Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparision between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparision I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

Benchmark extractOne

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-2.10.0.tar.gz (782.7 kB view details)

Uploaded Source

Built Distributions

rapidfuzz-2.10.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.10.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.10.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.10.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.10.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.10.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.10.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.10.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.10.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.10.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.10.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.10.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.10.0-cp311-cp311-win_amd64.whl (918.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-2.10.0-cp311-cp311-win32.whl (820.1 kB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-2.10.0-cp311-cp311-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

rapidfuzz-2.10.0-cp311-cp311-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ s390x

rapidfuzz-2.10.0-cp311-cp311-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.10.0-cp311-cp311-musllinux_1_1_i686.whl (2.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

rapidfuzz-2.10.0-cp311-cp311-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

rapidfuzz-2.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.10.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-2.10.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.10.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (2.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-2.10.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.10.0-cp311-cp311-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-2.10.0-cp311-cp311-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-2.10.0-cp311-cp311-macosx_10_9_universal2.whl (2.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.10.0-cp310-cp310-win_amd64.whl (915.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-2.10.0-cp310-cp310-win32.whl (817.4 kB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-2.10.0-cp310-cp310-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

rapidfuzz-2.10.0-cp310-cp310-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

rapidfuzz-2.10.0-cp310-cp310-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.10.0-cp310-cp310-musllinux_1_1_i686.whl (2.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

rapidfuzz-2.10.0-cp310-cp310-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

rapidfuzz-2.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.10.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-2.10.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.10.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-2.10.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.10.0-cp310-cp310-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-2.10.0-cp310-cp310-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-2.10.0-cp310-cp310-macosx_10_9_universal2.whl (2.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.10.0-cp39-cp39-win_amd64.whl (917.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-2.10.0-cp39-cp39-win32.whl (819.5 kB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-2.10.0-cp39-cp39-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

rapidfuzz-2.10.0-cp39-cp39-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

rapidfuzz-2.10.0-cp39-cp39-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.10.0-cp39-cp39-musllinux_1_1_i686.whl (2.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

rapidfuzz-2.10.0-cp39-cp39-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

rapidfuzz-2.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.10.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-2.10.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.10.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-2.10.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.10.0-cp39-cp39-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-2.10.0-cp39-cp39-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-2.10.0-cp39-cp39-macosx_10_9_universal2.whl (2.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.10.0-cp38-cp38-win_amd64.whl (917.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-2.10.0-cp38-cp38-win32.whl (818.5 kB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-2.10.0-cp38-cp38-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

rapidfuzz-2.10.0-cp38-cp38-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

rapidfuzz-2.10.0-cp38-cp38-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.10.0-cp38-cp38-musllinux_1_1_i686.whl (2.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

rapidfuzz-2.10.0-cp38-cp38-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

rapidfuzz-2.10.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.10.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-2.10.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.10.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-2.10.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.10.0-cp38-cp38-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-2.10.0-cp38-cp38-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-2.10.0-cp38-cp38-macosx_10_9_universal2.whl (2.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.10.0-cp37-cp37m-win_amd64.whl (912.8 kB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-2.10.0-cp37-cp37m-win32.whl (816.6 kB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-2.10.0-cp37-cp37m-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

rapidfuzz-2.10.0-cp37-cp37m-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ s390x

rapidfuzz-2.10.0-cp37-cp37m-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ppc64le

rapidfuzz-2.10.0-cp37-cp37m-musllinux_1_1_i686.whl (2.8 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

rapidfuzz-2.10.0-cp37-cp37m-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

rapidfuzz-2.10.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.10.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

rapidfuzz-2.10.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.10.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-2.10.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.10.0-cp37-cp37m-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-2.10.0-cp36-cp36m-win_amd64.whl (908.3 kB view details)

Uploaded CPython 3.6m Windows x86-64

rapidfuzz-2.10.0-cp36-cp36m-win32.whl (811.1 kB view details)

Uploaded CPython 3.6m Windows x86

rapidfuzz-2.10.0-cp36-cp36m-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

rapidfuzz-2.10.0-cp36-cp36m-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ s390x

rapidfuzz-2.10.0-cp36-cp36m-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ ppc64le

rapidfuzz-2.10.0-cp36-cp36m-musllinux_1_1_i686.whl (2.8 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

rapidfuzz-2.10.0-cp36-cp36m-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ ARM64

rapidfuzz-2.10.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.10.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ s390x

rapidfuzz-2.10.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.10.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (2.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

rapidfuzz-2.10.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.10.0-cp36-cp36m-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-2.10.0.tar.gz.

