Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++14 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparision between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparision I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

Benchmark extractOne

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-2.1.4.tar.gz (1.1 MB view details)

Uploaded Source

Built Distributions

rapidfuzz-2.1.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.1.4-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.1.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.1.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.1.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.1.4-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.1.4-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.1.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.1.4-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.1.4-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.1.4-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.1.4-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.1.4-cp310-cp310-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-2.1.4-cp310-cp310-win32.whl (1.1 MB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-2.1.4-cp310-cp310-musllinux_1_1_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

rapidfuzz-2.1.4-cp310-cp310-musllinux_1_1_s390x.whl (2.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

rapidfuzz-2.1.4-cp310-cp310-musllinux_1_1_ppc64le.whl (2.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.1.4-cp310-cp310-musllinux_1_1_i686.whl (3.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

rapidfuzz-2.1.4-cp310-cp310-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

rapidfuzz-2.1.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.1.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-2.1.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.1.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-2.1.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.1.4-cp310-cp310-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-2.1.4-cp310-cp310-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-2.1.4-cp310-cp310-macosx_10_9_universal2.whl (3.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.1.4-cp39-cp39-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-2.1.4-cp39-cp39-win32.whl (1.1 MB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-2.1.4-cp39-cp39-musllinux_1_1_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

rapidfuzz-2.1.4-cp39-cp39-musllinux_1_1_s390x.whl (2.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

rapidfuzz-2.1.4-cp39-cp39-musllinux_1_1_ppc64le.whl (2.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.1.4-cp39-cp39-musllinux_1_1_i686.whl (3.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

rapidfuzz-2.1.4-cp39-cp39-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

rapidfuzz-2.1.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.1.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-2.1.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.1.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-2.1.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.1.4-cp39-cp39-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-2.1.4-cp39-cp39-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-2.1.4-cp39-cp39-macosx_10_9_universal2.whl (3.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.1.4-cp38-cp38-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-2.1.4-cp38-cp38-win32.whl (1.1 MB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-2.1.4-cp38-cp38-musllinux_1_1_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

rapidfuzz-2.1.4-cp38-cp38-musllinux_1_1_s390x.whl (2.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

rapidfuzz-2.1.4-cp38-cp38-musllinux_1_1_ppc64le.whl (2.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.1.4-cp38-cp38-musllinux_1_1_i686.whl (3.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

rapidfuzz-2.1.4-cp38-cp38-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

rapidfuzz-2.1.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.1.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-2.1.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.1.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-2.1.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.1.4-cp38-cp38-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-2.1.4-cp38-cp38-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-2.1.4-cp38-cp38-macosx_10_9_universal2.whl (3.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.1.4-cp37-cp37m-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-2.1.4-cp37-cp37m-win32.whl (1.1 MB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-2.1.4-cp37-cp37m-musllinux_1_1_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

rapidfuzz-2.1.4-cp37-cp37m-musllinux_1_1_s390x.whl (2.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ s390x

rapidfuzz-2.1.4-cp37-cp37m-musllinux_1_1_ppc64le.whl (2.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ppc64le

rapidfuzz-2.1.4-cp37-cp37m-musllinux_1_1_i686.whl (3.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

rapidfuzz-2.1.4-cp37-cp37m-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

rapidfuzz-2.1.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.1.4-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

rapidfuzz-2.1.4-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.1.4-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-2.1.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.1.4-cp37-cp37m-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-2.1.4-cp36-cp36m-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

rapidfuzz-2.1.4-cp36-cp36m-win32.whl (1.1 MB view details)

Uploaded CPython 3.6m Windows x86

rapidfuzz-2.1.4-cp36-cp36m-musllinux_1_1_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

rapidfuzz-2.1.4-cp36-cp36m-musllinux_1_1_s390x.whl (2.3 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ s390x

rapidfuzz-2.1.4-cp36-cp36m-musllinux_1_1_ppc64le.whl (2.3 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ ppc64le

rapidfuzz-2.1.4-cp36-cp36m-musllinux_1_1_i686.whl (3.2 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

rapidfuzz-2.1.4-cp36-cp36m-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ ARM64

rapidfuzz-2.1.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.1.4-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ s390x

rapidfuzz-2.1.4-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.1.4-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

rapidfuzz-2.1.4-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.1.4-cp36-cp36m-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-2.1.4.tar.gz.

