Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continuous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparison between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparison I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
    "".join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
    for _ in range(10_000)
]
samples = words[:: len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with cdist in the following way:

cdist(samples, words, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like cdist is a lot faster than directly using it. That's why they should be used whenever possible.

Benchmark cdist

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. That's why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-2.11.1.tar.gz (813.2 kB view details)

Uploaded Source

Built Distributions

rapidfuzz-2.11.1-pp39-pypy39_pp73-win_amd64.whl (930.9 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.11.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.11.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.11.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.11.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.11.1-pp38-pypy38_pp73-win_amd64.whl (931.3 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.11.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.11.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.11.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.11.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.11.1-pp37-pypy37_pp73-win_amd64.whl (931.4 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.11.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.11.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.11.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.11.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.11.1-cp311-cp311-win_amd64.whl (993.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-2.11.1-cp311-cp311-win32.whl (899.1 kB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-2.11.1-cp311-cp311-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

rapidfuzz-2.11.1-cp311-cp311-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ s390x

rapidfuzz-2.11.1-cp311-cp311-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.11.1-cp311-cp311-musllinux_1_1_i686.whl (2.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

rapidfuzz-2.11.1-cp311-cp311-musllinux_1_1_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

rapidfuzz-2.11.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.11.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-2.11.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.11.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-2.11.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.11.1-cp311-cp311-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-2.11.1-cp311-cp311-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-2.11.1-cp311-cp311-macosx_10_9_universal2.whl (2.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.11.1-cp310-cp310-win_amd64.whl (992.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-2.11.1-cp310-cp310-win32.whl (896.6 kB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-2.11.1-cp310-cp310-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

rapidfuzz-2.11.1-cp310-cp310-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

rapidfuzz-2.11.1-cp310-cp310-musllinux_1_1_ppc64le.whl (1.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.11.1-cp310-cp310-musllinux_1_1_i686.whl (2.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

rapidfuzz-2.11.1-cp310-cp310-musllinux_1_1_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

rapidfuzz-2.11.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.11.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-2.11.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.11.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-2.11.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.11.1-cp310-cp310-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-2.11.1-cp310-cp310-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-2.11.1-cp310-cp310-macosx_10_9_universal2.whl (2.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.11.1-cp39-cp39-win_amd64.whl (993.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-2.11.1-cp39-cp39-win32.whl (898.6 kB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-2.11.1-cp39-cp39-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

rapidfuzz-2.11.1-cp39-cp39-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

rapidfuzz-2.11.1-cp39-cp39-musllinux_1_1_ppc64le.whl (1.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.11.1-cp39-cp39-musllinux_1_1_i686.whl (2.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

rapidfuzz-2.11.1-cp39-cp39-musllinux_1_1_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

rapidfuzz-2.11.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.11.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-2.11.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.11.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-2.11.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.11.1-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-2.11.1-cp39-cp39-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-2.11.1-cp39-cp39-macosx_10_9_universal2.whl (2.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.11.1-cp38-cp38-win_amd64.whl (994.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-2.11.1-cp38-cp38-win32.whl (899.8 kB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-2.11.1-cp38-cp38-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

rapidfuzz-2.11.1-cp38-cp38-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

rapidfuzz-2.11.1-cp38-cp38-musllinux_1_1_ppc64le.whl (1.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.11.1-cp38-cp38-musllinux_1_1_i686.whl (2.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

rapidfuzz-2.11.1-cp38-cp38-musllinux_1_1_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

rapidfuzz-2.11.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.11.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-2.11.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.11.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-2.11.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.11.1-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-2.11.1-cp38-cp38-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-2.11.1-cp38-cp38-macosx_10_9_universal2.whl (2.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.11.1-cp37-cp37m-win_amd64.whl (987.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-2.11.1-cp37-cp37m-win32.whl (895.3 kB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-2.11.1-cp37-cp37m-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

rapidfuzz-2.11.1-cp37-cp37m-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ s390x

rapidfuzz-2.11.1-cp37-cp37m-musllinux_1_1_ppc64le.whl (1.9 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ppc64le

rapidfuzz-2.11.1-cp37-cp37m-musllinux_1_1_i686.whl (2.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

rapidfuzz-2.11.1-cp37-cp37m-musllinux_1_1_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

rapidfuzz-2.11.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.11.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

rapidfuzz-2.11.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.11.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-2.11.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.11.1-cp37-cp37m-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-2.11.1-cp36-cp36m-win_amd64.whl (981.5 kB view details)

Uploaded CPython 3.6m Windows x86-64

rapidfuzz-2.11.1-cp36-cp36m-win32.whl (889.0 kB view details)

Uploaded CPython 3.6m Windows x86

rapidfuzz-2.11.1-cp36-cp36m-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

rapidfuzz-2.11.1-cp36-cp36m-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ s390x

rapidfuzz-2.11.1-cp36-cp36m-musllinux_1_1_ppc64le.whl (1.9 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ ppc64le

rapidfuzz-2.11.1-cp36-cp36m-musllinux_1_1_i686.whl (2.4 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

rapidfuzz-2.11.1-cp36-cp36m-musllinux_1_1_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ ARM64

rapidfuzz-2.11.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.11.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ s390x

rapidfuzz-2.11.1-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.11.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

rapidfuzz-2.11.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.11.1-cp36-cp36m-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-2.11.1.tar.gz.