File metadata

  • Download URL: rapidfuzz-2.10.0.tar.gz
  • Upload date:
  • Size: 782.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.10.0.tar.gz
Algorithm Hash digest
SHA256 50f4910cc05dfdf62398880fbbcdd052ff5bcd76069d1d9b7e29d8c9320adac6
MD5 04f6ef5332c69de10fdd0e086b04f120
BLAKE2b-256 63306bbea2c88ee30e3e806e9181b4d8f2694a60f593450d403569475504bef6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9a6a2e7e2c570d287dc267ee7420ce3333ce1255689da128b14c5e1753cbb026
MD5 1abe1a45fe9f39db6bcd1cf5d2c1a14b
BLAKE2b-256 ed605d15441702efffe9a70ccebdddd05fe48f5a275d3f0783c9db417206abb5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1824c5144048779dd65f41839b38ddf827c6e3f5c5da0564d56cdb9a0b6d70a7
MD5 6c54f0efccc3a410d9412bb38b84c239
BLAKE2b-256 0cb619edf15b3896828b59084181e5f18624d55435ae00067bc5b5dea1dd11ed

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 944e88a2826d7bfb9d944069dd648ec3d88fd678494db34e970b09312d3e2fbf
MD5 9883e6bebc3f5163a84e59ca337605bd
BLAKE2b-256 ff3b39e2f638916f7478b74fc1459a4aeb6d1f991762f600483db4488d4eda83

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fc45489188481ad705a3b0f38d9ec86fc7e9c42ac26f58fd2c8dae70804044d5
MD5 207f74fc588f352beb67fc21f1ad6525
BLAKE2b-256 60b2a81738632186fb0c8ef8c5ecbceaabdbf720366ecdbf3ed737ee3d38e810

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 78e449199f15ffc92e1144e06096a4f7f2765d17b2dadc85145cbdb045ca9357
MD5 83864ce92c2280ab99eba33220e24f3c
BLAKE2b-256 c953638c82672805f9e8cab8dd21e271e4e4a393ef229f9a1f649070fbed4078

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 85579406089fbb13fa00b761b4f424f3d15c8a50d0eee67ac9bc3c21cf58ec56
MD5 ef8f6b07eb151536effeccfbcf5a588d
BLAKE2b-256 ee00c74918f08998b1f8530f9df1def685524e6147e34544cd15447f52eda8d9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0b53aee12ff9440a5671aae1bf21a814a1e001e346e259a380c043b786f26ea1
MD5 3fb1c15153ce2e93f70ec0cc0371f020
BLAKE2b-256 770f9532572276ad140d39d9e6487b5751e215f286603dbbbdda05f6f1a463eb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fc4ac217145de0ac12b883e04993b5bce2ed59ca6f410839e5c78221264653b6
MD5 5c3c89813e0adfc0b49e516554cf4b71
BLAKE2b-256 1346b27508ad298a33248f5131f23134fee4db274b392dc891e732cbf344f467

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 086e91713610e35fd613788df78fa59a3f6d8366c00c55d204c021c5ba66db78
MD5 bcc562b84707cac941fefa476d9509a4
BLAKE2b-256 aaad9fdff2c087945f29011de5e5cacd174a1ebdca291ec274db01f12803df1c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 39c9424b60d616970ff114a06c59994ca3991cf3a00dc1c7b571cb7df1b2fda6
MD5 e21e87786dfe90188dc5233a00e0e687
BLAKE2b-256 3bd8cd3427c3e2d2be19dda2eb591fec5667dfbd7e18b5bbc4c41109c9e0fb92