File metadata

  • Download URL: rapidfuzz-2.1.4.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.1.4.tar.gz
Algorithm Hash digest
SHA256 029a84d4ba008daeb712a4e858ec7dc9220a949b248b11223aa4809036efa9b2
MD5 719a22f8ce97732aaa947fa543287ed2
BLAKE2b-256 fe30609b5719f0cf7bc7a43b554b3e97405e8c7c649131dc89dbadc11fc3c8e6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b23dbec916a8b314426a6829a3d3a87b13a68ded1048692fbcd26268dcbb8d35
MD5 8e86ae7f9abd55b01f14ab6f3f6198b0
BLAKE2b-256 b33d32fd332edadbcf2f9447c6ea979d9dc669f46e2c88c3b7279796fa1fd51e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 931195c5aabfa02d0ab59321331b7730f911536130b4663b99c866c96696001a
MD5 b4cdd909f3954c9fc7d246a2e23c494c
BLAKE2b-256 13083ee689e5850c709b76d8f26ad54a94bb1460440df0ea6e3e8d0080826e6c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 20ec0d8a955882d86eefe65309aa6fe7c7d6d088a40de883c49f9fa349f14576
MD5 f75af5b2abac2e3c51d746624e377f92
BLAKE2b-256 e6c9fb0b4eac55bddc812db85a661fb844028f2ea671ec8a11fd8ee1bd3fd395

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b44e548488f79f4d9e57108d7f47283844fbbb3ee9023a87955450162e56c9d7
MD5 97fdf38025b2f1336bf268f4f181f247
BLAKE2b-256 7ab3ee6d55e67e5ef98b6aa07106e9ce356f974a0597f7088aa0bfa0f37cdff1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 18ab0171f6ff0d8a7d72c773fb8ff90b096b1c877658ba7863c1010428705748
MD5 ff3a3d6144d3043724cfe06ba8771f3a
BLAKE2b-256 30fe85dcb5bbf52c43a0eefef581e6cc7ae4f9116070f6257871ce8e8131c796

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 98adc6a38a9cd85990e3ebf5700fd3440261e3022f8c63c1020fe7bce44ad503
MD5 6750010e5faa9fef6f8f04add69c2a48
BLAKE2b-256 bddacbbd56475868509c6ca823dfdb5687c522f09148ed436021084418b4171f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7bac18480a0a3809aea9f86adebca142a3b4cf550138ed3feda7605decac4f2a
MD5 0f0a9d1cce2fb00faac2230943985273
BLAKE2b-256 26df951d1cdb53f779ae5efecc784e8d1d7a7dd5e3d2756601f2b03bdcfcea7b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 86ffd94f06bf0951452d56bd8a617f72e327cab97c95794780427e7a519bb19f
MD5 4694cc9b0363d282f4d209914a1dd479
BLAKE2b-256 edd487e0aa9ab6a935c47189dd90af0ca67e1627ea8c10b67f8e850a3e2ad5d4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6da56cd201a192f0fa614c406596e03249403754a2059b7298587ad559d5139d
MD5 a03af924464c8038cb6b9f141e239c2b
BLAKE2b-256 8a9c80220e847c8c8637d993440c9837f500b4c9312f33278cb1d6708aef30ac

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 25b7fbe7bd1c679dc9e08e67aaa3c15fdbbb044973c667b2debfbe479016888e
MD5 1dab5f357c2f670840b3371845d6902a
BLAKE2b-256 bf9b7d5092b9691d07870252039c2c831873bea113d2407b814ddd0b3799ee84

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 aee2c05e362010bc2e9d1a1ce4f862ed92da8723fa5996d9ee2e5a0957d4a4e5
MD5 42aaeaf1f7368b718903e13b8ccb6d50
BLAKE2b-256 0afcef6f2f5c03188466881d3dbfccfd0d146327bac2973b5c54ec73c5995825

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f6bf070b93522d7d088c2a1a737422629f036217152170a954a95c0dd70f63d6
MD5 70a733dd7d577be7c3aaf9f579d140b6
BLAKE2b-256 efd07450feb536ccdd361d17150727df47c9e43bed83ca67ec4aa9eb5692f3b5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 06ea6dce99d320935f9dc3d151a1a54cdf536804199926509249872332f32d4c
MD5 0b8fc67cdaebef8ee0cc3fc9d6f44e66
BLAKE2b-256 8c4dec8415cfad08c9d43017129655ea409070b8709f0ed2d7992ff2e3945c50

