Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparision between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparision I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

Benchmark extractOne

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-2.10.1.tar.gz (782.8 kB view details)

Uploaded Source

Built Distributions

rapidfuzz-2.10.1-pp39-pypy39_pp73-win_amd64.whl (853.3 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.10.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.10.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.10.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.10.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.10.1-pp38-pypy38_pp73-win_amd64.whl (855.7 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.10.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.10.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.10.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.10.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.10.1-pp37-pypy37_pp73-win_amd64.whl (855.7 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.10.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.10.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.10.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.10.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.10.1-cp311-cp311-win_amd64.whl (918.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-2.10.1-cp311-cp311-win32.whl (820.1 kB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-2.10.1-cp311-cp311-musllinux_1_1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

rapidfuzz-2.10.1-cp311-cp311-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ s390x

rapidfuzz-2.10.1-cp311-cp311-musllinux_1_1_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.10.1-cp311-cp311-musllinux_1_1_i686.whl (2.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

rapidfuzz-2.10.1-cp311-cp311-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

rapidfuzz-2.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.10.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-2.10.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.10.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-2.10.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.10.1-cp311-cp311-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-2.10.1-cp311-cp311-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-2.10.1-cp311-cp311-macosx_10_9_universal2.whl (2.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.10.1-cp310-cp310-win_amd64.whl (915.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-2.10.1-cp310-cp310-win32.whl (817.3 kB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-2.10.1-cp310-cp310-musllinux_1_1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

rapidfuzz-2.10.1-cp310-cp310-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

rapidfuzz-2.10.1-cp310-cp310-musllinux_1_1_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.10.1-cp310-cp310-musllinux_1_1_i686.whl (2.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

rapidfuzz-2.10.1-cp310-cp310-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

rapidfuzz-2.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.10.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-2.10.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.10.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-2.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.10.1-cp310-cp310-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-2.10.1-cp310-cp310-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-2.10.1-cp310-cp310-macosx_10_9_universal2.whl (2.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.10.1-cp39-cp39-win_amd64.whl (917.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-2.10.1-cp39-cp39-win32.whl (819.5 kB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-2.10.1-cp39-cp39-musllinux_1_1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

rapidfuzz-2.10.1-cp39-cp39-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

rapidfuzz-2.10.1-cp39-cp39-musllinux_1_1_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.10.1-cp39-cp39-musllinux_1_1_i686.whl (2.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

rapidfuzz-2.10.1-cp39-cp39-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

rapidfuzz-2.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.10.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-2.10.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.10.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-2.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.10.1-cp39-cp39-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-2.10.1-cp39-cp39-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-2.10.1-cp39-cp39-macosx_10_9_universal2.whl (2.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.10.1-cp38-cp38-win_amd64.whl (917.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-2.10.1-cp38-cp38-win32.whl (818.5 kB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-2.10.1-cp38-cp38-musllinux_1_1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

rapidfuzz-2.10.1-cp38-cp38-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

rapidfuzz-2.10.1-cp38-cp38-musllinux_1_1_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.10.1-cp38-cp38-musllinux_1_1_i686.whl (2.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

rapidfuzz-2.10.1-cp38-cp38-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

rapidfuzz-2.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.10.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-2.10.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.10.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-2.10.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.10.1-cp38-cp38-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-2.10.1-cp38-cp38-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-2.10.1-cp38-cp38-macosx_10_9_universal2.whl (2.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.10.1-cp37-cp37m-win_amd64.whl (912.8 kB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-2.10.1-cp37-cp37m-win32.whl (816.5 kB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-2.10.1-cp37-cp37m-musllinux_1_1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

rapidfuzz-2.10.1-cp37-cp37m-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ s390x

rapidfuzz-2.10.1-cp37-cp37m-musllinux_1_1_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ppc64le

rapidfuzz-2.10.1-cp37-cp37m-musllinux_1_1_i686.whl (2.9 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

rapidfuzz-2.10.1-cp37-cp37m-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

rapidfuzz-2.10.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.10.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

rapidfuzz-2.10.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.10.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-2.10.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.10.1-cp37-cp37m-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-2.10.1-cp36-cp36m-win_amd64.whl (908.3 kB view details)

Uploaded CPython 3.6m Windows x86-64

rapidfuzz-2.10.1-cp36-cp36m-win32.whl (811.0 kB view details)

Uploaded CPython 3.6m Windows x86

rapidfuzz-2.10.1-cp36-cp36m-musllinux_1_1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

rapidfuzz-2.10.1-cp36-cp36m-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ s390x

rapidfuzz-2.10.1-cp36-cp36m-musllinux_1_1_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ ppc64le

rapidfuzz-2.10.1-cp36-cp36m-musllinux_1_1_i686.whl (2.9 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

rapidfuzz-2.10.1-cp36-cp36m-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ ARM64

rapidfuzz-2.10.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.10.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ s390x

rapidfuzz-2.10.1-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.10.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

rapidfuzz-2.10.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.10.1-cp36-cp36m-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-2.10.1.tar.gz.