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4a6330f5fe5c169153e28f06920125a54bd4717b7678d14dd473e7bd85a529bf
MD5 81b9708f7d894cae1ef4f16e7a7ad60c
BLAKE2b-256 08bf70e637be3749d7c18b3bd8e391712ee6f37b248d4357f3e313fecf1b4e5b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2cd5cc6d75279cef5e80a1399aa10d63859f3e3e72be663488d3add0c13444eb
MD5 744512a64266614d02986ff640e4beae
BLAKE2b-256 1d1e78b0b0412c7be6e6b2f32cfc43ef9d96a5dd3687bc60c85c515960df7cbd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 3b1ff4121a3cf87529204449bd7cf9ca493dfaed9703410463eab13a5e00fcaa
MD5 757a8dd664b5b49a556a964824b1915b
BLAKE2b-256 d7a0c66925dde8fa699df53a49573e7dd0ce9bb174f55bee4dbb1c5d64a2a39f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.10.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 820.1 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.10.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 47b81d96fbaa0a26f91a3ca0fce740c45ce1773248c2f0eae47ae37443068c23
MD5 c5eb1f503bbc6f2599d05cd29dae2bd6
BLAKE2b-256 08bc5434f7ba61d734133c035d8760b2db101df5645d5e7b821186635d54893b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 68ee4f89f9cd3c52d4773807d180ace774f4a01d4be940d6f46e5f68b57bf136
MD5 97cb7cbb153362890d54f6640e427c40
BLAKE2b-256 78e60beef33217ecccc949bbf07e1f7102aed806c56806c09f873d502c48096b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp311-cp311-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp311-cp311-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 692f6e84079329d1b0531f359d5b8784385ec05847931b4b3596743f8f5d6663
MD5 3cb68494f6c96b42980710a800e8b19b
BLAKE2b-256 05cc212a4b2c9e1dc6b886c0b71f8124349d313b7889a569b127372c4ac9bb1f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp311-cp311-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp311-cp311-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 12e091ad55b8321da5ed2f9e9928b4ac12d23c26cdd63872b08654a10365042c
MD5 7ac9c76ff4d1ae32193ead8a6db18aee
BLAKE2b-256 44a7c8717ef716709ad4bdbbfd2b05ca40a94a59dd7c367fe5c5f1a6558c0d4d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 6f6936373debce73ab26a136c42c96c51e181e3d0daf22c3e81e877df8afa5b3
MD5 a071952bd57eac5673dd94d11ef550b1
BLAKE2b-256 da36a4c67a24814381123808f770c7a98f9f1ddffad0cc918f3f3e8b6890761a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 b28ba854e188f5c02af1ef471137c95aa72362fccc40e00278d504682dfdc435
MD5 dce1f7e77a342fc3bee1dc205a1b954d
BLAKE2b-256 c555d68667a35d9cdeffc2c4468d24139810f5bb8dcf0c5197380fe4abb2e50d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8749f81e099c64a4abf17fd70b7b5104be4a72f1cd88e6ec1118965fcd4b25b3
MD5 4243bd5a354c938556417446f2fc5389
BLAKE2b-256 a5f6db9912236a7aeef301d691cd75ecfd5b09275a03609b0d454ea374b0749c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 f65b6c3e096a2700bc7c1fdf7d206b011250f6c1184acc4cb1de869292134c84
MD5 5804093c173253094bae7f5dbf4fad54
BLAKE2b-256 7ce4b69f0bce265dfdeb825961bb7893874b5c25f528dab8e4ffc5cd8c9d5695

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 ce1b19a7f6fd1db844531ea7f2227915a9cea65e03b1a6c98bc1b92412299056
MD5 b05626fd4a23d6800aaf910edd7e01f9
BLAKE2b-256 585b4109c0a6140e5f26491b4f4032b1bc377888305e1f64166173a63e7d68d4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 eaad2ad08549a489cb7beec1b11f9dea43810c080f7e18b2a4d77deddddfd629
MD5 77c308753ec78d92e9b61bd5049ea73a
BLAKE2b-256 df3c7187f60648b080710a63414863c35dbad1ccec8c0bb81f94eb705544fadf

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 375f795eb953e9b0b79496f3063fc322d746c095403d8038827c4338c17b34aa
MD5 c77b9dd64063ebe999a0fe26eff9784b
BLAKE2b-256 356930bffaad30d7b66b2662636c656362d2ccf681c643e463bbb27c5c3da5b3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e104021fb40db94c22b323a09b4005c1d41a739ca629de6c79eb35474989986b
MD5 6a93e0c50313db3dede843f58721e68b
BLAKE2b-256 166341bdb602bf44f17b46b10bc79de4109ff0a8f040c4b3d739b84015bd739a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 abb03fdc3d1af63da6be5e064a2deef15fb80cbf9c00fd245917baa3559d0790
MD5 26c5ec2e4aca250d8a00829b2a09f2dd
BLAKE2b-256 fcb50643e9b6545f530b6aaf5b7ff6ee67016ec655a582f3e66189c564ad4dd6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 9b2eb71ea59ece94c5bc2c73d9cd262d34d6eb1e2a7c1c9397fdd88a020140f5
MD5 247807609854dd571f5a5ed86316c29c
BLAKE2b-256 cdb819453ab905b1a4fbb52755c71d958ae0358ffc0ff07109fa79d543d38e2f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 739274123ea204cea98ff08ddaec6471d9acd1a8cf3eed11564551c4a2a970f4
MD5 d7fd838eaaca9332f7d186b4b38bf40c
BLAKE2b-256 7ee19984e659b124a2eb1bf0950130d0dff416f273cb4b0db37a1a7e5a37b958

