Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continuous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparison between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparison I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
    "".join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
    for _ in range(10_000)
]
samples = words[:: len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with cdist in the following way:

cdist(samples, words, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like cdist is a lot faster than directly using it. That's why they should be used whenever possible.

Benchmark cdist

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. That's why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-2.12.0.tar.gz (836.0 kB view details)

Uploaded Source

Built Distributions

rapidfuzz-2.12.0-pp39-pypy39_pp73-win_amd64.whl (958.3 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.12.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.12.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.12.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.12.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.12.0-pp38-pypy38_pp73-win_amd64.whl (958.8 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.12.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.12.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.12.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.12.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.12.0-pp37-pypy37_pp73-win_amd64.whl (958.7 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.12.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.12.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.12.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.12.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.12.0-cp311-cp311-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-2.12.0-cp311-cp311-win32.whl (920.2 kB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-2.12.0-cp311-cp311-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

rapidfuzz-2.12.0-cp311-cp311-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ s390x

rapidfuzz-2.12.0-cp311-cp311-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.12.0-cp311-cp311-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

rapidfuzz-2.12.0-cp311-cp311-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

rapidfuzz-2.12.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.12.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-2.12.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.12.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-2.12.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.12.0-cp311-cp311-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-2.12.0-cp311-cp311-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-2.12.0-cp311-cp311-macosx_10_9_universal2.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.12.0-cp310-cp310-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-2.12.0-cp310-cp310-win32.whl (917.8 kB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-2.12.0-cp310-cp310-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

rapidfuzz-2.12.0-cp310-cp310-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

rapidfuzz-2.12.0-cp310-cp310-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.12.0-cp310-cp310-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

rapidfuzz-2.12.0-cp310-cp310-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

rapidfuzz-2.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.12.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-2.12.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.12.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-2.12.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.12.0-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-2.12.0-cp310-cp310-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-2.12.0-cp310-cp310-macosx_10_9_universal2.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.12.0-cp39-cp39-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-2.12.0-cp39-cp39-win32.whl (919.2 kB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-2.12.0-cp39-cp39-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

rapidfuzz-2.12.0-cp39-cp39-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

rapidfuzz-2.12.0-cp39-cp39-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.12.0-cp39-cp39-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

rapidfuzz-2.12.0-cp39-cp39-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

rapidfuzz-2.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.12.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-2.12.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.12.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-2.12.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.12.0-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-2.12.0-cp39-cp39-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-2.12.0-cp39-cp39-macosx_10_9_universal2.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.12.0-cp38-cp38-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-2.12.0-cp38-cp38-win32.whl (920.8 kB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-2.12.0-cp38-cp38-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

rapidfuzz-2.12.0-cp38-cp38-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

rapidfuzz-2.12.0-cp38-cp38-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.12.0-cp38-cp38-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

rapidfuzz-2.12.0-cp38-cp38-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

rapidfuzz-2.12.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.12.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-2.12.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.12.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-2.12.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.12.0-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-2.12.0-cp38-cp38-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-2.12.0-cp38-cp38-macosx_10_9_universal2.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.12.0-cp37-cp37m-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-2.12.0-cp37-cp37m-win32.whl (915.4 kB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-2.12.0-cp37-cp37m-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

rapidfuzz-2.12.0-cp37-cp37m-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ s390x

rapidfuzz-2.12.0-cp37-cp37m-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ppc64le

rapidfuzz-2.12.0-cp37-cp37m-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

rapidfuzz-2.12.0-cp37-cp37m-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

rapidfuzz-2.12.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.12.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

rapidfuzz-2.12.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.12.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-2.12.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.12.0-cp37-cp37m-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-2.12.0.tar.gz.