File metadata

  • Download URL: rapidfuzz-2.11.1.tar.gz
  • Upload date:
  • Size: 813.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.11.1.tar.gz
Algorithm Hash digest
SHA256 61152fa1e3df04b4e748f09338f36ca32f7953829f4e630d26f7f564f4cb527b
MD5 4374a64c3b4b1bb04492c40e93308f4c
BLAKE2b-256 d60e914c5beb4447a36e58d1c30f7b4005422617ffd8f29694d56840cd0e2a40

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 42d18db6f7e1e6ef85a8e673b2fa3352727cc56e60e48e7c9268fe0286ab9f91
MD5 6c0ae36a61b80657607174c0349dcc2e
BLAKE2b-256 08fe94d3c40f15278944ce7b67eb2cd7d4a99d393f220ec70f3c46f925e28652

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0429a7a51d1372afaca969ee3170f9975f2fe6e187b485aeef55d3e8d7d934e0
MD5 f0f72a0ba658c263d90f644a7eb1e577
BLAKE2b-256 e472e6fcad8f9e9bffdfdd69d60d4f6c60aab7f1033892988845c57b31c523c0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c305ea5405f8615e6ecd39cb28acc7a362713ba3c17c7737b591b377d1afd9ec
MD5 8ab745eaa69cb715daffad3727866719
BLAKE2b-256 bac2b6621aed06091304f73bc3a923f72125e41d9ff808ea577931334a09aadd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0c8a5e65cab629ca5bb4b1d2b410f8444384b60364ab528508200acfdf9e659d
MD5 8aae93eee9da2846938003e679188120
BLAKE2b-256 82cb8330dbb2b715c3b603c97e556f45f6232ec49eef483641ec3d8ad13adedf

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ea4107a5cc00a05c92be47047662000296d2ccc7ba93aaa030cd5ecab8d5ffaf
MD5 3b5154eafecf5bbecb39d8e43ce0347e
BLAKE2b-256 48df5c3a8ceb34332f042a58d7d543617df90c5e86a91644efa7c62025c9434c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 68d46ad148c9cb8be532b5dd7bc246b067e81d4cfabad19b4cb6ac4031cab124
MD5 5020288e538f1f80ebcafcd16eb61b19
BLAKE2b-256 37997598ae7acdbf9a771637e30c74d490c70de89a48ba6d2d85dc165c60167c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7478341137e65a0227fda4f3e39b3d50e6ec7dd4f767077dd435b412c2f2c129
MD5 10fc3b57510c77b37705e127a1406352
BLAKE2b-256 64cc8c0b3abf4770962993c046aaad87cad51e8248de7c7a78f4ead0d189164c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 54264d70af59224d6874fcc5828da50d99668055574fe254849cab96f3b80e43
MD5 5a6559a62f5dc2567b3e82c5f3f5a105
BLAKE2b-256 b596685c7483fcfc5fa7ce83f4639da4a02d3b381531b7d95b7209909f5c4d85

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 09de4fd3dbcc73f61b85af006372f48fee7d4324de227702b9da0d2572445d26
MD5 12d9754d89f5bf8bfbd62b56daad0bbd
BLAKE2b-256 b2dc7469fe74898f939df3e42d157eac0def99a38abc3f0c87da3143ef5aa1cf