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.10.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 817.4 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.10.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 5d8c473fa1da294ed871fc45239c48a800f49971fa374698b1d909bc88cd5106
MD5 cedfaaadcf4e0a0854792b933f31d585
BLAKE2b-256 a3ddbdb3bd26720e856b9e0f45dc69ed8741d48a4185bc7f4b9096e28aa7da8a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 497eef96e6585dcae69c441fd5ef2b1f327c113f6c4ee2d4865c13eb8fcbf1af
MD5 c4e9cb379d600267dc4831615f6af0d9
BLAKE2b-256 344488c606983ba0186787e368661864677b28764b7d773287a44136e50e1127

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 bab53ead33a4bf9412add624525f27985579d218f5e56603ed4769020f084dcc
MD5 3a10760626db89b86bd0d3206cb6310c
BLAKE2b-256 1043fc48e7318e8205fb1b5d209c10c4903a018598f2ba682770feed76158cf9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 c031615931d974dd153a361da114f7a45852d0a5c2bff87010a70940605c2705
MD5 253e66001896cf1399d9f9c0c34add42
BLAKE2b-256 0ca62351c8e3e1339c1cb475c57c5a6baad714612ed7e07af22b305e90f8558e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 cc7b86733fe10fa9b06dd2e3933abb166e83f97688a418e3f08f2a101901b5a7
MD5 d2321ba1b4aeefbc2a60ec000358ff31
BLAKE2b-256 16075848df43b94ff2f7724c84e8d1864f097f1328bbf648c1a8e33f6b91dd8d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 703edbe7fa2f86655e205eb84ad5026e5d432bed5349dfb27586621ce702535b
MD5 c1549f29a7f6c2d7b009a47f2cb71fbd
BLAKE2b-256 1ac55918ab0b0a158e96c8a852ec4fe66608986af68bb3a84c21db8f8ecab59b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 291f50d79bd50a318712c1394a80512732509391278644971c8f7809d407885a
MD5 bd8f822fa7e7c39a8592cd0cd2aeddb4
BLAKE2b-256 c70c0a789ad3c4ca32d19f4a73ac3dea9fe77c6aa02de47e618a0503b77e4b67

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 4825af42a610ec906c27f80a59150a3299ab68c475b25010032c3cddc3066f18
MD5 cd2c09ce1b368772088b3749f744778d
BLAKE2b-256 99023ba3ae9bf80fb12aed00e31469f6cb2cfd600702cf1f3e71367bf2c56372

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 272162cd7a76b5712379b6f7f1a829616f08a2456058cd76cadb06e402f4da44
MD5 b0f3334d2b6f2dc04d807406425bc343
BLAKE2b-256 0fa4f17fd53e31eeeac845647d36b3a0e7ff97527ffcb573137c70810a7f9478

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7d6549693a6ae2be7095d9a0e627163633f73cb0d35eb213c824a235baf8e945
MD5 f68e03062c037688fc4e12c7edd8b962
BLAKE2b-256 dd3ced9ad9b1aeb2dd0c7be713a38c1df521f15c1a1fb2cf32f191391f5a5e03

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 90322e566478796123b303a061ac6ed91271fa62f725ece023aec33c702d56d6
MD5 3faa846788b5cfc17a4551e65b39bd77
BLAKE2b-256 a22ec930753097448ef5e0fec2e4791470f78a7e1e35f5581f870242ce167a02

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8e2977b36b5af14fb79cfbc821b31382fe5f33e2b7338c08bc3ca13b5f74d39f
MD5 a1e07b0badfaa395ca22e992bc9f185c
BLAKE2b-256 b002cba52da332985a8419847148eb2c499557b04aa68758c007f1f94d5e9e9a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1f1c2dfd869951b7c057eda84f20338f637ee956eae7189cffe68d9694f13cdc
MD5 3789ceb2c8c92760646e953c926ba62d
BLAKE2b-256 3e1b9a9458c07313e0fe65e9cb12621b1070710ad328c7f8140836bc0d7a2db4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 c05586fbfa88944811cfb828f890acdff9de138434881c2a535c649e34dcc93e
MD5 a685b8fb275e023a492f169bf3702d1b
BLAKE2b-256 144eb5447169bf495045c299d413841fd663b500895da7eb0b69a2c97e9ba479