File metadata

  • Download URL: rapidfuzz-2.12.0.tar.gz
  • Upload date:
  • Size: 836.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for rapidfuzz-2.12.0.tar.gz
Algorithm Hash digest
SHA256 f371453d0c1109e93ef569741a27171e602ef1fbea5c27a8f190f403234fd36b
MD5 15b83b560d9023e034fde99f8e472074
BLAKE2b-256 1bb55b28641f9d7ae88f82da14d7dbcc0991d91f21b332995db7ce134c39e650

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 48539221026b0a84b6d2c2665c3dde784e3c0fac28975658c03fed352f8e1d7e
MD5 167398a37941f130b3e13bcbece621f3
BLAKE2b-256 a8c2b563ea5f88f04afc316ebc8bf94515b0bb8099132ab31b8f06fbcefc9e92

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8eadfb5394ab5b9c6e3d4bb00ef49e19f60a4e431190c103e647d4e4bff3332e
MD5 ec0251405da1082418328e8569ed78a2
BLAKE2b-256 3dc4064e6e4bdc4289d6b36d05a8c57ff527c125563d1b758aa6f54c4953e722

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4581600ded8f37e8387d0eef93520fb33dafab6ccb37d005e20d05cd3fbdd9db
MD5 91dca848208d62ce029b7b2c3708a00a
BLAKE2b-256 92eb023ab2a3649f744800457bad3c003687e4d0ddbd2337607094d5acf77b1f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a6d78f967b7b162013fc85821a74cc7cd021fbf045f166629c9bd523799d8e51
MD5 be730143c9bd9cc8f9860a2eb566f5ff
BLAKE2b-256 af59d18b88a5b068d8ee3fac0a49a0c1c27da65f29fa60beaa05ea6533631622

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 626eaa1b52a9dafa9bf377bcdcfdf1ea867dd51b5bb5dab1a05938c3303f317f
MD5 4d46a22cf3a412592fe38143b8ff842e
BLAKE2b-256 685c1cb6d1116b2653f5eb4aa542093a18894d3990c8973e696adedac02486c3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 a8d5787f5c52c00991032b976b69f5c1e181a3bddce76fd43c91b2c4901c96ce
MD5 66f0eaa7896cf4c1af7714a59962a7ee
BLAKE2b-256 25ecf92303b93bbd421e2d1fa3b3e0525d4449072d30eabb18636eff677bc14c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 43398361d54fed476ccfdb52dc34d88c64461f0ec35f8abf10dd0413a3f19d8c
MD5 f28284c8dd7ce51f0e4ac1cdd962deef
BLAKE2b-256 85622070bc653b8f37521c53992746b37930b262f48607d16310a007a8e1fe65

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5dcd7bd175d870338fc9ae43d0184ecd45958f5ca2ee7ea0a7953eedc4d9718e
MD5 b2954bc6667ab97de728d6b420d0ef12
BLAKE2b-256 f0722a0fa57f9ff16ab2c2351f4d803bf47506295036a57e7db0cddd9e8393cf

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c6fa81c8d3c901d9f174482185f23b02052e71da015da3a613be98f28fd2672b
MD5 abc1578e559186b6838a5ea5af0dfbc2
BLAKE2b-256 7c79ee7bed989b7e0f4f77b7f9a8572ab838012ef40fa3b9dfae393cb9641ff3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b1114da71974c86e64a98afff8d88cf3a3351b289d07f0218e67d56b506cb9e2
MD5 ae3b784d4be7f7f81bbe7b7a3945222e
BLAKE2b-256 5cd353ae292f4195cee2f9fa344bf669afedfa1cf351b6f166a7479cbd99eb85

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 0ae8c0c2f51f618d54579341c44ba198849d9cd845bb0dc85d1711fd8de9a159
MD5 eff4556b1e27b20e1cc758f64932e521
BLAKE2b-256 c9a4e0102dc42486086eb016b29b5627c45b42d975bbc7843498fe0a5c408400

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3c7f3c61e2d1530cf7e1647bdbb466f0f83fa30d2c579b6d75e444f88ff47913
MD5 1b9cac95285d19b4a153620dfc379d49
BLAKE2b-256 efadc19e384b14a2f3150e896c1cd31d3dc7691a2bb2fdac127dadb7a9122df9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 74f821370ac01f677b5a26e0606084f2eb671f7bb4f3e2e82d94a100b1c28457
MD5 caf2087a67a9d4bca63f057fecccbf34
BLAKE2b-256 3849b9da881789036acff123b6072fb54e2701b466fb76842767b4305d1cff84