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.1.4-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.1.4-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 cd26828943ed0fcbfc88e9a122cd7fb5ab1892fd7c00c92984df1f8b936d0ab5
MD5 28483f368e6edcb13806b4968b820916
BLAKE2b-256 b4d37834118df747d7b818ffb3e4f0aa12ed5e298f2eecaa33e06c3ab3f7e0af

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9a1ac370c21fbfc39ec138dd71ab42dc1dda7ed17040047088a64107a3d504c8
MD5 62a7275a0a51baad34c5374e4a95d8fb
BLAKE2b-256 6eb1d05e9185830dd5d169900e3df4b36c9240b4e2bc65b0cc09ed9208a85dca

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 18a0e68243bf7fb045c80dca525cc97690fbc639e869251c767abac6ead6351e
MD5 83a6960cb5a8e87b6c8c73e8282801d6
BLAKE2b-256 45e150a92f2c0c588350d741ce381a0105e79b649de016775b63ab1fb1d5666a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 0f9beeba2f2774064df458789e2fec55f7823f90db713bb9ec0626b1c2ca1594
MD5 be7d92ed64a53934d475b5eb67eccb75
BLAKE2b-256 eeab6311ffd79a3e19b7796262632e1432417d615e708b2a9d95b3ba1d1f6b18

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 1e63a4004620c29aa1d3caa1d684475f4df9a3acadab6b422e12cbc6b29ee2d2
MD5 5e51384bb6a64f9edd67e58a917ea395
BLAKE2b-256 52f6a4dff79893e8dbc39f11ff16968c5ec2cd5f0d4758802a26296bd8640c40

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 a66c09226aefe6c448b4b86c3ce2370c037d2ee70ee25cea7eac574d25d8645f
MD5 581ea86d82fb61f6b65d7985ee3b86ce
BLAKE2b-256 b8935d8ae24fac172b42c2162deceeadce60c8d4a926d971ec278dd7b5dc7e61

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9d51bedca4a14a584e51d4949952548c263bd1c769e461247608e08ec7a24cb6
MD5 30db2de751599a7b124ef9554b5cea05
BLAKE2b-256 391342049afb6767fbb209bd0ed168319da49c2f65cf082cfb3dc3d515823f13

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 e1b4a24876ed849e11ad747fc7432b134a32f1cf6bc23450b023add8d6480668
MD5 2c7714bc40209a9cb3c16c9858c37f5e
BLAKE2b-256 d3416a89546e67b02e046b3928108be47d0c40c58d3ac49c75162a3fabbfbab5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 82cf3ff6bcc209501f990496be1c78de3c1b98490f4c557f671e2358242103a8
MD5 2edf67ec2a9d4ac125bbd1b41c1bd253
BLAKE2b-256 c115930e643ffc44053955134039e1afa1883d233ca73167a2d1b02ec93b99d9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1ddd65912bd0d056df7eac172b817876595e5bf790539e923fd0fd8b0940888a
MD5 d54120077a8dbc8d4918eddcb0ec0d03
BLAKE2b-256 2b2d472ed6d7ba9bff431319367ad0254dea6a68ca229f22cf174ba5b5ae6582

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 72cdc7d709ec2fa7176634b4ef6c6c0c4ef45b0786c58669955ba6ae13331f97
MD5 5a15bd0eb0a44b511f364ad24fb24078
BLAKE2b-256 f18ef12acb223aabd518fd83d50137c3ce126b9b5ed123e8e27ea3dabcc4fb85

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9ee8f29df46ca74012370f00c422b1684139bdd1f584964855194a95e7e235fe
MD5 8acba0e088aa6e45e53ef086eb62e25c
BLAKE2b-256 69cc2aef76b7e70e2043b390121f735335e9a313da8755f419958a6255b4f9ea

