Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continuous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparison between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparison I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
    "".join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
    for _ in range(10_000)
]
samples = words[:: len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with cdist in the following way:

cdist(samples, words, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like cdist is a lot faster than directly using it. That's why they should be used whenever possible.

Benchmark cdist

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. That's why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-2.13.0.tar.gz (841.6 kB view details)

Uploaded Source

Built Distributions

rapidfuzz-2.13.0-pp39-pypy39_pp73-win_amd64.whl (968.9 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.13.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.13.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.13.0-pp38-pypy38_pp73-win_amd64.whl (969.8 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.13.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.13.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.13.0-pp37-pypy37_pp73-win_amd64.whl (969.7 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.13.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.13.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.13.0-cp311-cp311-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-2.13.0-cp311-cp311-win32.whl (928.5 kB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-2.13.0-cp311-cp311-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

rapidfuzz-2.13.0-cp311-cp311-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ s390x

rapidfuzz-2.13.0-cp311-cp311-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.13.0-cp311-cp311-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

rapidfuzz-2.13.0-cp311-cp311-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

rapidfuzz-2.13.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-2.13.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.13.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-2.13.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.0-cp311-cp311-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-2.13.0-cp311-cp311-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-2.13.0-cp311-cp311-macosx_10_9_universal2.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.13.0-cp310-cp310-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-2.13.0-cp310-cp310-win32.whl (925.7 kB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-2.13.0-cp310-cp310-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

rapidfuzz-2.13.0-cp310-cp310-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

rapidfuzz-2.13.0-cp310-cp310-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.13.0-cp310-cp310-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

rapidfuzz-2.13.0-cp310-cp310-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

rapidfuzz-2.13.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-2.13.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.13.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-2.13.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.0-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-2.13.0-cp310-cp310-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-2.13.0-cp310-cp310-macosx_10_9_universal2.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.13.0-cp39-cp39-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-2.13.0-cp39-cp39-win32.whl (927.4 kB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-2.13.0-cp39-cp39-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

rapidfuzz-2.13.0-cp39-cp39-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

rapidfuzz-2.13.0-cp39-cp39-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.13.0-cp39-cp39-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

rapidfuzz-2.13.0-cp39-cp39-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

rapidfuzz-2.13.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-2.13.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.13.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-2.13.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.0-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-2.13.0-cp39-cp39-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-2.13.0-cp39-cp39-macosx_10_9_universal2.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.13.0-cp38-cp38-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-2.13.0-cp38-cp38-win32.whl (928.8 kB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-2.13.0-cp38-cp38-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

rapidfuzz-2.13.0-cp38-cp38-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

rapidfuzz-2.13.0-cp38-cp38-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.13.0-cp38-cp38-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

rapidfuzz-2.13.0-cp38-cp38-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

rapidfuzz-2.13.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-2.13.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.13.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-2.13.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.0-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-2.13.0-cp38-cp38-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-2.13.0-cp38-cp38-macosx_10_9_universal2.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.13.0-cp37-cp37m-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-2.13.0-cp37-cp37m-win32.whl (924.1 kB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-2.13.0-cp37-cp37m-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

rapidfuzz-2.13.0-cp37-cp37m-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ s390x

rapidfuzz-2.13.0-cp37-cp37m-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ppc64le

rapidfuzz-2.13.0-cp37-cp37m-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

rapidfuzz-2.13.0-cp37-cp37m-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

rapidfuzz-2.13.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

rapidfuzz-2.13.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.13.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-2.13.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.0-cp37-cp37m-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-2.13.0.tar.gz.

File metadata

  • Download URL: rapidfuzz-2.13.0.tar.gz
  • Upload date:
  • Size: 841.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for rapidfuzz-2.13.0.tar.gz
Algorithm Hash digest
SHA256 3b4b5dd5f31b6649b65ce3976e11183ec89ad2f308a3b655874fe01481aab34c
MD5 d4f12b6a9a38368345bb99ac79c47cf1
BLAKE2b-256 b4b231288df678b83d391b6bfef75892fa53174e6d00298592186a2f9cbf8165