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a9a90ab26b12218d10d5f148e84e8facd62f562bc25d32e2c3cf3c743f7e0e67
MD5 87cabb98f793073f3e461fd705954081
BLAKE2b-256 8df372ffaee54560b81d89e4c738a3c4d6fc443632944b1144de658b55b98ab2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 22646f54d44d98d6f462fb3f1ac997ea53aaebdd1344039e8f75090f43e47a89
MD5 bb030aa1746eb4d61ab426800bb99386
BLAKE2b-256 d3c494dc8861874ce9f4e2ba8f35eee9a6ae4d4ac7a098661a018cd647b22ef2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 241912c4f7f232c7518384f8cea719cf2ff290f80735355a217e9c690d274f62
MD5 036715a8973ab7a197a2369e0b1698bc
BLAKE2b-256 3ec722601f075890a12b737ff9da134f14479928384175e26daf667bc81b4b5f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.12.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 920.2 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for rapidfuzz-2.12.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 9f849d4889a0f1bc2260b981b1ae8393938e8a2c92666e1757e69f947c6ce868
MD5 a65c923f178ec10e2ea69da84534b4da
BLAKE2b-256 fe938aeb5a515a4d203c91e5d897db300a9cc51ff406f76c4ee6da5666fc6ce1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 475a551c43ba23b4ca328c9bbcae39205729f4751280eb9763da08d97d328953
MD5 0ba84322c41507e7b3920246b22ee8cd
BLAKE2b-256 a2bd7f59238dec4103c6e75edaa48e46bb77086bce426a02fc753d5e3eb33f66

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp311-cp311-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp311-cp311-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 5c6a9ada752149e23051852867596b35afc79015760e23676ac287bcad58e0b6
MD5 fc2ad1d77e242c6de9d59a5d974f05ac
BLAKE2b-256 1aad9db9c637aed1f28073f10b403b5a5c4dff05de1445e50178187018f04728

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp311-cp311-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp311-cp311-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 b2b81c6cb59b955b82a4853e3fbef7231da87c5522a69daaf9b01bd81d137ec3
MD5 0c942db7857eebe6878a7f75f242bbef
BLAKE2b-256 b048601b7aaa23fdabc20825f9a1ec14bf5e15d5b459cc7114a4ba0a00c44274

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 917e3e2ffc0e078cce4a632f65d32a339f18cad22b5536a32c641bf1900e7f96
MD5 5e5a05ecb91130c1a7d6b576e140db86
BLAKE2b-256 3dadcb5cdea88584f0828ac4ec3b6e057488e2e4159e15afb01a8b296b5893db

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 3f7b798807ac9c5f632e8f359adf1393f81d9211e4961eedb5e2d4ce311e0078
MD5 6c92030624c4a985c8ad0a95dc83890a
BLAKE2b-256 10801a371d3b4d3984841637ef5e3febacd8cee7c97c3d3484fec30073b20c95

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7e34c996cc245a21f376c3b8eede1296339845f039c8c270297a455d3a1ad71b
MD5 d711d024c43f35babfe16eb2b2a55479
BLAKE2b-256 d110c0fea86813460b081c749464359fdbe56185fe153cacb51b00007de8baf3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 c62472a70c7f22f1ae9864c02554dbc234a1dfbac24388542bf87437a4169379
MD5 ca7c9b0cc73fb8d0fe85e1c2d13b7e26
BLAKE2b-256 c73e130deb3d53b33edbc165379f56d8f68c9c81c336c16e6eb9bc44b8a62ad5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 f74636ca4a3ce700f4fe2dbe10d224ee4fb52ecab12ea3007a2bc2fcd0d53888
MD5 c5b41bad67dcf2f95209aa41ddd6e289
BLAKE2b-256 7885db4c9ff2cab19a2050402009cdd2dc2591e985bfadd1f043869d98480d50