File metadata

  • Download URL: rapidfuzz-2.10.1.tar.gz
  • Upload date:
  • Size: 782.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.10.1.tar.gz
Algorithm Hash digest
SHA256 90d383e265ad587b0fe297bb07040c9b62bb2849daa3d765118121d13a5d06b4
MD5 beac622a8401bd27cb1ca7abae020d9d
BLAKE2b-256 6b12353af810aa6fbbf784c73d4cdb807816b5edb607d7065e74b7322e5e85fd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 9468d05ed329131f998bed187c085417c6d7862eae51e008783eb0592c104482
MD5 da438305e923eb6326e9e3cd0c621fe3
BLAKE2b-256 81978d966f0612deabe379a65f7cc7e2a127e64044404d01d66221c47c5ab77b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f901ddbe3cf5acd9699b85284b9dff12658a25478ba1844fe5aed93016504402
MD5 db7d77ce5693e89f1b29ae844416d6ca
BLAKE2b-256 deb4d5dffaca3fa65c3a1560636535f498b1ede041f5fe449026cd47ffc45085

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 154191182401585a3273d59b32ad772555dc0c48091d930e3b96e32c281856e6
MD5 b98fb09f0a06cf1e8f2594a149ce4b49
BLAKE2b-256 9e888e4554ff6d6f1afc4f1d4c7dfe9ddaf7c66aa31274c3a0295c0567cc8bd0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 190ccf88fd166137594d57539b73d8fe6e5891a3d0b5aa9c6e180e7b88c5ffdd
MD5 e5a8b35815293c7bd2d57b5032b1105c
BLAKE2b-256 bfa81f2274c7b6c4b08b81a97dd5cbdc72265aef53a74a7938381dc31ac0254b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 86840879584c2e1c78f4c64164703f2aaffa5e0fcddfdbbda599e6ef3bf4bcf2
MD5 56845bf16e62bdaa4f2d1a6ab6505b30
BLAKE2b-256 bcb5864afbc8113c8c74db2a80fd1079a4723d9c6d670d8ca9a11e19ddc6444e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 fb4275e0eff3bec5a049a4d0f28e9a66c93f72a6b7ce51b3718c6447d7fee74a
MD5 2af82664ab1fb9dfa2864ff08750bde2
BLAKE2b-256 cadfc7d4673024b399571809d75a39ed8a13097079977ca3f687d8f2e80ba3fd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 13d3a5e9d798fcf35415ed8f054036d53e3b9803ba15edf31f1ae04ded578f00
MD5 7ed92615557d099b89c7b23029484e5f
BLAKE2b-256 1027dad0a573728d7367915fd53c112e3de20ad983349b1330bda798109a6363

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f45a1e3f49ed36bf0463995ac5cd26ffa922b373fe6c4eafd134d27c4d97a026
MD5 e2af87c9d214b8b86f87b758bd4d449f
BLAKE2b-256 2a4dc08ae1b05f1af0ab426ddaabf22784af9b685abcccc32973210ba6323596

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 33aca63d7704c5e0273280c061951b952fdc31d7ca46680bf2e8037ea2795a72
MD5 9b4670a9d6172f8b0b5be46121d7b31e
BLAKE2b-256 809109a8aa33d12285e4f2734dfc9dfe7926f2ba3255044dd1f2adeaeb57af20

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9d89294f42aee6f32f010a3b69633542883c46f285d0297f55edcd6345977077
MD5 277bf35b3f70cf08d502c0d4a1883cc1
BLAKE2b-256 e6a1690b4e371bad66e8289aaf54a0c7e4c3f7504368c3c3401a2e82222f2887

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 85b9bf367d454ee99e273d4e1b201fa2439a6789e690379673d6fcf94785a64c
MD5 4d65b2f7a6fb680b39a24e0cf2a42cd9
BLAKE2b-256 e1ee66aaac4a86c8e03ff87993c04dfd1bf747477f9f3d959c3488c27771af81

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4fc2560685184d3dbaa685d44dbf00f1c04a25ef83230a0e725504512d91182c
MD5 c23022e48f6d8bcd6e2572d94d2fd7a1
BLAKE2b-256 e47b7073168848a4e4e810c5ee3e9fe61c57d40965969751730b0ff202f69663