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 12e14b0c43e3bc0c679ef09bfcbcaf9397534e03b8854c417086779a79e08bb2
MD5 596e312c40a035262bb92cac7af57d24
BLAKE2b-256 24e1eb35140e91e7c9122c818375fcdfbe0a3a0dad2c3aae678a9394f169e24a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 7750b950a6987bce114b9f36413399712422f4f49b2ad43f4b4ee3af34968b99
MD5 1e2c3bea625a32cf6982d152f1dba1af
BLAKE2b-256 0d1b04a7500d2ddf041d039b9b24981c9858a218f6afa0ac15e3b6488d989e0e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d181889218d80f6beb5ae3838bc23e201d2a1fae688baaa40d82ef9080594315
MD5 d26c6666fe0215e083bfda76d4630f94
BLAKE2b-256 53c503a783462f5e55093cb734f0fbbed1bbd9ed06211eaeefb1f155a07b043b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f72d33b0d76a658d8b692b3e42c45539939bac26ff5b71b516cb20fa6d8ff7f6
MD5 80359a55139cc130e7f574f9bc437ed3
BLAKE2b-256 a34ae685bc99dc1df246d4081049f939b8e75adb11bb07fdfe2186cb4784499f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b5c7b0a4929bfd3945d9c2022cff0b683a39accf5594897fa9004cee4f402b06
MD5 6455befef0de416886f5a6d482ca5175
BLAKE2b-256 5a97d3b77b4fde9b12af25191ba95a41a2acdccfb190b6f4493e257b052911cc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 036f904bcac16d726273eee7ec0636978af31d151f30c95b611240e22592ab79
MD5 e92792ad30881616abbe4b30b5aa5668
BLAKE2b-256 a326289d1694e8ff984d4315adc840e718b52d5e219694f9577cfc7205f1b88a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 553e8e3dce321ed33e8b437586e7765d78e6d8fbb236b02768b46e1b2b91b41e
MD5 78652835d12c24f85aa8ea271eb563fe
BLAKE2b-256 09404e0b290fe315d478b747a4533ed24e12289de03478ce5b12034211823bc1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.11.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 899.1 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.11.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 d51b9183ebce60d4795ceaef24b8db2df3ed04307ee787d6adafcc196330a47c
MD5 691a96ed883542862df05259c73186dd
BLAKE2b-256 0ee1a1e872ae6629c8192ecaf8f6be8471128806d116faf5abb5cee10c43a5d1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 eec5ad2f06701e57a2cb483c849704bdf8ea76195918550ab2fc4287970f1c76
MD5 f904c71e081930766b242e67870953ac
BLAKE2b-256 7c79f6a29a5a4f30c7b214aca965486c64a22b92b5ca36767186c3ab2819f1ab

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp311-cp311-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp311-cp311-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 c288e239fc3aaae3865e43e1f35b606f92ee687a0801e4d46c45d7849aebbe35
MD5 dc8c04400a742c36a61799293475d8ff
BLAKE2b-256 db01d5c8a0db58102db6be30b09ecbdc0fe277caa039e551dd21f2cbab26a93f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp311-cp311-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp311-cp311-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 bd7a1992e91c90197c34ccc674bd64262262627083c99896b79e2c9f5fe28075
MD5 bf3976d1ca7d59ca1718d4f38672e2cf
BLAKE2b-256 bc79a352f2fdbf550530162afd9f904f1ecd383f750023c5a973029e44f72cd0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 8d6fa1d009fcb9a9169548c29d65a1f05c0fcf1ac966f40e35035307d6a17050
MD5 ad7f9fc08e9082fa54354057f45d2549
BLAKE2b-256 0e0fb1de6f810264af214b532b389ebe1620d98c4f752eae8c65141019e4e3a0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 804c7c67dc316f77b01b9bef5e75f727b73ff1015ff0514972b59dc05eec4d81
MD5 755aab9948164c0b997b7b6294241c90
BLAKE2b-256 9ed8840c13957210b7bb2e311daf8e82cab30b567a3e3300f0fcad27eaf19f15

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 40e8d37d67a6e4713ddb6053eb3007a3ca15eddd23f2e4a5039c39e666c10b3a
MD5 374104047bb712f8c195832d9e599e52
BLAKE2b-256 2884fc9c3777b87c08cf4378e80493c1cc0ac812d066c42b02bccc53edbbb5e0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 ecfe2fe942edabcd1553701237710de296d3eb45472f9128662c95da98e9ed43
MD5 ba7fed0a473f6d7c42fce50f988206db
BLAKE2b-256 fbc043c374593de247d19fe415375d32445f1ab4db31c93b2e55ff379ce2ac82

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 d24181dfdfcc3d9b37333fea2f5bf9f51e034bd9e0ba67a871f18686b797c739
MD5 830c3194db2954155fb7f1b0ac02ee99
BLAKE2b-256 aed27dfdd4628007e6fdffd6f0e750414114f53026eb6683c3f523ee11ff805e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 705ccd8de2b7b5295c6a230a3919fc9db8da9d2a6347c15c871fcb2202abd237
MD5 29255841eaa5c3b58c236cd1e8174550
BLAKE2b-256 5ede8a1893c4ba462edf0b2c5e8e0d2bfe5d4526533aa41d04b8ab2685765604

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f71edc8503d08bc5d35187eb72f13b7ec78647f1c14bb90a758ae795b049f788
MD5 ac74f6dccc472b890334ecd2e629a05a
BLAKE2b-256 9dcd4b57f1ad77e9d4b2b403220edbcddee76a047f069a5aa646d79318614cec