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3eae4c6880dbabee9f363950510c09d7e12dea8dbc6ebcd2ff58e594a78d9370
MD5 fbe516a1558e239268262a7a2ea10e3b
BLAKE2b-256 5154c4f8957f81fc6bf588894701ee3db15f0b9410bdfdc7b61dcda31bc257ef

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 02a5c8b780af49a4e5f08033450d3f7c696f6c04e57c67ecbb19c9944ea3ce20
MD5 a13e5484bd88f6631b2757fda985b0d5
BLAKE2b-256 4af05ea5ca07a91528d61c01138cc3ead217d6c0dc6f218d79b5b2ce12dd911f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2c2cd1e01e8aef2bd1b5152e66e0b865f31eb2d00a8d28cbbbb802f42e2dbe43
MD5 ced0e0711e41a3d7dfc23261f4a682d7
BLAKE2b-256 14bad62caee64efcca45209f80d2d0285de3004232d642c0ad2b380161e0b882

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3e8707e98b645f80834e24103e7cd67f1b772999bb979da6d61ca1fcdc07672a
MD5 49b762619625a61703e154145c29c0b0
BLAKE2b-256 d9a092d530af740e73ac30fe2d712d82a3cc6f9a16c1dd1eeb76f5630d360562

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 2fda8c003d9ae4f3674c783887b31ecb76f4ab58670a8f01b93efd0917c1e503
MD5 df760df71881e548af6cb5fd6bbacc06
BLAKE2b-256 9b34004bf412d759d6c88e99344cd16bb74fba4f1ef3ce5a6763a1fa29932f35

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4787d8e9f4b184d383ad000cdd48330ae75ec927c5832067a6b3617c5f6fb677
MD5 46ffc14db6e4a6be471ae36589211d7d
BLAKE2b-256 48cc8446f3eef6b14dbb6d3aed85740319562be637b650ab1f51230091e52b7a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.12.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 917.8 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for rapidfuzz-2.12.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 e333bb6a69c515a1fce149002aaf7d8902fddab54db14fe14c89c6da402410d2
MD5 9ee0e3ecd480caec55dee50af03b34e3
BLAKE2b-256 7756ea679dbe66e85c897131aa4976f15c15e1eb541e5e8318fd396e845599ba

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 35737fd5766ca212d98e0598fb4d302f509e1cbf7b6dc42e2eddefd956150815
MD5 3e2f497fff9be542eb3d4e075c722e04
BLAKE2b-256 93deed22f9774827a022256a7eb63147577f09c0486647ca7a5fea8c51d031f0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 7a67d93fd2e6e5a4e278eade2bbef16ba88d4efcb4eed106f075b0b21427a92f
MD5 48a146d8d3565a85baa960b2aee4687c
BLAKE2b-256 8cf710be057b75a821898c6d473d3a6651c9cc89e2674bc16a01f12fdf307b27

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 35b34f33a9f0a86fdba39053b203d8d517da76f3553230a55867c51f0d802b67
MD5 a73e9c6a1d81c5e4785e0057bb58e53b
BLAKE2b-256 8d25eeef1dc63169e60243ee7350730876a04033f9bb45f686ca65ae12f900e7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 2e9709a163ec3b890f9a4173261e9ef586046feee74bbece62595bf103421178
MD5 92144c96c4aa4166492aad37989c568c
BLAKE2b-256 da9b2ec81018eaffc23913f3f6be80833c8defb07a50c11cab9dcaf9df6ee613

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 1e0f6f878c20454a7e7ea2ed30970ae0334852c5e422e7014757821fa33c1588
MD5 d614524ec6068bea02858263f4b4f601
BLAKE2b-256 761664b143ffcbff2d0b6579b82f424b7bb4f70f76defa3f3dd5f53be02adca6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 33cfd01cb7f8a48c8e057198e3814a120323c0360017dd5c4eba07d097b43b39
MD5 2c99bad41991675d73cc800e5f45757d
BLAKE2b-256 f1866455bb77e5fd1d7211ec36015ccd200bb35d7a67eed362c0c567b0596d99