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b5201bdd1f5acafb20c6ed0302f244b683d059e460ba0f4ced098dd9260db75c
MD5 acf527aad25c48443425eabf29b7fb8d
BLAKE2b-256 eeb4763bcd76ba53e8e48ea65c6362d79f23df6bd95d7922f4704d393df689ed

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9f9cb835cd901260c513cf235607b464085660c417dccd0555be67c1fd5aa1a2
MD5 1555c3e0fe59e5748f367db087d82a04
BLAKE2b-256 de3ec774dad9f63547ab0df4c091658ae02fde120dca949c086c9e46992c6cce

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 265150c02229467b3765a66db2d790dd16c86bd50bbebf9257dd5194166eaf98
MD5 0f9b31dab8bb341f7b859f7356af07b4
BLAKE2b-256 d3fb3808477f14a486cef8eac83bc14bee854dc5a0b75e20d9d29b0266eddc0b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d0c4e9da627160b4916f6e4b6ebc15884a884b2b7fa2b8239323ef10807da82f
MD5 41c7f725448e4b9dbc0f20b2d070697d
BLAKE2b-256 422167f395a99ad9c5e1a5a3a5b1b25eb55046d533effff6c55163112b589464

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.10.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 820.1 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.10.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 313b024057684a32f98021ab8af6816c546fa79368363347e5129e07e7f0a4eb
MD5 172b42e1e97d3b96eb033422ebf72bf6
BLAKE2b-256 c0a66df186196e33b80d7c0bcd99ab0cd1addaf832a9f96fa41c965f84d8ba98

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 eb03d6531634f192226ab2ce0fe22c5368345782b3489f86a8442a51e10e2b5f
MD5 4acd034d2f4d6aa141b8254e0aee8e0b
BLAKE2b-256 fb76f9e22d700bbb027e176d2d1e2098e41e38057bc737317f5d6dba7803756b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp311-cp311-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp311-cp311-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 3683c3678a73e49c674ecd913048eefb23404932d4bcf36c9a40136d78c222fc
MD5 73ed778de5e6d2a2b4b425e049734c42
BLAKE2b-256 08a396efe48cd8a391a61c06b039ef5c7105406ab1e3ba50e82782ce99cc3047

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp311-cp311-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp311-cp311-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 4161a1790940f09a9cec517aa4d89b44028f77cfe17b6f23adc939d76babb9ec
MD5 4710af97498a740e86f92be2562fe2a7
BLAKE2b-256 9c471ed7e64faa6c24d733154d8001b0a8cdbf0e0bf44d3be5288b472165bc15

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f66996a503ad6a72dc0c8f0270206bb33260cbc2a128791e3527fbbfdf95bd3a
MD5 2167d4f5f9158e62d70674b9323b1f62
BLAKE2b-256 378cbed24e7a79e3e3bdff07c828e3dcef86f8b780af5b16189334897ad62dd9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 5e564fd2a2e91bcca6e235ffc03ad87101ae492d383300eb9670e6bac24a7b85
MD5 20b01c8f7b7093c83f3fcf5bb7a4c415
BLAKE2b-256 b31bfe8a44db8998e936d59eb62043e14d83a3c71e5f7443c03fdba98c8eb604

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c64d5ff55691d3f25fbf9a93ea717fbaef24ce10fcc8411ff25dc101f6785039
MD5 6a3cba4f751e6749af0f48876fb8c20d
BLAKE2b-256 3c0a0906b3f5719b8ea8051491746172d26fbdfd4af87b6e9355b4261ffcb52f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 4ebe24f42ba587d413cb6671dd85426b7def7fe57abea6441e2cd096f04c5b43
MD5 45d794996926ec3ed0c62785644262be
BLAKE2b-256 05ff9f2fbeb9a648f0c91b0509f84d52d5d9ec9b7961c1282c0ce2cdcbf67ce1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 b49fe5c7ef83fe66c5ed8c72316371f04dc0fd5e1de5571a268d6774c45f8d61
MD5 a7bfbf28a31c5668b7cdded3cdb63872
BLAKE2b-256 bc6bb8fa7cf6f43d64b0318fa6fc9f330f477012d682343691b70e200df059e6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ff1c151474e6958ad6369e19709df6e5bde8c9bd04144ef06cc39400393ac9fd
MD5 6d7fee943beed26d9d58eb54c0e5d661
BLAKE2b-256 3c4b5b77ea9c2709843bca7c9d927d364e5d087de3859f0e620de448bcf60fb8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fa1ab3d5cc29d502f4d992965202d77e171b1bf9040329ae26e0fadb76a3d0a2
MD5 190828aa204d944a671c43787eb48d7b
BLAKE2b-256 22341ad2cc3daa2b3c081dbc1eb23f723edb5476a87c26d24ee639149852c0c1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8076e057b9bbd7ff813a63906897a349bb05c181a22150b7e3ea07af24b37a41
MD5 983ab6130595fdf1a3b369d45abdd0b0
BLAKE2b-256 68be2bbd2dc196997d62a48e511bea9d41c93c950fc55ea8e4b69f0708090b8c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 375567d9b6454d402644ca90d2550481aefc3afcea7eda1c3384b6331ba53205
MD5 5b5f6e749f8174a889984e54bf593c6b
BLAKE2b-256 b61be8c2f14f4a53aa9f74097df6782937dfe49b07ee9170fed97c7be8b6b2de