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f598896fd0e0afb91dae0d95cc2f42d084bfa716cf6e62b4348551c2b6950d11
MD5 ee5e3702b5e44fbbb4394b41840e672e
BLAKE2b-256 e728c5504067edefccadfe8d75c12ffcbe64ac9d055e710e7c9b086cb02175fb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 cf2365c0e6757a2f50aa7e4531a96b9b8487f5c14d720afdd191dee6553602be
MD5 9e9f495d43b2f12936dbf3e48606eecd
BLAKE2b-256 b7751e3d87a5a56f1283f92441f051078ece924767b80b0a0619d3666da7660f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.1.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.1.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 abc5d3817d7943bc8c7b20023dd3c55d6431f1503de288b9cc1c3fd2aeb0a8fa
MD5 3f306d80b1352bbe71b7b5d19f229128
BLAKE2b-256 8650d7e255f52766d42f81f85371bbb596404e8ed1a65bd31686cbd42f88aa3f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.1.4-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.1.4-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 b54438c5784a3cab776a6b2d0afae75384e998c14bc51b149c257e4b5797f5d5
MD5 fac5b2cc30dc552d79ade380222d7102
BLAKE2b-256 6d463deb0c27d89688de2491eb370344c1e65f384ab0b16016951df7fcdd92f4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a0c77c3a1d5369f83d323f3f7c975571687853322c216ffaeeb9d6f4f90640fe
MD5 900f0b218512034e403c34138a257a1a
BLAKE2b-256 684487fa85b3d982758478ce685fd98d172fb38929ea2c821259b637a167b964

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 76ecc6d4cfd1de9bde09563cf2d01fc6fb562b934bce021b2e8551204e81be85
MD5 43000d2f5544c9008a6e398820045e32
BLAKE2b-256 f397b5c141b67e149b52f48d933a568eba54e06f6d3fcfaca7ba7492ad6532a2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 82ba8f6e73765a95c6181ab22064bcae6c700ca0c2856a8d4c672dc706617c42
MD5 57f57384595ec03202e416611c27f17c
BLAKE2b-256 8910215a797cc2bab47608a07bc2da899726a7bfaf7f0cc372faad0569bf881f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a909ac5d060f12ccd594f94f92a1e086ae41d659237b5f97d9b4964a3805d5fc
MD5 45279ce89b1625d07230f1b544d37168
BLAKE2b-256 66a8800193bf513971874da4cb822f3162f171705e69c1aae0bba4d7b40ab4d2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 4fa6867c15ab4091d658877694247fe95b13d8aaebcb437312b2a6a80be34ac1
MD5 eefd485ed91c26e6f3a363cac01b20b9
BLAKE2b-256 8345459a3046046486ce60026f6a7131fbe0aacd1ecbb33efb00f729d6cfa460

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d3ab3c22d1f410812eaabf48dbdcf09d2c4958dd944d7c89f552b8c5a653579a
MD5 30d501c05912d7c38eab45a54f9ec34e
BLAKE2b-256 58db79c8569df8e8046a3f72133da00a8f1c66fa0ae771a85f72af8e538db560

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 c94beaba6d9edaf944b1edcab226a50c07e0cfd2a0541c622f5dad43d2246cbd
MD5 1b8b072fc80109533b3a39e0d42238e2
BLAKE2b-256 3bde23bae997e74ad43cce6e91d7053f0427a53f1527607224eca1bf90fc1ce1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 9a38db6c03501eda79165e07e3e6b3d509a1793ab25eeeb08ed8dc9b6fed21ec
MD5 7c8bc2c804a2b66d79a255623228e60f
BLAKE2b-256 6389daee1160224a1e946e217b1fdb53192038d1017fead2b321180441ba2848

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 fefec18f578e5358172f023b1f665ed6a0a8fa2bd902b978049c56b188ef9920
MD5 bdc81287e7308a1b211536b2b17f83b1
BLAKE2b-256 a435af489a6d21c20b4c45943013bb4b42fa46de09345640f3363285c82f9c40

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5d411e15fd31e8fd2a2031284a84f447e53f4f99166885f20458367bddf61329
MD5 74e0a4a0ce20d5c2e8da669948ea90f3
BLAKE2b-256 678291a9a5c5fff6b1986c0aec2fb40d97243ca3926f7ad016810dd8064dfec1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 50491e9ad69b902d5247ce8922a7104743c258768af2eb20f56712dd613ea370
MD5 49b8a16d3a9c427aff4755fdb20cb3ec
BLAKE2b-256 bc38f2dcb2f317102fc4e431c6744e313329abfb9c5e472f74157a3c571d78a8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6acc09a7f27c25245db6b9480679c0a597bc4cf6268311e4175ecf3046948257
MD5 13659c01ab38241348bfc814dba7053f
BLAKE2b-256 de5732c0729564ce4b480af38e2c48fac9e0b1721ac77bfe99485c108e6f5289

