8e74a0607fb1395b16e3cb49922c05b17b8dd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 154460ce9191ba9ab847898a1dd2ba6f92e5fb746073f598f5cc018ceb8100ed
MD5 5fd279d085cd82080a070d290a7e24b9
BLAKE2b-256 9ab7c6300443ecccdd19673b7d839142d50e88f433745b7d0db978df26e8e765

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e54f2d37f1c028acd289bae3ab8ff33dda608dbcf118dff07e41bdd5d5402fe4
MD5 6a76f6a5e4fb439f6057208b544e5f2b
BLAKE2b-256 2b9b7900de614aba7da5ce77e7713c0ce63b2b83ef115f6c1985cbabf6c4f17a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.3-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 2f2532858c6e624b0bcd4842253b6ee58b2804d6b88c0b47a0e8aff7e46640b8
MD5 e22469476417819b7cfac1a6480e4a52
BLAKE2b-256 3529d914ad167e41293290f789e4868f4b845a2c7fe182e97361ef1d71c330c6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.1.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.1.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4966fb2bf01fe5f4675b8fb4bc09f66ca3a43769a148e210a4fd99dae37694d9
MD5 e92d6630c752401bbff02574dd208a1c
BLAKE2b-256 81a35f78f4ec2a4ff5604153e614a529b08c076988461a11edf3d7889537cda3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.1.3-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.1.3-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 9ef33ccc73931f088fd83f79b10248d9564eee6a1ac3008f1948249fbc17f2d9
MD5 969c9866fbb4ac99e4d8f7d7b0d6d5fc
BLAKE2b-256 8a08c4e1e35b064275344373691b76d2a49886840b57408541713ef1d6f364b5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2ee516787deb3ea7cb66df9a7ca520127e98d649ca4f6a85c68a29e425acb64b
MD5 04af64b741c8b3515acbd9b593925a50
BLAKE2b-256 3d66764ffbaa6dd1be3cb33df736b23ff95aee75cdc33fb863603dd311146084

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cedd176a509b6907815fa3880f0441d3fad8cf4a3716f2d3596efefc53366f09
MD5 ad9981401ae0fa6601343a25edb97f34
BLAKE2b-256 d3be5e3e165332cdb956fd03fcc2da2d7e302981811e451a0dc12587b64c6fb8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e30f2da3a35cabf2469c6d0dba91910dd19ecbae90ffb8d4bc272814a699f670
MD5 705c151463a313ef0aa16e137f9ab505
BLAKE2b-256 decaee1d370c27444161b56d3cdd7cf24154dce1e87c3b8023e883b10f869cf2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.3-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5a875b28ada07bbe7edf64450f2846c7c2486d53c660f7907a0ca343a3816e9e
MD5 5fddd531095ea95c61d504b425be41ec
BLAKE2b-256 fc9093f8a931cc80b3bfa6200f7b3f2ddd24628fa7b8d9d5b9de6d67055a9089

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 09a30fdf10858b178506827a9c4b68f27ed64b8dada49409d2010fd602cae4a9
MD5 ceb1fa05d8637ab32019a919888ab1c9
BLAKE2b-256 3718801baf51ad9c0c539f1107435b208fa8fd7efbe72a15f190a70e0aff0bbf

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.3-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 3dffa0de8de411a3eecbed32cb59f2bbff23bf18eafe372c7bbac4d0f7839659
MD5 1dd678418f1aea9208185048d1253a2a
BLAKE2b-256 ae063fcf7751ffb7bea5e8f762556285259192d0775737c6bdceca11c269be92

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 83ecc48af428f7e4818115c5ca2916dad8c55573597bfebe089a51d117ec2b00
MD5 d4b1968408dd0da812ae9d98af672c3f
BLAKE2b-256 765f4cb77f82a907ab120e9e44081dc844a3d8465fa9fb63c4d2c69ccf559794

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.1.3-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.1.3-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 936156159bae6a3b7df1fac09b89bbb51da67057b9ce634b40044dded56549db
MD5 d9624546b8b200376371e84a9785ea53
BLAKE2b-256 3514eb71fbf44fb8e043ef60fbaf4026619bd6dc98a7c289cbd2d671bc774c97

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bc07b2a3308fc69b64e52884f108a4c95df03e6af157876abbcfc550742a1eb5
MD5 6f3c08517aa3de33ee72886e14175a01
BLAKE2b-256 00eac04a03558013c59c58433984342a12c45da0138d84067c0c3512aa333b03

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bf310e6c82af7183d173447fd303361adcdf205e8ba7f74d4d8c9d827e909cb0
MD5 ece7e7cccf97e09024aca474d6985628
BLAKE2b-256 ac06b83000d88440e59e9e51cbf622faf466f27ef28f3f24645d54e254ab134f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 662b26d389bc1dd98461e7fb711e517e2ec0aeb305e0c9940c600c1a08e687f0
MD5 ff92edb45ab46da5e9ee8305a24a6e20
BLAKE2b-256 f493fadc6b485f0336d88c46c43b7fd414317e7118f1444cc823216bdff63690

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6ffc0ffc006d74e3b5753b186f8ccf67ffafbaf19ebd1ac864800323610c4e16
MD5 9bbb4efb1d0d83382bc39b4b2efab4c3
BLAKE2b-256 0613e64fa10b201b2aafb196635c847a21c34632c5526be9d376e020a610c171

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.3-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 73cfd94fc23e414e53a77109db44f7513ec78bda2c6dc153b2d1e0c8c2e9f3a6
MD5 05c04c67aef8fd3f4c97bc5b409e51de
BLAKE2b-256 e03b1214fa798d3cb8d02faa0630ff78ed46fed04ba6bf09ea5f4f2483a092c7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-cp36-cp36m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.1.3-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.1.3-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 461c3c5815341c3b73427c459834bb43a84f1750035643118a3d4b4877b66a8c
MD5 7c9f2f9d043d2ea9badc24bb822bae21
BLAKE2b-256 d024d36005f977fdf5e519b86ebb9fd0d03cd7de623a57c28d8c36b7ae183f0f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c962a99f42a9abec7e0f1e875069584266655b033bc4ca5c49417f2ae9d3c610
MD5 21bbc83dd477edddb0429488b39ab2b3
BLAKE2b-256 581c211a21d244d41beb54a66a3e703e9237d7bb8c6b489a01e80a4e55eabe33

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.3-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a3768c466e36a96caba49f5d63a576c82b1282baf404ff1cdcb8e80fd2159f8c
MD5 142b7a06b67f27b650d774cbb48a9eb3
BLAKE2b-256 dd2b6dc883b8180ffecbb19c67f9c1782016b36e45f16e3e4833e1aef7842382

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.3-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c35ff1156db81e5a927ba8ca84798ecf4a146c05344f93cd826033ee82d27d9b
MD5 8675817bec030e7168bd65504b1415f4
BLAKE2b-256 e1cc9d43a49fc415d0c2ccb4203133948e324eb9bf68e5a9cfff254d3ee5da46

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.3-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.3-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ea90fb42d09ff5dd8982f7366a97b93e092a1895e9bdfc396565841d9dfdcb34
MD5 856dd4e4265dd743e039d06d56949968
BLAKE2b-256 942eb79248dde89ec9791d8e096c69475496c28a9d7607f26ad0244d666aec61

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page