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ced719fcae6f2a348ac596b67f6d7c26ff3d9d2b7378237953ac5e162d8a4e2e
MD5 80b2bf731d22ca712bdab18de534a2b9
BLAKE2b-256 e79ddec5ead4e0b1d9d91cc30341f69514508f21c2aae35503f06306a9825bde

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d1d8192820d8489a8e3ef160cbe38f5ff974db5263c76438cf44e7574743353b
MD5 232bf62812f75ab257875e6f063873e7
BLAKE2b-256 73d15298f01a67db84242612cbb016f8f153faa500b17ba7af700c5cd671d359

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 588dd5f520683af53a9d9d0cabde0987788c0ea9adfda3b058a9c27f448b2b3f
MD5 294bcf4c937a7b1569a13967428456af
BLAKE2b-256 0a7c04b8e48fdad8707144b4c77b94c0eadb3f825e09635d1cd99995bb2b5b49

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 86c34175830cacac1c16d2182a0f725afbd40042955b7572c8475e3b6a5d8ada
MD5 c48465fc9ccec3c02c21a8c8e14f51a4
BLAKE2b-256 f75171070ffbe53b1caf35519232571f81c82f709dfa22a224b543c018cded77

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.11.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 896.6 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.11.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 ea5bc5bae1cf447b79be04f05e73b6ea39a5df63374f70cc5d6862337462d4d9
MD5 9ac1b0d84463f8189075395e4e02fdd9
BLAKE2b-256 e2299b2a10e243baa8ce09261bb8011c655b2e6e7ac17b5066345696cc7c2d4f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9081542fea2baeebda8caa43a54ecd8a152a05ff3271c38ac8eae447377cef54
MD5 28a6c2b34dfe91ecf5ada7102d7e7213
BLAKE2b-256 eb3c4c440f6016b51847e7f8a004cab243d8008492da722986ae5bd56fc68762

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 2d3652804ae17920eaa965b1e057ee0ea32d5bb02f50147c82a1d350a86fc3f1
MD5 fde200c850fd2b728c2ca85937be5604
BLAKE2b-256 cf6369a6b8dea8197585a737477af73d4cffd95a6cccc0c0cccdac2ae9638e89

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 dc0f695b32700b14f404cccaebc25eea6db323418385568297995aee8b5278f8
MD5 183cbd573444a6676d11a063ed001d3c
BLAKE2b-256 337cee31417695427fbb40f8381bb62ccda3e3330c9396f4305db5bda66c93f4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 30773e23bebe27ddcf7644d6ebb143bf7c9adeb18019a963172174ef522c0831
MD5 6cd7ab1d825b7e14b2a666988a2706b4
BLAKE2b-256 740456f1090a8215ad9bef3f5088d8d57679de4379ca8304ded2b9a0978d54e4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 bd595bd23a4e1c72d5f5ac416ea49b9a3d87e11fb2db4b960378038ce9bb12f7
MD5 0c0d4403d7367f266cf88deff929be1a
BLAKE2b-256 8a52fb57b3a6c06edcfa32169f3fbf07c630cf9d32e3038f5a5e501e98cbc11d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8b480a78227457a0b65e0b23afbda9c152dee4e1b41ccc058db8c41ea7a82ab0
MD5 37d5baf99e890ad5170e1349155128e5
BLAKE2b-256 1dc79fc39647854e03d886673de96bf8bc640de0a9b3c045519d1ed542a6bbcd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 5e3164736ed071dc743994b9228ead52b63010aba24b1621de81b3ac39d490b9
MD5 67be7492c6fb1549b6b9dae8cf738d32
BLAKE2b-256 9e65756fcc153983526dc68dddbbb0e3cee609f83d293fe74d0fc2a683f49b38

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 24569412e1aac1ac008548cdcd40da771e14467f4bacab9f9abfe5bbb5dfe8be
MD5 feb8fe556372ef5b6ab4c6bb9fa3c4bd
BLAKE2b-256 cac49d294bb0b65b2220159ac20f4a0eabcfe93322e2fc19f8cefbc16b3dbf3e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 dafe8c6e74fea0fdcfec002bc77aee40b4891b14ea513e6092402609ac8dac00
MD5 9712bca5d344322cd13feed7b74f8498
BLAKE2b-256 2e25fb6db8ea9f9aaf14fc2df07d84da4a671d9c535e24daf5bdb91b8a0d4b7e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c1477455b82d6db7336ef769f507a55bba9fe9f1c96dc531d7c2c510630307d6
MD5 abcc227e452913ef6d51268ec8418bd1
BLAKE2b-256 d404a3d0f4ad75c95e0264d1e075e2b83a8e8138e2d1e7b08eba27e0c6891dd8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 65b8611c9f5385a2986e11e85137cdecf40610e5d5f250d96a9ed32b7e995c4a
MD5 4d6a1c079c0c7e1c90dfaac59165bef6
BLAKE2b-256 f8a8d2239d6f11aeb9338a6a03de37cbc1ae07b6734ce77b987e635732e81c59