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.10.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 917.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.10.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e28eafd0412bbd29509e1c0a89eb64da8dd644046ccc27c3d55f2c5211cbfac0
MD5 a7fbedd643b76dea3ef03179eefca90d
BLAKE2b-256 94cc19c26fe730d575188988160ede1b352695d229e0b8d1957cdbc3141efb15

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.10.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 819.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.10.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 c64b44f30620d71ac212f6041f537b4229c45581bf7f8d5efb0fa1b27cc0935f
MD5 84ede1683a3e4db1706afbe4ba63d196
BLAKE2b-256 ff65cfecdb129af9dd11a3028ef18e2476c410f16050d9e0295ecb543274c305

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 cd4acb114227c6238eb98fa0c584d705b229ba59e0d95b3157131eaaffb117ac
MD5 c86316d4b16a1f46d3007a83a17ff03e
BLAKE2b-256 2d5252dcfed0e3d7ed9047faab97ac2ff5349053934985fbcda076dc4858e7d0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 6bc6c073d8c348efd9592c276f854ad627f33dde89405ef8c635c9340df99ed4
MD5 21e3747296f0a8c0325c37b87abedb1f
BLAKE2b-256 f1e2a73d6d7ced0c12e21e73ef1bf105494fb3b4cc8cd983002696d67201c60f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 244d06c19ebde946bbc56ee06bf2be36c7367e375838c513cef081b8a718e497
MD5 1ffbe09d73e5ddb303da8a6d4ccbb35f
BLAKE2b-256 d61b509f7f394b3eeee43a079595c977069a8a1fa2ed7d9fbb2abc41f63bf33c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 67c47e8d797554168df4888faa85a6827d53b77f2a0069b9c73199cfb580f781
MD5 a52ce29eec5994fc1e543f3e792076b7
BLAKE2b-256 0570f58d782985dbe6ca8e0a8c42b862b0ebb91b01a2ef69d275b9a3835e4ccf

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 33ad6ebb67d8fdf932f0058e1bdc95e34d7a2a1efcc12cb34886d379621c0c1a
MD5 49f0c58d438cd6fd89a0f9e8fe78eb86
BLAKE2b-256 585ab81f30458bba3aaab0e6749a5c8ac240f253588b87c6eb9c9a6887d987da

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ce8fd1e2871beb7e16ca249976c556f77ce4ee7efc7a72dc16563b5c6919779e
MD5 a60ad297e042174d0dbf8dde9422fec2
BLAKE2b-256 c1616986f73348a731d5bfb069a62113cb0775521e500294e9b1b603db121d00

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 5def65d8504efcb89d7d5727732320b47ea4b7f1be1ac9516602ab02f88ecbc4
MD5 9cbcda439e847126ff8c26f05ded03ee
BLAKE2b-256 56758aed40e1b832eb7ac4f467389732f85872ddfab04dcf35b909cec759f111

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 9dcdb07232a37119c518565b9239f280afd2558889992a33cbd19fb185574316
MD5 7e2e40bb421695eeb1e5eab0c684984b
BLAKE2b-256 179a8201363f41cfea2f0980c6fe6cff08989d241efce6d8e38003624b4c105e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7c94af4141c49f85dd0f43886bb50f4eae2b4aa9e4bb1160bf98adc7f68f7dcb
MD5 6206b91a54d42a1fb821728b39e991f6
BLAKE2b-256 8a7cef369489d5282e97f5b1111290a61a12971dcaf684a71bd4b58d1be9f6e0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 132958922a0745ef5d6e562fd095ff9e08672f202b7b42b94e083d733f512524
MD5 b67ae6dc86e4287f6e75bffac054a4a8
BLAKE2b-256 4060ef3d65effc044c716e4ebac7fa136015a3197edeb52480e8d68d3ee6ec8c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6f4cd6e2eaf6e9735c74d53912788de4329248f329d62036c87cee2f860a28ac
MD5 a5a5ee30889982ec74f52c8c6f5a3566
BLAKE2b-256 2fd18d3fa783251a8cfb703b80f38bfd98079df32434609c46a92ace82402f37