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 0dd458b077a76883f0fd8567444dd718d0f0e718e49d50ed6b65f5cfe41d394f
MD5 62cfe4c1252ba50bc284f4e3ca74f50c
BLAKE2b-256 3b8cd4ad34e0ac639b9603d3cb9b57f219847bbe11c0b5dcef6ff588afd09946

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 43e98fe3375e830453be388eab5170887e562726a5ccece00c1c276043ad432d
MD5 3eec484a688897c32790c9ee8eea45ca
BLAKE2b-256 2619cded0a29a9219b319fa31b41773daac7b64f15018309c173a4eb48c24ab2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.10.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 817.3 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.10.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 9bcafa6f7d92567a6e149b3163fa8295f7e7e0b8528521a082dd33817594255c
MD5 66d33ff3248afa074e56ca05ad461ec7
BLAKE2b-256 16768c4fc3d8deb31cf061be9fcdeee75d936ec1bed0bc4a7b30c231ced201f8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d90b772442a029669ed74fd358ac3f176a8f3453650e6110ff14ab373d24e276
MD5 e15158ed751bd097d6db9f9e93326afc
BLAKE2b-256 0ab5b6d68d9b87ccecf470b98f28226586e68c61f45c976e954a636d25204787

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 1a1327534ba964f89a4a5e61424022d3be4a3490dcc7c87751b60b32338913d2
MD5 0492827a513f1f8e4ac20c8f1e093ea9
BLAKE2b-256 553174cef96ca13f80cac3b8129dafc38ea01884bf153d3a0eb85b234726ad12

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 f7eacb4f85fd52c1b247633f08b54bfeea4e576e063bd56c11a2aa1f39e6dc82
MD5 e48bfaae1b2e6669726921a3356cc8cf
BLAKE2b-256 60c43dbc14612d1e83ba20ac517b899af6029f0088fdf0679422c70765ac8ebd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 796f70284f53a49052e4a388d479e3af71a6f19c3025699533dbd1bee2f7adcf
MD5 b2c03bd7f95c4d1fb6d205423481a29a
BLAKE2b-256 d85368a6e7e858ddf73bc70b64aa87d7b126f86399738fab2ee6570bd440b38f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 55e1603f977fbf16f29c62f7d325ebda15e2740b5d6217b191d9f7fc5adc443c
MD5 407c2742d3bce784ce40e3967a49db56
BLAKE2b-256 5b0b4beea6f9351bee73b88b8ddcc3885888db5b0d197524c6e2a457017f5cc9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2de2816d24f24c33b5f8813c77ccc32c597b668c4d43140e1b9c67be6289d282
MD5 7dc3132b7f75fc63a8ae15cd98b9814c
BLAKE2b-256 da8981b8d44e4d662c4e35ef339c06d872b3b2593840410ad3e296f76de34dcd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 c0f4d7bb779f8ecac7a08d0715906dcaf1adf4bac383813b5eda24eea1ae862e
MD5 19d00cb52458ccdd55105d2cfe23846a
BLAKE2b-256 74acfd6c9b94555dd002e5f6af5d69b69f81106168ee8fc5a7aef81c1cd8c80e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 5c167898bb58452ec85f371cc99a5fa3bc8bd555a3d25245f37e7651cc76afae
MD5 6bcf34225ed8e5bedecf4dbe07fef136
BLAKE2b-256 cb0ad855faf5f2480ee7a23793778317a2f33ae8fbaa5d3303ec48cb52e353bd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2002346dec0c23e69b82de2e429d638e416423d54b6dc5c2b3eecf04de282125
MD5 5656aac39120f795dc91ca314ec68ce9
BLAKE2b-256 3e0df7242bbd35e47168ed57d6f7a75cde1670b1bc948f3b8b9e7cb7d45a4177

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 558f534058213e18ce362f467996e47c82dcd7493a081cd75d60cd6c8e1cd5e9
MD5 eee1263fe3ebd349e85075c95ee285d3
BLAKE2b-256 7cc10d1efbadec1dbf2d6d0ce752b161549a7a585d347bba506fff446b7a1811