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2bc3ec87df5eaad59e6e02e6517047fb268a48866f3531c4b8b59c2c78069fe5
MD5 88678d041771a74ea519e8ea1602c8be
BLAKE2b-256 1f42d45ead9e78ffb2da0ed934be6ca1b2110dff9b378c772a21ea18881b7e50

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 134a467692216e05a8806efe40e3bcae9aa81b9e051b209a4244b639a168c78e
MD5 d4e64ffa8d99d21a386a920ea2a84d2e
BLAKE2b-256 8b0266f127e79f1d7ac296e350bb3ec9349305336ea467e4931327003cf19ca9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ea4f0d056a95cfdabde667a1796f9ba5296d2776bce2fd4d4cb5674e0e10671f
MD5 0c0a1ba307b188afb601c8fc7b1ef1fc
BLAKE2b-256 05c363f6e97fdfd0e03c2416fbc025691107b897c0a82efab892eafc8dd7d0ee

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.11.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 898.6 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.11.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 cad5088f1adb9161f2def653908328cfa1dc9bc57e7e41ccdc9339d31cc576d1
MD5 7e92dee4e0ef2f0306ed14f6037057d8
BLAKE2b-256 a641b765f0693af309c0013ed6ab6cb767aad7729a240493b1dfd8f4d3c30945

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 17ba5fb474515356608cdb8d750f95c12f3e4dc9a0e2c9d7caca3d4cee55048e
MD5 8fd38febd28b7bcc4dbf6679d9878164
BLAKE2b-256 813004215dc6718529b397528b8af600c494f337cd8e758fef7fa41ad2199dc5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 5aff0ac1723f7c8d751869a51e6b12d703fd6e6153228d68d8773f19bd5bd968
MD5 ad65579816eb6753521d50c3f84f8512
BLAKE2b-256 880723107e6237ec72baf5f8c86751465bafa5d0475c004e8b067e5308f38aae

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 c77cec595dc80f97a1b32413fb1b618e4da8ba132697e075ad8e4025c4058575
MD5 e3a7b3394a8ae81f123758ce0ee2a7ce
BLAKE2b-256 d910a932063556d7eb03e8bf823ec0b0310ba09e3211c9158c2303a558f92b6f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 0e64ab58b19866ad3df53e651a429871d744f8794cca25c553396b25d679a1ac
MD5 431b2a0d07c19d51b252f7ff1d4b71d0
BLAKE2b-256 c230c4eee562712e51a5bae02afeb0169c1b2dc0f8d2960e711c190e6f83cbbe

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 f9226824c132d38f2337d2c76e3009acc036f0b05f20e95e82f8195400e1e366
MD5 bf1e96a86c50412be17a2dd10ea2e726
BLAKE2b-256 bd67982c2d519d7c4cc12adfb0c371dac349e372887ccebc6d6fea9cd9d1525e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 578934d7524f8378175295e6411b737d35d393d91d4661c739daa8ea2b185836
MD5 dbf81ecc9e6ad8027b700f7c873e3d5d
BLAKE2b-256 8db48894cba1d60a48fd0d4643ed25528cc63ab0ea053131e4a48737ebbd9237

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 7c457f779992a0f5527455cdc17c387268ae9f712d4e29d691704c83c6e58c2d
MD5 3e5fda6bf97e609e1e73a33d00a6f213
BLAKE2b-256 c2b23b30ba76eb92d50fc328455b48c94ad6272f9aa8870966d1276d31eba037

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 984d40ecda0bc0109c4239d782dfe87362d02b286548672f8a2468eabbf48a69
MD5 953cab99ce610f970ed3f2987fb9e466
BLAKE2b-256 6e02625d2c6feba1b8633fd2859c25a80c806c496291f9467653bd78b352a43c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8a11b70ebb2d7317d69bdb1f692a0eda292a4cddfe9ccb760a8d1a9e763811dd
MD5 4096aeefe60bb3d911e5ec9aaa7e4856
BLAKE2b-256 367d3b20aae417c3ed6cf5c730ced18f9d0dc56e35c118fde531063870967b42