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2ae32deab511e227127870bb4ecc49a5d15832ffc4e9e9970da7554eebc28ac4
MD5 bbb7820bd21a82d082c7d5e19f7abe3a
BLAKE2b-256 532f277b17867c41d3b8e9512a901b57990ce9ad9194c6937901261979ae44b6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 317c9a7a1bad14f6e632670ed493cc87436236362f037826d57fccd584fa40b0
MD5 6c2c7963abe3b0a98ee25b79961772ef
BLAKE2b-256 71f625818d499b29fdd293e28bced0951559cd2c0268fd8a7608cf2494843843

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.10.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 917.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.10.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 93febcef8f7b3650396d79b63b0d3027277965dcf72beb12f6db827f861853ee
MD5 b846ff213e5eefc2561b6787e11109c6
BLAKE2b-256 6eb78f3f73ebf00e3ba72949887ad87bc59de0600e2a3610a9ad406405d6749e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.10.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 818.5 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.10.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 f1df30a3b7fc8e071fb8a2274338b91b2c09f63e8f2ed569f6fa991171c20066
MD5 793861ade9abfaf02f86a238f36dfdda
BLAKE2b-256 02b2d6e536df8b67abd4d1e593f7e6762543b76629f8f2c1ffc44b78ed8969af

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 465eb8a5e54b548724c7a50c6f71c8c0c7e680f197c6365b4bb4dfbba1a9d102
MD5 0c9d28cc7d89bba83af1c522f652be5f
BLAKE2b-256 6417432865f12ea3c6689cfb5da05e7f0f7463cd31d547217d0949db1d0f6406

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 af8571d8f078dee752456f4e7c12cc05ca9c6430eea5e1519fb351c64e054992
MD5 fd9c02b1920aab3301a54c84f003123b
BLAKE2b-256 1886c42388b9ddb98f71f9f5d819a076f7f779d2c0f19aea9bea556bb42614e9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 5961cdbb463733f045d553757331a7378b06df85b4bc0dbeb4f3914dfcb9e8fc
MD5 448937b81d4e8f0fbcf4c81cbe698bc0
BLAKE2b-256 610d2d97723405ac269ce38209b7613d2f196895cf0cffdf1a71dc816cad7a60

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 2b8c4132ff333b3d8021f0a73d00ad1d6a02e39d5bab29806fa263815cc0662c
MD5 ac53c62b9521953814530ab292eb925d
BLAKE2b-256 13e33ca31b29d7a873baca43cc29db911f6c988aab40a77f9c0c9ceac19fb73c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 51e8734a71927c6d2d5dbb5effe057b79bfd913aff7541d8b7882ad9895084f5
MD5 12c53b6fbd43e6aef61d876eb072f03d
BLAKE2b-256 f36d749c1d28a6c6861e29e1527b4fca172060d752b77b63ac6e771d00e5bce8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 75cd038be5cc7214f98af1590396fe16df5642ca8c712d0e14b488298399ee71
MD5 a706ec79aa962cbeb82d8bd78352a034
BLAKE2b-256 deeeb7d37f7672307cb817af28fe25e40c3fe18d7f8e7cb2d0e2e33da75f3cd6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 04d82ad304e32b8dffb433024dbf0ae6a514ec030db7d4203cda5383e7a9752d
MD5 731aabec9827e3165d1294a4b7bef6f5
BLAKE2b-256 89e8b4cce1cd5d827c71f839853f5f7071cf1ec92d62623f186b6b9c03ea3817

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 dd16f1a7e797f24c2d35b48eaf0cd7107018953071e1f33f3975b5662bac3b6c
MD5 c604a8b8fd5efe7289544683feac6841
BLAKE2b-256 a598ad7909b3268b49b710e3a347fc49c80778a05e216371d68fe1c0c71971f8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c0c4a91e7fcf0c6fc554c9d465e2a0f14b7a0ac27a645888da18201005408c79
MD5 642a5e6f0813c019b7b03a3442bb0d94
BLAKE2b-256 cb471a23640f664b2c3835ad1db509893e56e72996945d6836ed83bbcef95b31

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 088acd6bc530b8722874aa4c09ab8863a0983a31098a0b7ea2d602d930ef1c90
MD5 e476fbb83875235e553061b01a839a80
BLAKE2b-256 9234f6844aba36bb1076d71306630aedf18da6cdd1743b15472645212bf19e85

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 48e8bd9ad03ec21c4e7199fdb77f71fe12da758867d4c39e136ec3c90b639a32
MD5 b2c7d9fe320a7ef2e630c4405618fa91
BLAKE2b-256 868ad406c6ee545adfcc8f809d9ea10d77444741c73f130dedf3ba05f4f44b5e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 17268ad4d4a8c716504a506bbe504d66a8f5429a2f0224ebe2b0000fe615707c
MD5 e337874110b4b8239d2d3d88999e99c0
BLAKE2b-256 10c5dd144dee1fbd39ea763f0c211f85bbb7d62ec7f16e695b33b0572b389b83