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 2e44db2d2e8ad2dfef931be65bf6a71dc15c02654f6666a07c948f40325026bf
MD5 ec11c5a8cd2f345f70cc49e5e32ba389
BLAKE2b-256 5230ed51888f64d3e345950dba4ad21b864e72065eaae2baee72991ed462dd94

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.1.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.1.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 33d09a5251e9b93234ce2a2fe6fcd28240411470a3ad77c755540da13526a10d
MD5 fb2919c299912c7b22c8e8bbe1e46116
BLAKE2b-256 2550071f0aeb0bed13f83124707d15154b4c7f508f782d6961ce781e92985ca0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.1.4-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.1.4-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 bafc24333d198953faa5d9291d25db9417129388435ca452b3099cad49d808c8
MD5 0370d2cafa06baf90001a2b290cfba92
BLAKE2b-256 58f48936be2b1394e787381bd86c5f298f5ee405ead88be1a6a65a8a55f17231

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1122f7f7a64b15a39cda4952eefd38d1d021c827dafc60453185070638bf73ea
MD5 47c1acdad28fe79ac084b98401bb6a29
BLAKE2b-256 4c31a6033c571126f705d30af4aa5610700fb288cca4da1453e364cf48795433

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 10e278fb931e0138c481cbecbccfd37d3919a24ac99b092250132156e375370a
MD5 5503f0bd189f829a7db710dc9fa765ff
BLAKE2b-256 cb5b6691819b7da26826e7a76fdff73060bea53b95a4f1059270b473d201bb0a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 aa593c1eee505cc77ecdf29f723e8887c35f4acf53b21db3daf76265817b3f2b
MD5 8c394dbbf958b0b7d2c1bdeb6705ea21
BLAKE2b-256 959fb33b85d0792b4bc4fb035200fdffd7ab5b743af70965d032607fa6b24be3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 7c4a7181d2533b186416f6d69fd30773fa5e27194af1878d3432d66aeb343fc1
MD5 143e4463a2e0a0ea5000882d86a3e9f1
BLAKE2b-256 311a9dbd2d4e5bf1849dd12aa46b65bbfd66f901d02f59e07d152808fd7efd36

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 023c971a7029ec36f40d8ff74da71ca66814ee0ae636ef6e9f4dfead2942afe7
MD5 0d4e75cff6704eba11748004273ee288
BLAKE2b-256 88dd1efc81cc1bac5f61b73ecd8e1af2e0352f840b1fce8bbac878e7e6df3687

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c38c0dbc51aa689db76d02e73be8eaf7be7ecf55fcce98e388cd7a3bf7fc4a6a
MD5 bc4f98d578427ef234022aa291fe398f
BLAKE2b-256 cadc438a876c194a073c3d0c00dd177d121149807d6aaed1f3d26297d1471526

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 5465dea1453a64b3d3e702824ffd9f90dc156bd1d2f224314654d5c55fb7d5c4
MD5 d833266a0442116c58c9807fe0cd765f
BLAKE2b-256 e2bfd2f5bb10971dc7886d11c28413e9677ef55bc565d2d18bc9ec4eb7d55734

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 33e18648e99b779c6eb65b96f1a495486ba76964e139df7f3cbc7ceeaf21b190
MD5 05ef6f8ebc6d72fd0fd6ac4489a6ef5f
BLAKE2b-256 06847dabe0bc2781967dfdd5c6ab9bf9ca3e044c18ca14068b375cc2ba66d366

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6bdd6999f0a78b2557d938ac130b443f96ba7e80a7a505bdaad1b9da4fa599fc
MD5 d43b9ce592506899cac6e93d275d3c74
BLAKE2b-256 654b782880ce45cef2b091bf87e5d094f3e54603dd6c0a5d897d133de9e606cf

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c0231d12fff8fd32a6b747373588b186acab98cb8c55a37b8347adeea32d2a46
MD5 e55ad8fbac516f0995e088088aa51acb
BLAKE2b-256 0bb28a3e1c533bd791fe99538dbbaff4e4d4eb9640ca6baf42b4bf9154d0d3ab

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e6bd242bb6791305d3a51a6ae2947e0b6770b4540771b17182cef1c91ae1d56f
MD5 144a6d3189ceb88ab111567ed6278af4
BLAKE2b-256 cbab571e8b34eaa0ab5d8f678219138e214adb16a070be018c689ac34152061c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bdefc36374c425813d27a1493d4b1ee0aff50e00330dab7cc337baae0be69d41
MD5 9f8089e33ecace0e11662bcb087ecad4
BLAKE2b-256 240564aa843442aa4d151b89a7ccbe5aa32b20c7e47249406d6091b4fea7db18