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a98c63d1f5ec2c15adf5dc81c461c8d88c16395956f4518b78e2e04b3285b1e5
MD5 691656de8d5f42bf5bde3db272287311
BLAKE2b-256 94bf0be21c0b1112111b1be2e5be467bf991a7df7f83211918090f59bfbaf83e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 475aacad5d5c4f9ad920b4232cc196d79a1777fe1eada9122103c30154d18af4
MD5 3dc738a76b02127cdcbd28a1d2efd3ff
BLAKE2b-256 5b08cce23dfd48858ea99aaad9df7a97d4db54c5b1e3c72926c37d22caee6967

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6803ef01f4056d61120e37acba8953e6b3149363e85caaba40ee8d49753fe7bd
MD5 7a67f954857c8b80801153094b7d2e6b
BLAKE2b-256 76b40750c4e18cc1e646f68539d2b9e503db06b3514334d60ab2d2c0e71cb796

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 bf5277ff74c9980245697ea227057d0f05b31c96bc73bae2697c1a48d4980e45
MD5 57bdead04a9d747ab910eb78f611ed83
BLAKE2b-256 814e8a73aeba7b539f8d67e2b7c4d07a87b5a163ace80152db35789df8c480c2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a7f5a77466c4701062469bce29358ca0797db2bc6d8f6c3cd4e13f418cca10bc
MD5 a9db9ea09e0fc76e57ec933da0124afb
BLAKE2b-256 c6287c4d5ef8fd6bf8558b93a47cee2ba290da1977a18571679e600d34d17c3c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.11.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 899.8 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.11.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 c822853e9d54979eb5fcf9e54c1f90e5c18eeb399571383ac768cff47d6d6ada
MD5 97cde4eca7e84b2c325d539cc892c0fb
BLAKE2b-256 627d911ed91ff18eb7af7d3d04a9882b96ea18e1c9a140c329630b83c883240b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 bafd18a27dbe3197e460809468a7c47d9d29d1ebab6a878d5bb5a71fda2056d6
MD5 9ebc1b3448a857a906c20828a1209107
BLAKE2b-256 15f52327ff434109169c491f21994661b6af915a840e9aa14fb9f454d292ceb6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 3d50a2ca8cd1cea13afd2ff8e052ba49860c64cc3e617398670fd6a8d11e450f
MD5 aa62989b86c5553572beb936294f9df8
BLAKE2b-256 a18ff685d7bf50337ed8c6175e50206719520c772d3da591a409a403690d907c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 64133c9f45cb88b508d52427339b796c76e1790300c7ea4d2ed210f224e0698d
MD5 bf760ac6385986bcdb706d79cdc0c2b3
BLAKE2b-256 c89ebdc8073fb077561a6859c10d6895e5ada487188273e3c0ce67715fb4403f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 5e89f50f5f3be2b851e9714015e1a26c6546e6b42f3df69b86200af8eacf9d8c
MD5 d96dad52e5847e1e7862e6ad197e9269
BLAKE2b-256 e3fe658aded256125620e4432c37bf3c3ba2c3c08b10a03e12051aa052f20342

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 931a939ba5e5574f769507038fdf400dbbc46aab2866d4e5e96d83a29f081712
MD5 4cf3c8213ce02c1938a235751caa596e
BLAKE2b-256 2d1b0e7e371029a54eeaa951fbf2998f7ec6c3df4d2f0836ba9b475b103132c1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 41c9e2acfa25c7667b70913d63887f76e981badc1e95a2878257d28b96f5a10c
MD5 557a2cc84b3f9b95e194cc7f21c53ade
BLAKE2b-256 f46e1697e3aa696c9838314ddf2c61eb88fd798d5d9d6dea81a7b8d7e1f50f4d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 e459287f0daaee3ee0108123d7e9a1c1c136e94d4382533a93cb509d54dc1ea3
MD5 128848dc4c78ef244d9cb7a0ded3a92c
BLAKE2b-256 6d9f0870b8b902960296eb7b38e29c35b6588d98f1b8c3ce9319c3f608f1ee3d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 bd8f36d8bd399c7d695182e467b4428adb940a157014ab605bbe4d0ab0a1976e
MD5 b0c1a27b6d711835ff3e3e059ec90d18
BLAKE2b-256 a9c2e2dca3fc7d3aa0ed9083bdad2faf122413d6b5df0905d7cd9477b1dcf8cc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0f09ff49b28e557615a9ad4d5eedbfd5b886fccb3ec35d85dd34c51348c4bf98
MD5 a49e98592049c9854c5b263dedabb656
BLAKE2b-256 9b762a4b87ed95178b01893bf25256ede2204c5ba0f8305fdfef339457a2aa40