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 38fb0b6f1ff97ff854500e1fd479afd8559467d665f7ee631d5d0e92d03a7bd7
MD5 3e07345b093d046e536ffbe4346cc51e
BLAKE2b-256 2635594fcbb8c0ea46749e627c4dd5c8f8b4a150d67c8b9ac55005481ad0cdae

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9f6ac2d03c50489f37fe416d6ea08621c5a7cccb943d9c2f00faf82e01376138
MD5 31ffa6ff65ab64ed3f3ad5c95e1c27b1
BLAKE2b-256 675dde3d4f4818f389d3a8ee68df3ce68c4d4c7be281df28a101a2c4dd242db0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 3a3bb5d7d4f440a1967a1840a3ce6ddaab8629b053ae4ae0ab36f30e9e1d433d
MD5 ddc3dc919923f93888d94e3e22096a67
BLAKE2b-256 52d2d8aced38a2996c694463d2807676de100059eb5f8738582cbf7444077935

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.10.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 917.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.10.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e6b81c490acabde87362d053812b7414ef8f0df3ea24234f7b69652ecfcf8df6
MD5 e7dc0d8c2cbcacd87838ce3271932279
BLAKE2b-256 6a996c8bd0383a8bd3abadf3899e6789ae8b95e8e8cdc92ea3a33088bd42ee12

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.10.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 819.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.10.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 305935a36eef0c1139dedc83015ffdd73fefe8ad1ee2e7bac9d73e03cfaff825
MD5 67437f7624c45ca6b6fead178b07e14d
BLAKE2b-256 6237e246979356e31b05fc157387c559752fb760a3ee6bef87dc1db95d61a2c1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 568a456ab9f5114ceede485b01a5ffd9890570314afcf692852cbfd8505cef9d
MD5 4405a50073fad8d2bf7726c631740602
BLAKE2b-256 debceb279a7940269563466904849880351f1bebbce4f32079a4b95e2f6f309d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 276ccbe755c657f5985c8aed7311f0b172ab572acdb59a39a8731baa3ea04ff0
MD5 2dc6cd7d8af0b601a7e931c4891e2587
BLAKE2b-256 6a00413474432b4cec05e4fe56577d45a8c19ff43b25f843174f33b8ccc15005

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 0c7d1816e4ede93176591cd3d2d30a316a94df2da03161ae07c41cc6a21bb880
MD5 aae1c182106995b29b3b023d6dde0d5c
BLAKE2b-256 bc06de7e36410d1ce73d9d964befa2d19d0f5bddfcfd7dffe08e5c2b46d99067

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 90c21cdaac25182c121fddb6b3f06273e1d851e1afcabd90114b2e3aeb653978
MD5 4a329fac1f37c3d98e1751d590ea7a89
BLAKE2b-256 e08227237f0327fa313bc1c7c6fd5a6be8b76cf99734383737e2549c03f36705

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 86b30dfbcdb16ab9efb2d6d3e4618c79904e57f3c51020fbb881c8ccdf5d53a8
MD5 2d299c55dd4fcecc8537b86b9a856d27
BLAKE2b-256 5003cee3a924091b236d6e423bd81a542a358e1fabff628696d7c4866890be23

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7c533d1941c82ad31d240f3b2ae90b928948ba16285ec29d64ce34ab410cce45
MD5 1b7c2b410efb137e22a6b888f29ba54b
BLAKE2b-256 b26202b7d30e02e51ba0b2b4d8f252bc1eb66ab53d0e451a405d20f5da961097

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 50de50daba089325997dd6e809f0af59c07b7c84ce9e9a04c572d2f5f80f4390
MD5 4404c61f285ed5135a5dcd252d02d802
BLAKE2b-256 5537c7fc27bd4c0374b81a855ffd901d961cfd1f9cc6e84d634204a36f18e207

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 431ba9668a97da13bb8d21e245a4d83d4bb1c2f2f0b5b4d6a02ebc843e5ed9d8
MD5 9aa840521469295d0a5bc6d9caa625c3
BLAKE2b-256 9f20aeb46655852de44a7e425437f5efab93f8a595f4d58a45b85b145d4d05d8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1254fe8ccfe4e1a25707956d0477641766856266b099e02df43d7d3240ab84db
MD5 635e5c87270dbdbf07c40c98a92c22a2
BLAKE2b-256 86d4a0fc943da41e17657ab05bbfa1a1dd9bd53e8dc2031f31e902e7733da736

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 018f8603c428343d6a1f337c9a0c67595054be61315d72803cf2038089274317
MD5 4b870ca5b00e0ebd07be58bf684a8dcd
BLAKE2b-256 7b68dc06474435bf0f671d9a83692d337be26dacba2ae8ea51fdeb89a1c6bd78