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 4ea82421c461631271f48de3ae8d5cddbcf82f5d6988a12464204df263a833a6
MD5 9bc28580aabe7d51df1f64f4422930ab
BLAKE2b-256 542a9e64297608cf4a4188323ab38425b05e3267a7ca31cb9f7a7161c0d30ffa

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 634f8829f391880821fa73cefbe8ddf10deb0ba461b402c19b9f9a2a9d06c097
MD5 286951d9ae9d93dc9a30d73ab260be0c
BLAKE2b-256 6bb601c87d49da4a0471c4653042b4ba75d8ada30fe5cd86bc4ef26c658f69c1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.10.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 816.6 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.10.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 5ff067552ab692f7c81b88cbd5f90accedc1c1555a630e4b2be19713295d4dbb
MD5 a65818365fe59efa893da7bb13075499
BLAKE2b-256 504df2ee6a8af7ebd0c9479dcd850bb032c0802147529a5774b4e84147dab417

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a235485a5562f79910e430e65274ca83ba7376b8f063b00ecd02b222e173480b
MD5 b039123f23282d33a13f35550efd70b1
BLAKE2b-256 8447bd0719bc6feab9beabcdf1bff9d319a85a8359702368e0e8702d97456fda

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp37-cp37m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp37-cp37m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 f4acdb0ab4d2f7fc5fe11a126b00ce9a7a7528780c15744f1a6bad08ed8bee31
MD5 4c9c4faaf1a5161b67a4bfabd4c74948
BLAKE2b-256 7a4730ecdc9e6d937c02832b8cff2b34b6918bce460ad792ffd0e53d51937cd6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp37-cp37m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp37-cp37m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 b1069063ab427009aa70c51489ccf8c7d2e41772ec1cb150c43be62841421d2d
MD5 85b2debc704950062fe89be94a16f56b
BLAKE2b-256 faeb491460adc8b7a1bcbd6a869f24077ae222637ac04a303a7bb513587f6b4e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 de87272cbaa7d02fda24d401b489154a755534dffd5ba9a804ed2bfa82452ffa
MD5 ba09e4f63bd14232370f02e13198f48a
BLAKE2b-256 5e93e19aa20a370fde14ca852e330e6066e8f6cff315aad848ea0e85e26bdfe4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 cbbb0b1df61e785cb540a3bc4b90d64939f2afcfd0cd77959dd37595029638c1
MD5 dfb2bf56379662379af2e9e1dbabb29d
BLAKE2b-256 489e7960eacf10c89ceefd4d52723e139d51e145e263b39ea1a0e2c3aff1bb0a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 abab16ae1d3caf4210a5fd7e43a8d1e06d4841ab0f208bf3cfc5ad27d48ebf60
MD5 fcc6810b8910b234066ed7c1b7329dcd
BLAKE2b-256 566ddb987264bb8fc40a14ab74cf763e20ac6799c93cee9b8eef47a63dbb1f35

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 767b47de137d275394cab845283ffae46215a866a6cfa548c0abd3eb4ec173b8
MD5 11237028a0b22f834cf155ad3a002ef5
BLAKE2b-256 808680f89d607cf156e68b2a3ccb0905defe0747e42b8feaf3e32c385ff03bae

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 fc2e951373b94aefb923e7444d1a3b2f66383264a399142ca3e88d2ad275e74b
MD5 b3ee6b5218ec248499f35e364e86b3a4
BLAKE2b-256 b0c280baf3eb5a2b54b001ccb9f188a22f417c7d9b09aaf707cf2432d8bf8944

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 92332b004280a8380fdc3a8fd226c08282adcb46fce24393239fc748e803947f
MD5 3f4c6e5676315c8e457ea30f64022c3c
BLAKE2b-256 38d59ae5f46a2f785f9c4566f8594b49c035e6f5fe584e29b4d39a64d744486d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 981fa6c01ff732c668b1f0305a64949b0ff1ddb16b2883019a54c32e1399b399
MD5 e35a6a5977e1149829bf360b2f12b9a5
BLAKE2b-256 4074668610ea96b4457c7efee65406e210d019f8c9ec43535150a8eb9249ad55