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8b402e99593483a8b05a09fb2a20379ecaa9b0d1f1cf32957b42134bd3305731
MD5 ded6bf3786334333b179ec41abcaafc0
BLAKE2b-256 8e544497ed11994d463dc2a6b891f802c4e1f6eb0a03b465cb12795ed0552fa8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5080ad715e39b8a2d82339cf4170785e9092c7625ec2095ff3590fdb0a532a41
MD5 024ae8bcad24de8f816b7d06babe145f
BLAKE2b-256 7c9b06b7ca537d6f3ace954314f149ea4b4fcb5146b4c01f2eded2ba7f5a74fc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a48ff6b6258a32f50f876a6c74fa2f506c1de3b11773d6bf31b6715255807a48
MD5 8eb95f8e34e1d82581c5f3f5dc823e10
BLAKE2b-256 9b92f4934422f53584c66fcc5157eed71dd007408256ff1e602b9ad7110299f3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 52639268dffc8900892a5e57964228fb187512b0f249de9a45ba37c6f2bc52a5
MD5 5e8ed82986ed067b34e533ebc0414a73
BLAKE2b-256 6b338b40a2ee0aec203dc89bca130b1035d204033bf54e7fca4e5a43f0075c02

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 adc7c6cb3dde5c284d84c7c6f4602b1545ba89c6ebb857b337d0428befb344e5
MD5 cffd6f0ef5101390bec1a430b4597b7e
BLAKE2b-256 19d09351a85607f818578783d89044966345e512f04b525832dd3984a903da9e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.11.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 895.3 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.11.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 dad6697c6b9e02dd45f73e22646913daad743afd27dadb0b6a430a1573fb4566
MD5 fccdd2cfa5eda9ed2110582dc1e74cc7
BLAKE2b-256 6fcd3500555703b8634572fc4b7dc598ca9a7fe147bce4c37c793eb4a8b25725

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 bfabc6130752f4f77584b2ecbba2adf6fe469b06c52cb974ba8304f1f63bb24f
MD5 a7959a1ab94de8d0c4b507347e109ef0
BLAKE2b-256 58eddcb842dd7d71c39bbe446fbdeae965abcb33403afceaa70e546d8f94d980

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp37-cp37m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp37-cp37m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 f5ed8d4e1545f08bd3745cc47742b3689f1a652b00590caeb32caf3297d01e06
MD5 cb1234e6d5cfc7a94d347b1e5faa5620
BLAKE2b-256 b02a2e9b124c03fbeca409bc7b663f793a65e2c00efdb636949037a733e6b647

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp37-cp37m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp37-cp37m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 86038b9777b2aa0ebf8c586b81cba166ccde7e6d744aad576cd98c1a07be4c53
MD5 149921dc65e3b688e17eef7ee7bba783
BLAKE2b-256 0a3d8702781b527da83cbabcf89e9b6d7ca4e49c717997f163c7c40838b7a84f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 2183fc91971c0853f6170225577d24d81b865d416104b433de53e55a6d2a476a
MD5 00e87e06cee61d0e1faca37b1b0cd36c
BLAKE2b-256 a8ac4cf5837bba335791e0f8b9e2cb13eda70c6ebe9cebff414648ea05a3129d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 cc3103e31d27352afe4c5a71702e09185850187d299145d5e98f9fb99a3be498
MD5 84319a7575f42c5240694b980e499142
BLAKE2b-256 29640b894a9753ebf40d6cc4922382dcaf98e89488708d649b6bd147ec74e554

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b4f577ded3e40695d5e0796e8b7f4fa78577d873627e0d0692f7060ad73af314
MD5 2f73be8ba5b217d321198bb3e0fb68e5
BLAKE2b-256 4be46802c5ab93b32307e80811429b79f3e5b60c727fc1436cdad3e572cb4f18

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 47e163d6a6676be9a3a7e93d5a2c3c65a43c1530b680903ebdba951e07ee7999
MD5 63731a2e48d4e0ddbfa7772289829c8e
BLAKE2b-256 d6f27c077fc1c280a54301c5362b6a68844fa1e6caed762e888a845461e07b07

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 c10724490b87fcb86161e5ceb17893626d13363e31efee77aa8e251ee16dcdd5
MD5 bb2df3aa5fdde11ac0d4e7e5e0adbe47
BLAKE2b-256 e3af4dd3c28639642e994723e12f8f6d54b9cc387387b97c93c4853095e5d1f9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e2fe220d4b100b00734d9388e33296ac8f585c763548c372ca17b24affa178e0
MD5 059190803deb0218864803b021e272c0
BLAKE2b-256 c7bee191b9dd7df168d40d0d2d0fd7f53d895f61b9feabbe5825d63cb6359ebd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6b12420d5b769cd7e1478a8085aeea1ad0ffc8f7fedc86c48b8d598e1602f5ad
MD5 19c92f15fa7d8fd93962296d55df6f18
BLAKE2b-256 42b5bcb4e31057c50aae6eabc575a781937468eac8f3dcdae6e9054296093228