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 07c623741958dd49d8c2c51f7c2e62472f41b8d795cc9c734e441e30de3f8330
MD5 a63228e9aa4221cefb933459c4957576
BLAKE2b-256 ab25c1fd0400f1da4158c58e8ab1abe2a6abbae12ca1d76e712c8e61c386b950

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 4fc958b21416825c599e228278c69efb480169cd99d1a21787a54f53fbff026c
MD5 f71dd30bbd87e70ebb41a965da1e93b6
BLAKE2b-256 2520c393a5b054c98f6742156003cc472d34624b775a13da31f56b034b82c85d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 27fa0e7d5e5291dc3e48c6512524f2f8e7ba3d397fa712a85a97639e3d6597e9
MD5 0ace3a996de4c8ac520474eb903f4d07
BLAKE2b-256 d2e05c52d451b7bd2ba464b5e26803e0f1d3cd65bb4adfc774f9e109ee06a4a5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 20f2f0f0746ffc165168ca160c5b1a1485076bdde5b656cf3dbe532ef2ac57ff
MD5 b644a434427cb567d3ba003960a7a0bb
BLAKE2b-256 f523a3f0d2c6600cacc3e04322ffe10235b74c338e496919a2699890f7b5b76e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4f3f0ddfe3176e19c0a3cf6ad29e9ff216ff5fdec035b001ebabad91ef155107
MD5 86a6be652f9fc2251dfd1f32f20a5db4
BLAKE2b-256 342078c9b276d65230df7ed418b7a9c1c692f054eb05af7313adfe8790a5be84

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c9c2b3b00033afdb745cc77b8c2ed858b08bb9a773c9a81a1160ece59a361545
MD5 5d35c73fd0766b81476687389ab68a1c
BLAKE2b-256 fee7793666c6dc999493c4e78af6b1277bd60d59a7d155a7457b8eed2e05f635

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 129c93a76c4fed176b4eaaf78fecd290932971bca10315dee9feaf94a7b443b1
MD5 cb5ef25f061a08fa2390de0238cb05cf
BLAKE2b-256 5476965a92c2bd81978c5309e45a953ae2800e7746d4252e0a9c134c3a96605d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9c8295dd49582dfb6a29e5f9dfa1691a0edd2e0512377ceb2c8dd11e7fabd38a
MD5 1d89a951022277590584e04d197b227a
BLAKE2b-256 fe32460f3905acd1f827e406a6f7f45cce1d7cdc8e4ea48a45b9a1375e352368

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.12.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 919.2 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for rapidfuzz-2.12.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 1a600b037a56a61111c01809b5e4c4b5aac12edf2769c094fefab02d496a95a4
MD5 6337d7b7782f48ee0c490cb07fb142ff
BLAKE2b-256 29a2d8398bc651d1c78515d3b6fdc9ea3a3710800fd023b843bc628bfd8dad08

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b75fe7abf55e7da6d32174b5ac207a465d1bc69d777049c277776472c0b7d82c
MD5 d1adf94e962b1061325de7f0984967da
BLAKE2b-256 3dac4eb59ca8a60e4e6383115507923b8fbb132593b4045a459d386836c14681