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c92b68f1d08be1708d3704ff83e6256bca846e81c7535fb73f535d313fe90efd
MD5 26e7abc58deb226371d7b3006101a4fa
BLAKE2b-256 9f615e0a4c86d6fbf25befe7c6fe5f3d161b2814f0e4cf9f268ea3a1c0fd36b1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 ccf90f53cbbc9ce386e0eb057e047ff78b05769a11e0b76ea958fe86eea03bfa
MD5 f2ed5367eba44d43caedf90e2fffddce
BLAKE2b-256 05e0882f0220909ff6790d5e024899e6f2990b7579d31889f37dff9822c4b025

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.10.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 811.1 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.10.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 5acd48ec15bd6a90eb644d47f3cae8146d84a2de63f82c2ca9e5493fda9cdf80
MD5 507c03f5c455cc9b0738d987025f765e
BLAKE2b-256 f3cacf337b366f9b3bb4c50ebde587342ec7e2d52918a270bbd280c74051bb49

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 fdcfd5a7b286ac5c952f0cfbd07d2a039cfe2e3854bdb02fc4c9deb3aa833d2e
MD5 037335e2eeb1b5bb2677abd1a5c601bd
BLAKE2b-256 3a6281f943249acf9d08c43fbb17a45b01422ce6b4ff2735d578d88e47d688b8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp36-cp36m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp36-cp36m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 3dba70947a81ab2ae961d10ae495447d5c30a12da3eac65b7a323c1a6a883b80
MD5 42b5256f85a9356569f104202b0f59b6
BLAKE2b-256 ef32fd054bd6b458c922a010a9cbc89770ad8ef3d20e5e4d4c4b6da52e260b7a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp36-cp36m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp36-cp36m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 d2c5978db3f1701bbcf7247f308cc13da53f18bce5499aaddb0b1f8256942934
MD5 0bba7e199103c046fb5f9f3de073a51c
BLAKE2b-256 91ded05a5f49a8fafdc30ff643837ec24fc355b5d9636de6c7d4de6277247704

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 af0dc642781b31b0124a8edcb746afe178fb3cfda0bf74545fb8846d4e1ff664
MD5 84714cb4019804856d6d790cff17dc0c
BLAKE2b-256 1571b2aad74d149d36de6edc1d6f56d2036a42f0f6f192b4035f1a3ae3889173

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp36-cp36m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp36-cp36m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 c9d5c670f2883121c2d476d78914ea0d73b756e9c28cdade94be55cf4ff10dd8
MD5 0dc7bb0ed4ab34e75af3ca36921993e2
BLAKE2b-256 61649fe99baa584f8745db6b67d5feed6574a8c5c81f6d0dc857f714714cd344

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7e01ca52aecfdc7b5decad212caabf0a78b75e331c7b6301002ffd6e78eabb1b
MD5 aab1269d57ddd4934deb40b24674e79f
BLAKE2b-256 def7dc04bc2566ecd05f4e4eb016757715be10dbc518ccee556532da9c732833

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 01f71e2cf436153d01a857894d9a44081ae8a5a7964878709d28a201c70ac136
MD5 2300fbd0b682ef213177781cb90ca02d
BLAKE2b-256 897ccb9c7df4f3f22f33ce2ebede2f9e2086fd1467fb6d6318b311efa886a472

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 8eb9a2211c6608b046aceb65a27c3b7767eac22d0cc9f39c3ef1670684d531ec
MD5 a1fc1ad692533f436187fc831b00c7d2
BLAKE2b-256 ab6fdc0b8ea032b4a8f7c7f93436b15fc809120ffc7fb3198b8d61fa25e60c27

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 24670e3333ed93963e9b47f960c563f4c483e1f10ba399fc73a9b71d71f38222
MD5 86f302bfd621cc0a7dfb91b94b46062b
BLAKE2b-256 92142afc6c2cae938a6a2aedfbb8f050d393283da6a9c7c8e9a2d04300c65d93

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f33cccf6a28e69f89909346a333359d857d20eb9881afd676d2872f480a94978
MD5 70ed92ca7976d2a1af7fc66d7d5896ac
BLAKE2b-256 805fbde61684ce2572f6956a7cd3cd0117c72e5eefa7a8824997d825e5957b97

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f9df3c3af1e169cb0e7d787ea56dce750cd0eec888d6e6d3a9e24d8310eaf0ce
MD5 f5402db140e4bc6e769b02d8d97a2514
BLAKE2b-256 a0a682d807246cf79280cac73a5208182322bcc3fb1197bd9f589f4508ae8dad

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page