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ea71cf8c9b813228a892312f5ce6d7e52d3f25842ce269e827a404b470f1957b
MD5 78da116020c5cdea9ad5c452d09de5a7
BLAKE2b-256 f3d3fd45eeeca3de264678d59833c2e2a47247bfabe358378e9ebe303c775503

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1e5db816b6d37cd0146a069722706b04b2135517a9ac5ec60af66453c3fdc85c
MD5 75260d2a8b1d64e229720c54bf84afd6
BLAKE2b-256 041ff6a41ef4f317f4ff9a52a04608702dc91046fad47905cce39d934bf77766

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f2b972dd9d6581903b4d6fe1ec738a5a0c192e8f79b310b73997ac971e1c90fd
MD5 769462a05a3b732ac3d9902d9c30a1f1
BLAKE2b-256 9372d0b7ce18ce9c2bb552d6a0264a6e53e392feb85ca9ce3db1325708940138

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.10.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 917.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.10.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 acc04a1cc5cf2a9fc31531b2e0000294500b18e10e78ce61256505fa27d0c469
MD5 271113c225240760c63134352ba61330
BLAKE2b-256 8e314bf8df65c549c983e72afba101d1bd91429c2bb64975f4b9fdb33abfc682

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.10.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 818.5 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.10.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 a76e462a491abaeddfe4e545deb3aad48415b1a0de9263cd56d563bbac5b2b66
MD5 b8c6749cb1423d82ecfe3264c2e6bc23
BLAKE2b-256 f48fcd58e60e025e40cd7b189bc97950ac80241625f441c54ca16690391bb509

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b4142af5efa69b8c00284b7497fa605e49f4cb689a575681a16ddc827a094140
MD5 fae7fd243dba107379d68069e12e316f
BLAKE2b-256 e01014ed498c4a7a83a29d64e71a97d4c5b64f48af8f02673409fa74a3407da5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 cd403f697b729361493782abc8083783a1cc875c3e17facd5fb365099d409bc9
MD5 0e5d816ba6f8acb1680aded23d38bc60
BLAKE2b-256 5b56be0a49599cbbc5662170096f926f8e22dd01aaa2159f32859ff18598ec5a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 e34a793b2f30659022a191a7706a8a1cc243c5a0bfacd83758d8bd67a5d836d6
MD5 724a534d59d796742d480009cefd9d72
BLAKE2b-256 4655a5c8ba4ef52026e26e4f806f677a63a69d026faf1d048a5a03a21a5c5a13

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 75e590cd6f34e393f0657a6dd49c8466881df48f43dd69e52a96c7202e496845
MD5 8aeda7be48d577737e59b5fdb6860949
BLAKE2b-256 2a7736678bb684f7920fafb3c69684ddbe1a6e26560c4e2c90ffa0346f2fe1f0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 731fa623bafeea621665da1a103a8cfe5d63ad70c33dfb2b1dc7fd5739e3f639
MD5 c01ef4ad0e98fd0b030f79682edba8b8
BLAKE2b-256 30120e95cd85cb709077040f9dd1408b1518d0ef48309d5879f0b3db7e034777

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9b8fab3ff4a3e9b884edbb0c15561be0d8fe3c54cd7de17229461874958353fd
MD5 7fa8dabeb959f5d23613c3174fad8258
BLAKE2b-256 0b59c84b9acf43bc4b0e57f4e114f4fc3972e4e05b06f00022e32f7eb7ad3a7c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 fe8ec9147df11267090984d39d9d828256c4fc33056473aea9da135adb707dfd
MD5 4f548a564945db2060c5cfefa9f9a5d6
BLAKE2b-256 928918b16c31eaedc184219c9eed586a78a104dab91ad42853475a691fe149a1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 15ab4d859bec271d7ec7beaa891b4a7a383504496b3be95b2c5cbe8aff0505da
MD5 49e8ae942a4d46d0ff7da559c8069297
BLAKE2b-256 47240df2e19caf9c92acd8885beed0ff783a88d6a9bfdc8f9b8bd6f26b23068e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0433de6a8a78147b57c2a79eee8ed6df9c2185bcc4b772300223cf02926bfdac
MD5 44ad0d145009636135a06a6721bf92c9
BLAKE2b-256 14f19b2527987f8d2decc5e074d882747be9cd22f26d2cfec5e23b4421c4d410

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 237e1abb9371bf1e619244234c31c157d05a1a3becfad9ff0616e6a701c244a3
MD5 6e7e5e8db62301f12e69eb0dd8c12ffa
BLAKE2b-256 ffff4dabdf7ab05544f71c7b37840802b5c71965565ba6e04b6780763f7af1f4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3ede5049608f2a333c5be03ee0b720710583cd5758b51cfd967637bc0989a2ff
MD5 26617ad17b131ecb601ff99484a833a7
BLAKE2b-256 44a7e51eea213638eec06969f22692fd9d41d8484cb020a1628656c2ae743224