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 16426b441d28efb3b1fe10f2b81aa469020655cef068a32de6ec24433590ee5b
MD5 293123f9fb710c87602c960bca8c271d
BLAKE2b-256 7a6affc6e26fc46c91fe3da84ec48abd4592862e1492625e4635a391a79e291b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 800b1498989bfb64118b219eeb42957b3d93ec7d6955dfc742a3cbf3be738f2f
MD5 aa5ab0902095591664e88faaf3d87832
BLAKE2b-256 0d9ff72ed23a147727d6fa96ec5a9f795d811e5ac315a00420b2efc047fcfccb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 c9fdbe8b1b32a731ee48a21a161358e55067c9cabd36ba0b8d844e5106056920
MD5 9e5bc5c1b65715c78c147340ba2501a4
BLAKE2b-256 dfac16b4ed9a8cbbc87a14de0835389720b971cc9ef8631cb922378aecffbcdd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 9e239e404dbb9fec308409e174710b5e53ff8bd9647e8875e2ca245b1f762f89
MD5 c14fda81b2d5a728fcd53e46491d8720
BLAKE2b-256 ada1dd7f9c59cd6d3135a13c924c35103967808c5bd4adb8902038d530dc621f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f96973d42caf0e4566882b6e7acbba753199d7acb4db486f14ab553c7b395cd5
MD5 1973af1ce732d3817bc5a4864cf178d6
BLAKE2b-256 324ef1dc51934a96a52ec3c38c27e1bf9c4e888d6a617e488731e95419de872d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 f030223aa618a48d2f8339fd674c4c03db88649313e2c65107e9c04e09edc7f2
MD5 8142cc03cdfd25b168bc503e400a9771
BLAKE2b-256 8ae33a90f5cd635af814b223d92dd87bd4ddfbfb11a116c8614fa1da1c9e18a1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 238fddfb90fab858ced88d064608bff9aed83cec11a7630a4e95b7e49734d8b1
MD5 df481e5e952c652234575ed10dd6aee6
BLAKE2b-256 b50b4778e151166a39eacb962e3d5e1a5e4484a68602dbec3e83d482bef9e07d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5fa88543c5744d725fc989afd79926c226e1c5f5c00904834851997f367da2b5
MD5 06997bc6619bcbe1152713a98141ff57
BLAKE2b-256 4546345c9746e0aed1e3b9f58cb2617a6741eff9e388976968fa94fc32d0cc57

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c0006c6450d02efdfef8d3f81e6a87790572486046676fe29f4c5da8708ea11b
MD5 cbed3be944b519c735f0c7e0332671be
BLAKE2b-256 b98ecab6d0ad684820d6c860ea0e7e3f0034de4c9fac8a24ed6a93494c23fdb7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d5b65d9f2860210087739adadc075bd9215b363d00c3c8e68369560683a4c3df
MD5 3fe9f04762a4f661ceb0ffc241fcd01f
BLAKE2b-256 ae42e2e78f8b0b46c2c5787f3fbe00b3a19f1015c29b0c330bb868bd347ee344

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5e2c0a5a0346ce95a965ed6fa941edcf129cac22bf63314b684a3fe64078c95b
MD5 5f98bd735b180e5abc56ebd50ca2a84c
BLAKE2b-256 69c3b5c2ae0261589f5415e0a9c3078865fad47f71748aa21a6038b0fbf1975f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 2207927f42ae7b7fbcc1a4ff86f202647776200f3d8723603e7acf96af924e9f
MD5 1a74773272633256020bc262c7f9c484
BLAKE2b-256 81eedeaa5d9cca0059dd82fbc7e562187a1564d741380b84cbcf7a7bf5c4bae5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3abe9c25f9ba260a6828d24002a15112c5f21c6877c5f8c294ffe4b9d197c6d2
MD5 187d8b292fb86f6280339b40781e1440
BLAKE2b-256 3650deee33f10c7dd589dffebc3196d5e437398d04764bd9dc7ad69243409c5a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.12.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 920.8 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for rapidfuzz-2.12.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 d0fc1e32353afef426488d2e19cd295f1f504323215275ec0871bdae2b052a70
MD5 91644dea90439d9b03de4981eef321ed
BLAKE2b-256 9fd6af26afd566489d9b24ca9c504f3a8453d93bf1845d2a3aae2bb89936ebd7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c6c4064b2324b86f7a035379928fe1f3aca4ca5ba75ebedc9ea0d821b0e05606
MD5 b93bc205923e6b134e4e0a6ea1dcf771
BLAKE2b-256 2fe5dec322dac9e1f5df510d1f3ce3518e7ca1b7145a8ba1413da775f0a430cd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 22e8b127abcf0b10ebf8a9b3351c3c980e5c27cb60a865632d90d6a698060a9a
MD5 d79382f9ed78eb9bfeaa2815b565535a
BLAKE2b-256 ee0f15b5c5977b6d42ed0eb813aeb8d9c12c18755b0dc5b8103083c6f36e26c3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 ad279e4892652583671a7ece977dd9b1eb17ae9752fbc9013c950095b044a315
MD5 3971c619763ae3cb7b036d06850ea78b
BLAKE2b-256 85b647520e4aacc35188d8d5adeca4f6295ba93e51b557baf7112120a543880d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 c43579c7a64f21c9b4d4c3106ace46a8ebfb8e704372e6c8cc45807d1b86462f
MD5 b4fcb99e9bb89ceedafaab0b59a53676
BLAKE2b-256 b42e4765bd0fc1306ef1cec740266db3ca21160800da72f1bb8fbd40317fdc70