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 988c673455831ecfcd0c85852b01cd6e9ba01f0f131300f799cc209f8fda41b9
MD5 b2b8af964cd098ff745faf35c9df1d73
BLAKE2b-256 d0806611fabab6a193bcb747037fac8cebbefff13c0804e754e68b329d07a17b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b30ddb34de354bb74d4835b1823863556a3189ee0bf257cf898626a79967d095
MD5 f5eeb9ea5b45f865c31b3884b1a63467
BLAKE2b-256 f930fa1f4e44f0bca0ff3b3d20f2e6f3b072d998146b7749acb4c70b38c62272

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.1.4-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.1.4-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 2805a057eef4c70235f5c96f7daae87936c9683eec5b1155fd7f42b133c6e153
MD5 3950aa0454dbe2bbb3b9d7150f59eb32
BLAKE2b-256 5b201ac65b31cb261cf1186f14d62bfd8a0897161cf3be10ed7e073e0091b8e5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5f302e3b44be32a99fbf1f01fa00dc6f23b0ca50b9b072bd5675a1b850112963
MD5 69d65bd4bf5fc408ca37cc82bf2be91a
BLAKE2b-256 2c9d4b7cad4cb2895ec23614e0f2920ba4de66c1fa9abe081142494fe649e7bf

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp37-cp37m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp37-cp37m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 9f3fa00f0b287783a9b79ab28c27f263dc1143205cd5f77eab82eab713be2369
MD5 8c000ff582b05b55fd31a3e1d8d13eb3
BLAKE2b-256 2861c1a91f6fd88a40cbc5c70edd969521b92815eab76db06f23143e3993cd7b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp37-cp37m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp37-cp37m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 9abda983fc29b75ccedb743fbae0a62a590c6a8ed5f69ecadc30a496d4855824
MD5 8e6da294840134d6b335c24860bc05c0
BLAKE2b-256 5f2eff71bc365fcea7cb6057475297d5d9dda4b227bde8f3399ad04d4328738e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 8a27809f7a6478d2f2866e1290c8979d8a536d10e3cb6a93d6b170571618bfbb
MD5 08a2d2897e0de380ee598f75190c75c3
BLAKE2b-256 f96a75e1775c3f26b8d8b546791536fe9779588cc0348220f7ff779198337177

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 29bfec7adf775d3191c4ae9d9ba4fc620f4d63a6698bcfeec92ab9f927b1cf39
MD5 345ea14a70f730cd25513e7154bf8008
BLAKE2b-256 db6448495adc72cb51d76d33948499ead018860b6bed70b46de45e652532bdd2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 45083c65f1383b8dc67fcc67af90f7cb08944d7e175dd1552b69248d1ebef09e
MD5 b7f5666e96e8492c20a4d2958973b490
BLAKE2b-256 e14dd04c05a3e05722b9fe1630c9b509df6f9d146430bcc675907b33f21a8c4a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 ce7bbaf68451976350a5075520f6abbb1d5a2c389953f4c781fa6950fc4d7bcb
MD5 8a60eaac5231b96709247b1beedd2c46
BLAKE2b-256 cfa0059bbca13217034a9774224f0327429e497325ae5af0c6e2a5a656629be4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 ad16a64fc555b7c5a4bb6eb2228f2ca02763faf22e47103860e664df78896bff
MD5 10a6e68ddda54c2a5342354e3549a94c
BLAKE2b-256 05de7657173c6c9c6c65d2951b9c7422f70a97936f8588184f38ebc70f3d5419

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 811d6e4e2db74f50c4beab6d071a5712ec04cd0c900b53bd6a45ad8521917da4
MD5 4e0b508f31a2446c4af59b3bf56c46f0
BLAKE2b-256 4d8e920c112267c63eaddce577241d8b1dd09dba64cb4dca3426c715b953c710

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2d6b212e5a539d5868725a82aa5d9e8874f974beaf3c6408ab467db4ee915126
MD5 ae8d0a734ee6d905defe8e2fcdb05c0f
BLAKE2b-256 b6dae54e5fe49d8e313a5b0e1939fd861724f3e9f82bb3317214f654d8d20d39