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 faba219b270b78e9494cfe3d955d7b45c10799c18ee47ec24b1ada93978d491b
MD5 645bc6ef26c1c54af74721bf117ea949
BLAKE2b-256 e099cd6c834cfcabfca253e95438e7ee7965a83c31be529e4ae4012b1455745f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 16a2edf3ea888c9d3582761a2bbaa734e03f6db25d96e73edd4dcef6883897ee
MD5 35016207d761002d9da37cf73bd0af3c
BLAKE2b-256 a2b47e1d4e10ea2bc99f36fc1cb5277edbbada1d22855d7ed422954b3451cc6f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.11.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 889.0 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.11.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 254d5a800de54c416fa9b220e442a4861b272c1223139ae3dee0aea1c9f27c9c
MD5 3019b11aaa7cffe1648752081bdb6232
BLAKE2b-256 09876f37bf328675f82059619325b8dd256b6a0e2e0bb88785c2de3eff685b0a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 13ce1019ddce7419502fac43b62ac166d3d6d290b727050e3de5bda79a6beb59
MD5 8e0ad3072dc54d5e8d5c226489ebb64d
BLAKE2b-256 74091547a961540c2fd3867804ca6dcc46593ef57ace105c08e58301a3255328

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp36-cp36m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp36-cp36m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 56aa67bf938e8dcc5e940f183538f09041441f1c4c5a86abe748416950db9d27
MD5 4a7554980e3e0941fcf891fa68d7ec98
BLAKE2b-256 7ae7f30bbc3a4d7b1a5bdcb498e2c70eec2a6989efd318e283aacf44c954456b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp36-cp36m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp36-cp36m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 9924497dec6a30b5158ef7cc9c60a87c6c46d9f7b7bb7254d4f157b57b531fb8
MD5 426b78d20e03a9c4a14b75207e213fac
BLAKE2b-256 37d676fc326cd2005bcb2119161aa892bec33f33dbe745b76df78b8bd4b9d0e3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 3f1c030e2d61d77cb14814640618e29cf13e4554340a3baa9191d162a4dfcd9e
MD5 a25acd21345ed61a87ec16a1370aace8
BLAKE2b-256 6c23e36a54aab65062489ac5ef7f78a7e22a1575fc1e529eac18061bb0590927

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp36-cp36m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp36-cp36m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 7dd6a439fb09dc9ba463de3f5c8e20f097225816b33a66380b68c8561a08045c
MD5 1057c10a0ab94ef3758f3f475049189d
BLAKE2b-256 99baeb05ccc821ec04359fd726853886b570d08ad7da11c8c2a1c88bb9666867

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f2f91b867d7eca3b99c25e06e7e3a6f84cd4ccb99f390721670ba956f79167c9
MD5 fadc566d4f5b830a3206079722b02c05
BLAKE2b-256 cad541b94d8427647188082186bab3576a23dc39a8daf9f37f9392793b25f672

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 8bc00bd6b6407dc7a8eb31964bcc38862c25e7f5f5982f912f265eb3c4d83140
MD5 fd36afa099d6c6fd1178f9ee79df226c
BLAKE2b-256 637379f7b1f3c7ce836602bde92302d545c6c9202a956d716302f4f37fb42534

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 b5cd1ea9fa396243d34f7bac5bb5787f89310f13fd2b092d11940c6cd7bd0bd8
MD5 ab72a1fe8ee81fabe7447b60198abdc7
BLAKE2b-256 17b8c58ea9c096f93a72b2d34e94b7e08d9be41f0152e3d855a3c3e3c8e09bca

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f6e6395404b0239cff7873a18a94839343a44429624f2a70a27b914cc5059580
MD5 af2f433e737300dc3e18892bf1080c88
BLAKE2b-256 1b19c1a61d5cbead7dad406602b1833e0b28f5d698e6b4bcd45ca6d7879d6a8b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 769cf4099f53507231ba04cbf9ee16bea3c193767efc9bdf5e6c59e67e6b5cea
MD5 00709dbf1536ef3a1c19f577e92f5424
BLAKE2b-256 0d495343de65b240961a4acb31957aef3d5c3cd241d92853f1c139c0851c04d8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.11.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.11.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3b6573607568438dfc3d4341b0b00d326ac2cf86281df97e7f8c0348e2f89b5e
MD5 ca7071dd08ccc6959cc01fde10fa21c5
BLAKE2b-256 e89fc4307e23d798da8f0b3d15f99e10dbe01860a67f63c545d865beb9dbdced

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page