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 589464c49a332c644b750f2ebc3737d444427669323ace623bd4948e414a641a
MD5 9a3bb0f8bb9730d5f404ddfc83b89bdf
BLAKE2b-256 a3ace5b1c1c1a588d03a614c2c6782fa050f34c94d9af8cf1301133be38be943

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7f2db0c684d9999c81084aa370e2e6b266b694e76c7e356bbeb3b282ca524475
MD5 fe0259ac22f2afe193c977d00d0959de
BLAKE2b-256 64a612f6d7e283d040221b1453264b8d5553e97b0b38ef8ce84225d1a28ade3b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 2676f7ccd22a67638baff054a8e13924f20d87efb3a873f6ea248a395a80e2c8
MD5 8db35f77f22117b0f71d21ac408451c3
BLAKE2b-256 b6a23da9f98fb8465675891aaf66752fb1cea5767ac30c01b928d33605d744ff

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 651664023726f28f7447e40fa2b8a015514f9db4b58654e9bf7d3729e2606eab
MD5 832b89a67c7523b1200edf1e50bce568
BLAKE2b-256 5315c9d6e225070ac50bbc83b1f8a712990d0504c00532a6437289ef7f1348c1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ac95a2ca4add04f349f8f5c05269d8b194a72ebdfc4f86a725c15d79a420d429
MD5 c4ce055667a0f0f1fba6d4cab5ce3a9d
BLAKE2b-256 9141d7f37abba9247e6165ac5d4d3172d4f9490cc705098fe64270fd9deade75

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ef812c73fff460678defaab3a95ec9b7551ef14d424eb6af7b75e376050119d2
MD5 7f4f01738e64fd68e7b11ebbcb8cf4a0
BLAKE2b-256 830db721c4d65cd92655d1490c156458607b17a3283d47070a70d17622600762

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ae0519d01a05c6204c2d27ae49b2231787d9a6efc801d5dbf131b20065fd21e3
MD5 46e66fb8e3b5ee677bfdbac11c023677
BLAKE2b-256 85ec4cc8f4075fcf3215a56db97aa9d2c10a8434a7c2124292e8c1396e8d010f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 96fe7da85d8721c3a5c362f6b1e7fd26ad74a76bebc369fb7ae62907cf069940
MD5 0bb3e6f9983430852699c1b54e0e24ea
BLAKE2b-256 8362c24dd99be08d27356ec5c995e7b0f1a91c8edac2dea5e5dc19c47f9dcac6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 b63402c5af2ad744c2c1ab2e7265eb317e75257fd27eb6f087fea76464b065db
MD5 859e85013a01e70c3437650292249b36
BLAKE2b-256 e626c592e03b7d60d3ce3af3a365b46924d3718fb8f435dcba91e2a91bef6ca6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c1191a1c9f24134c6048770aabaa2f7def8d6d4c919da857d5e7dabdf63308f2
MD5 54a94872e45481d1e0b12878f708f819
BLAKE2b-256 17ba27f470dae53253597b52651d6273f434f36849639bdba51f2079ec72b875