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 764c20e22fadc1472efc491b4b9da2b94fecefb5e0a96927bdb516ccf6830660
MD5 68307e785bfb60f5e4bba2a64a7deaa0
BLAKE2b-256 176b03b36d8e4112a93ddda6f2fbc20c43fa4a28dd1aa475ac8639a477e3f9fb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 0ae65f03be431a44a49c91df06bca6767346707ed31de2f71be8c8d69aec749e
MD5 0344d61fcccb1f21a88861136d15c863
BLAKE2b-256 ace9fbefb5939d6bc052f7aec71d4926ced54e8a3e9889ee75fda5bcd05ca1cd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp36-cp36m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.1.4-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.1.4-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 b717d79c57604051e12b0a2d9075ac5725ce6fd5d6fdadbff725bde0e695ff1a
MD5 e41f2d93bbb5da3218e362327599b1ad
BLAKE2b-256 87cbe52a060d9a57bd7d5822a0a6418ab9330387380e0161d16a7f19986bada4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 968fa42f55094dac3552f785bab92f676d3ba6a07fb52901211c8f6e8fe0fcca
MD5 d15a10899d538baadaab92d56e7695ff
BLAKE2b-256 f4bdd9e9b7fd8c0155478fe8b0de80e320f2670b38c11b8cb3b2afeaa7b33fb9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp36-cp36m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp36-cp36m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 530289f31462ecc147925fdce38abbdf8f74967b6513f6f91cd3f8146ae01550
MD5 b743278a2323b719c130394650af99d3
BLAKE2b-256 a1cf2926bf531b54ba5ad904abfdc79b55dc468d803d7bb7d3ee2ab843896212

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp36-cp36m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp36-cp36m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 c97a76187dd7ba7ccc8ad0906af9e65f64f5e1ace232cd714f9f62bc557fdb19
MD5 23ad9ae23e5b5b3f6d9b4d51061403ed
BLAKE2b-256 567702f5beb3e7193001876457cbdad57d1267cc6bfde0d5d130ddaed8823a72

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 eaf63fbf08f2e341425b59aac8773d7c6b1a67c868b4cf5b557456ac77b9570a
MD5 277e3e343941495f72bbcf6cf4916aa1
BLAKE2b-256 dd58d59f1ffef814184970a8c06aba154948900becd996c81c60017f3d496134

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp36-cp36m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp36-cp36m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 d73d18ac64bf7a923f4244b9d243c39b3e1ff776d1b5146655670db57780af18
MD5 07955837b0e8f746c7c57fe4e31fe248
BLAKE2b-256 d79de38656834d43325522b267fba2f1e5c0db1734b04dcd6b133c2c28ec3931

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 45e5e69c10a04a3bf040e9ab7c56f2bcc182cd372df57d14ca218421dd28496c
MD5 b2ab3fd4b9146b33291f2181a663fc20
BLAKE2b-256 47073cc7e44a94f80a7898fbd3fa64e3b27f33d49f5c52ae83aeef6706cb0c07

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 498dd0486af00544e4f9a26c6401f17d659268f30b1ec5bca9136bb5ddc691a0
MD5 efc92bf43b95237e0fd487ea60c895a0
BLAKE2b-256 0e9b323be975fd894f560769cff1150e61022d499a6e97e47d624b01cfa6b929

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 b4f4f55fbabd58fab91bc0a66c210c6c9e3aca9140d0f3489c71bfc263c44ffd
MD5 843537ea482deeafad4717d3a2fdc4be
BLAKE2b-256 1e22ce7526e4486a8700d028ee4a804109db12f81f2231c4b253dd74c2ec608c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 68d794df39b0527b2de73f28d45aa94103271e79c10db82e784882b0995781ac
MD5 9de549bf7e04832b65d1fa97bc325bc5
BLAKE2b-256 590497c6356978c968f2798aec4740fdbd97d716786ceade62caf7650a1f3d6d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e0337056e7de0c775bd637551fb8c1a814cd68223411bbeb1c461542faa382da
MD5 e685fe0c2964d0acb8a48d67e258329b
BLAKE2b-256 ecb4849b979d308c5bc485334166fa8d97b03847d4becc7ca7ebda3e53a94daf

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.1.4-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.1.4-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 89078addc9a7c81dc89832ca76def8e5b3c689a643226ef448a3acbfa9680796
MD5 5f31069402e6947f76406fb46668c3c8
BLAKE2b-256 c0b803ab5ad77ad17d37adc9b985832412d07886b690e7d3a418b4a47a5cab65

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page