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fcc4ea5a411b6ecacea84b19446a48371f40a21de4f77dafc23ed7bc6c77fd1d
MD5 99b2dab58241c0cad006554efb3fc54f
BLAKE2b-256 f2a9e00c2658a9bcc9d0d706ab4bbdbcf3da62e892a019e94da80dd3f2649d6f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 a20659bb14d8844185d7ebdd3ce203260dbc1b101dbcc63157cd217385802306
MD5 41dc09c170be7bbe0f2edd44c5dff269
BLAKE2b-256 bfdc4b4036d7b6cfef6cc444a7a2eee14e2c164760116f006c5e8f024056bbf6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 dadb9097bc6ec38ebfd7ca7def8d23516b1b286b19ba53d5ed4d15bf5f69308b
MD5 075607b7fb0722c185f214070f058ac3
BLAKE2b-256 4e1ca626c737090988c7bf090c92186a3989b8bea85fcddbaa7bce03a5f88570

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.10.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 816.5 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.10.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 1c53b02cf21e57f4101eb43dc3afad7f1ea1d597f1c6c2bd7c70cdf951fa238d
MD5 ba8d01b7610be90ae97e52aafde6bb94
BLAKE2b-256 7c1f79fa15e63e4a458ac364ef21a91301c0c1c1d09e091e377c711b5191410b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1fbde65e1d406081240c7c8eed06e6c74f9bbb214c43f78460d18647895fbf8e
MD5 86d24abca4c812b6b65febc6065fc1eb
BLAKE2b-256 0f1d50482aa59017e12f02765c8c9ca03ccb7a1f83edf1e61c5f1f9918e1c0fd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp37-cp37m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp37-cp37m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 4aa8ce548a653c5fc543641e89c03cafe9a4505731e8f3bde101006b7c15f9e5
MD5 92a24e3bcebdd3749acc5bfdb2b5f059
BLAKE2b-256 7bcf2b079c8e7ce7fa36958f332dc5fa5443f99fd65e0670ff6b8ef90a1e38a9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp37-cp37m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp37-cp37m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 c39c4f513388f3d609241100971d3dcaa3e23af8f73c9aed6b36965abb588a25
MD5 527af3f43315023fd18eb61138767157
BLAKE2b-256 7230b29c7791937cc7db688d88323d53168505ff885b5b1e7e9dccbd4dfea2a9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e2c7fbb312b9abc24a0c7d7aeb118e91d3a685db56329eecfb3d27d64d7d0dac
MD5 9cefe6702626d37eaa4293db5bcb4804
BLAKE2b-256 c4ee60535a51a241c4d9293c8411edd114c4e14d1b04162b0bb85eb865787539

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 c22a5f1c5b114eaf7b9d3dda58cf869d4b45a1201c219bee5644e4b0151ed431
MD5 2287efe0c093818f541052fff791c0e9
BLAKE2b-256 e32660c3ede77d3769b9d379601330dd69acbb61f6b2f258168a3126ae7d4671

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 089cbfec134d2bca6c8dc43b9fb3fc0fa5909eacfc02aa569e0326e6ef4fd01b
MD5 3b4513d4ac50040ce8682dbf287316cc
BLAKE2b-256 b49d275cec78c5343cf65c84b9192bfc6e8a9d89d4cf5e9aa9e899cbf7ba32af

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 ceceeeaddc5bd96e3ec1839f0de110bb440112da6070ee659bc2649e59359ad6
MD5 06980f748afd046ade39a5ae9c37ff99
BLAKE2b-256 d68dc9a4dcc83b59def8d97bdf844e8fd21f57863a2d2eb9725cc80971f47bd0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 779c191615848c283c3196c2c08c54e432033759ecdcec52ba0a0f348c0195a5
MD5 bc12e63a38222722ced837d7f2d7471c
BLAKE2b-256 31ed926920945f972feb292b924d550669d3def82c909de3f7003c0c7d69f756