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.12.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 915.4 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for rapidfuzz-2.12.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 25db060ba8082c38f75da482ff15d3b60a4bc59f158b6d29a2c5bccadd2b71b0
MD5 134f6529069c61ceb5444857ecf0e8b9
BLAKE2b-256 26268aaa186ed4e99f17ba690705595a917efbcc073c2215a035c4ad4f724521

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 22487992f4811c8aef449736f483514f0294d5593f5f9c95cbfb2474dbc363b9
MD5 22c379575e9fb0b16ab659e366e0d417
BLAKE2b-256 2819e53fa7232d9eeb8cb3b59bf341d82ef09436ced17762ff645e4656aee2ea

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp37-cp37m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp37-cp37m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 c74b960a1b93ac22e6cbf268ce509fb2c2338a29180c3d844df4a57bfff73273
MD5 8567362c4f01b2967985bb1cc482b111
BLAKE2b-256 0ce146008888b3a8912c0375899b812aaedbed0adca90a254d50eb51c9bb1b02

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp37-cp37m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp37-cp37m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 9836bea98f25a67c296f57cf6de420c88f46e430ee85d25ae5f397968c7adcdf
MD5 f86c3a9d4c7b2d01a094f8db0802cbe5
BLAKE2b-256 371ae82df961d49dbbc2b8cbf3fc1fd717388d1043ff181af2a2f8dbb768ff02

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 13ad87a539b13794292fb661b8c4f4c19e6c066400d9db991e3a1441f55fc29b
MD5 7f390e208df44d30485634ec5d946327
BLAKE2b-256 7056df640af4fdedc9c9484ca1e68d139b61adfd350345a79f23c8c57a8001d3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 9ceb8d6f1bd18a058cb8472c6e8cc84802413a65b029a7832589ba7b76c0eb11
MD5 85b6c8006fe92d15cfe3b5bd20f41d22
BLAKE2b-256 531e015ac104ab4ad155fe5c42fa4d18b0a8475d91565d0c6f80f1551cdf74a9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ac6ce417174a086a496aefc7caa614640dc33d418a922ee0a184b093d84f2f6c
MD5 0cd1dea1cbba065d78020fccfc62dc94
BLAKE2b-256 61a8c23c445df7572034f00907a9c7906ac144811ee55a9932eb52ad6ebf7211

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 028aa9edfa044629a0a9e924a168a01f61c8f570c9ea919e2ed214826ba1cdfb
MD5 a647d50fa14fbc0c8d6ceddb474966e3
BLAKE2b-256 ad0f346437010c61375a07ad73baed715e9e39f366d2645a47eb44b3fa8af695

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 7febf074f7de7ebc374100be0036fc592659af911b6efbc1135cdebfe939c57d
MD5 c28abf56a6cb83458d7e907c0f89cd1c
BLAKE2b-256 532ddc676b07dd57e3401d61ac6e7aabf9b099ac3c2b4e01ba7ed9213373a544

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ad5935f4a0ec3a2c3d19021fcd27addce4892ae00f71cc4180009bc4bed930ac
MD5 e04f30c41fca3f127cfb3aa604bb53a1
BLAKE2b-256 004a89c1d1a39b112b995a046112a033e069c4b59741ee518a8aad574243adaa

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 45def44f1140c6f5c7a5389645d02e8011d27a6e64f529f33cee687e7c25af07
MD5 10b0eebc0c5dc5550111180931e4337a
BLAKE2b-256 d38022d7a7b09bd00d769c406ae5ec5f59e22640c2384e4e42c09459c71e2439

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.12.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.12.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d6e6972c5bd1ee4f532029616dfe0f5133f7cc688ebc05dbbc03e19b4ec12199
MD5 627992eb8d36f197a7776afad9f902d4
BLAKE2b-256 f7064a8a38497383f2e087266d08b8f23774c343cfb9d807f6611aa7807783b5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page