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c9b77905e7a87529ab638d940076c453edcfb8516e1e34ed707dbb08d70e0d94
MD5 83103ba59278f8d593cf30eb2ca0cfc2
BLAKE2b-256 2dcc87ac92e0da9b377325e1bf6146438a0edddd002348524ec48a9ecb48739a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 204313c1dafb348848066c8264e815c751a92b04f44dbd5581b1dce3241cfba8
MD5 52066880c7d00a37171aa85864bebdc2
BLAKE2b-256 dd25d1e23d63b0f5e90feb4a4f6e58df07be5c053d400a804c49ee0330c9207f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 08b44372e549f9b46b5bee4c85b57d2311c58b0c8c50f37807c8db4cb686248b
MD5 9d007c16d1b99908c49335d82c28cc58
BLAKE2b-256 d28c96201dd25bac59c02dfa1a07aa94b11f7a82afd3c455c5ff450388c7639d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 6b56ae242404773cb110aa61ac99d04714918324ccae903f4f46647959af4010
MD5 be2edc2b94c6163f8132f45656715fdf
BLAKE2b-256 174c27799a9edbd3dffbfe705bc402540bc8efe8e67e015cfcc9ee28f69b729c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.10.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 811.0 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.10.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 cec1716944d26d149e217bd956de2c72124a7b7f98d0aec1ab5f7d240792da5b
MD5 7ede6461efdb83d3f737a843a03f7f12
BLAKE2b-256 6737061056f7e29f5c002aa681979bd2c1e9b845810394052aa4e0b2ef02ec6a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 dbdb14a61288ad1230e7a27a3407e328a9abb3dc03d543908289aae38d8f7cf1
MD5 9adbc4bdcac3abb9868f6e190976f4a9
BLAKE2b-256 3c665de42b49d9c8dca45af8d250db20b9330903a2a303fc3853d12c7080a43c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp36-cp36m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp36-cp36m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 31be04a32ea36d417d6f2ff5b159631852e9a4bb02eda3ae317d80c7dde7d667
MD5 d07481c739e0c56e9b00348a3e62a6e4
BLAKE2b-256 f4b7662384f813216c202804df917f0be00b26deb54d61b25c2a212eb47c06a3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp36-cp36m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp36-cp36m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 1e2883cce01c1bb245c85fc817b7c8240731a02cb9ffd18f5d4bb21873b799cc
MD5 6db850d4a7efc3bfde8d362c403f47f5
BLAKE2b-256 3d6aa7f37019fcdb050040d2c67dc3a237ee1d4b9437f4d260af13e146643201

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 d2bc9f95e4ff1a8768a100f4773406fa1b05cfe74b71719d40b2340af6f3fdd5
MD5 35b7d16724e703a61fd32a257743d85d
BLAKE2b-256 00506a3ddace2dc48322923ba372de1fd6b8792abf66b1e4b7876312bfab543a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp36-cp36m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp36-cp36m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 aaff10b3407cecd125038f0d5b16c5a272c1430c393e10a4a0919d51265f7193
MD5 b4635bf8d95d25d0eb3523c1ccde1586
BLAKE2b-256 f469524428dce98bb3fd580dfcc7573fb37b2c3596bbbca3882eda56df0719ce

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1fa92d57e04c34029a0a492145f7092b37d8de5350a98fd530d91bc26e4ad808
MD5 fd6f8e7f45a2e4fe60c2c84440387af8
BLAKE2b-256 6adfd02ad7bbf3660f42a2b2f13ac76a53e7a3de24579850711a6c9ea2d4196b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 8042e7cda32f4613546c64f14abdc9fc1e68f5a15adec5722521718d6a4b90c7
MD5 e49a141e86a8c1db0e0fa5e8cb864f1a
BLAKE2b-256 30408d3539636f91285f9e667ecb773140fbebf93fac01e54818a628aea2aecf

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 1d9b03553450d8d4b2f1c5b446a65772cb85359390adbfba3d10a61cb2e9fe7f
MD5 076c0fd8d40ed25d1950cf725c6a35d3
BLAKE2b-256 b1f792c3ccc1a80bcb6ab36194bfe71835908b2f3d9d5b2bf6395e550bee0555

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ca4de776b3235ef08b38113b0daf3ac0e5fee9fa7a8bcf7df8fbf3e4e985108f
MD5 e000428a1c4d158b2211ca4a3ff6a853
BLAKE2b-256 d7a417f8cb2e9fdb18feed4fe97005e05841ddb6c2d5874eb09ac14b3a8143c9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8635582a6dd7d143edc6a62324a5bf67700d7f83b24793ebc480799b65c4e47b
MD5 bc47a1bd1037263a14cc1d77a5a24559
BLAKE2b-256 bc3fe8b85dd3701cbff9b6c67bf91f2ee3a90af9da2be00a8fb39134d0e7d27a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.10.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.10.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7a829def5689780c7b8f9e278108c42392e01eb2b6073e05f08eb4025fa2715f
MD5 9eebfdf2884c43c1271f495cc143e127
BLAKE2b-256 0aa89d51e5906cee29431fb54ca6076b6bda06728b823831c68c2f2a201a7ce3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page