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 40ab30c2adbedd9c51e3caaaa1f38c6b9efb81bee7df833d39ed082ad02073b8
MD5 7c917650fa03ed6c0f7d853e2c3c456f
BLAKE2b-256 8c68ae5ff9941d248d136b1a20530d2417a0598228b47dcfd9d1bbf3efd7d8bc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7641b76bf5b833c08359dde015a3f0adf9910348ad7d8a34d39b97f5bab6020d
MD5 31bf1ccaddaf877ce33e244ca04438d9
BLAKE2b-256 e40193140117729c9211e487900b9d8c3fe8b12012b3b4eedbb30c715a6280f4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 801cc5df36079ab0ca59f337d9fdf5cf71e0641bb2982273f4e972af499221e8
MD5 aea2be96ce3b8eb548775684c30847e0
BLAKE2b-256 d11eb15353d89af9e8d930ad030a3f25c1b60e5a4f34727466d35b8993e5d8f4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3411ef0356ec67a4c5117c9ff913042a5724fbe2f7ea890d970f669ddea8bad0
MD5 09a8af842b6a0e7ca1c081d99f49deb5
BLAKE2b-256 48b4df59134f72463131758b1b2159bb3cd9c200fcf71be49a7acd31376f46eb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8d9bfec9941ce8b94b39df50109f2af410d498bd60a5656e2567fc2122ba3d16
MD5 7a487d8d3f6f523ba963810febc18a76
BLAKE2b-256 496da2087bf177ff5ae91b7a715fe4df9e574d17a0c158db4d47066c6564ec0f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 aa636f586198c47158f080cf5aba8f4ac63cf396aaa714da39d870dcfdd4cea5
MD5 03666ba31b5d819bcac405ffd7eaafb9
BLAKE2b-256 fda31fcf08a0d9c998cbb71aacdae8b3e6e2d486735aa76037538f0f2f40cf8c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b69e32fd47f1d81088cbedb36ae347d00f94a23da288e6986ebc73e1675b78b9
MD5 04b17c4d5f37a6ae7166c090a2a7320f
BLAKE2b-256 24bf43b28b61725862a5ec90fa66f2fd0d2454dab8234e38d4affb37d776754a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6cb8ad8b6c28cf0885f3e4fee9164c91b40c5798942921d26f0e5a20133b85bb
MD5 7169184b41d161df104ec84ec7cee579
BLAKE2b-256 d7152a6dbb6dee2a3e98609bf8b22674e6e2bd3a7f3cd4bc934ffee2363125dd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e061a90c442d549e9a9ddddb91b18d91e8fd774aa2012d500e5fe91eaa2e288d
MD5 545eafe57142c506f2a5f2270645422a
BLAKE2b-256 398aeac57ced9a78ae32b36e63cfdb1b3662c4d17c826c88c8ad277b9922ffea

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 815a7b26dd1e7fb8c6f657470e68867c25c64fa54a45785306b6b2137f28c53a
MD5 ecfa578bbcb0a3704e1f3746e0bc23bd
BLAKE2b-256 71bf0936da4076e424ab6faf36162589599b7ace1b697de0fcbb96aa0f341868

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 815576d412d9486cd1886fabce5de93b8d2d0081bff788c72ef96eb2acb25f0d
MD5 d16cabd5ca1d9e3e69a3206fa2b84247
BLAKE2b-256 a35a1831ef24be9e278746af52a70cc1a5b24bc0e89aaeb9b3cc84d2518d37eb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e37f52fc00e7df5794690983785f4e1c01b2dd1817bdbce8bc7ad03d0b0ca58d
MD5 6cb85ac33ed90254529132391ce67835
BLAKE2b-256 4198b31bf938ec4382fafde1f7e4530c96202e90534cdb965221f688a40154d2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7c3ede4a79fac81a98237e5b75a98b91f09d05a5650b068ba1ae33799b9e44d7
MD5 6b248b54b218b2c94a96b3fc6cb3811a
BLAKE2b-256 9a10498598fe2b70f4d81484d750825fdbd2e0ee87a43bebe5d074a2ffb31bc2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6fa4786f1325e5287dee18425dc1f39363f33b9d7bf0ef548f6317e9a09b1ae2
MD5 1dab024d6b749fc4633dd8d0d12eb024
BLAKE2b-256 670cf334512b55fffc529286a9e112e9e9d86ceb8f53b2eef7d691d3e0c76958

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5e6d7c15ab841987d7e5f4c1889d0f62a5384bd1d62a2539c44752b325b76d9c
MD5 97324dd6cd364ad34471d9adf380d4fd
BLAKE2b-256 4330a07bc7c59ed1ffd6b1653db9d4e6341c32b63dc31fa21c5982cbf967d40f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ebc9288138f909624f610b737b9a9451b9ecead0dd0de7ea5ed63771f9c62d94
MD5 52631d98ded15a3ec081a3ebb5297c47
BLAKE2b-256 20ac7037928172e514d4abf19f406975e66b5fd7532baa099af259458b238963

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.13.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 928.5 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for rapidfuzz-2.13.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 35fdae157dbe85b96463a7f32f6b679e34b6051919adfce668d858cc1eba7326
MD5 3367b555cade045c49351e9d25df1144
BLAKE2b-256 96b44325fd41c3c99e660b481e98e368d07a514d511fdeefa44046bf5a5f89d0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8931780f42aade09587f48fe28114f7ae0e1afa579ec75ce08364b0d26e04d2f
MD5 36bd6f89f6913fe782b2bb04fb9024ce
BLAKE2b-256 7a9470b52619bd4ce5410306c51302cf7467b1dcedf25a6e379bca428369ea36

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp311-cp311-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp311-cp311-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 5a9bc136202ac4e02846d7fae943dfd973e0cf4e3452f2caa60c296c60b9c531
MD5 92d6ba68982d158f1d9f4e136a216e1d
BLAKE2b-256 dacd4d0fb7ecedcb5a75230d5c58c689824ad18eab76897022af6b7c9a6dd2e2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp311-cp311-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp311-cp311-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 dc1fce04f3936c8a84d7b672a819de553fa9f3161df9bcdb77bbd89dc2888ddf
MD5 d9ebb1e959d6a25232cbca62d8980829
BLAKE2b-256 cadec4c2847d0500d5c483d954d34304bd6893ebc48164792fec1fe14429466d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 ef0c044955e202e072d5c137d2affb42101249080e695ac1cf5e318cd3521131
MD5 d021b90bfd24abc37babac0c4081c161
BLAKE2b-256 17253e7f2b8800d9976a82bcd4a2fae5f705b1eb1f734d856c73cf96932a5a98

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 62ed21b1f4b61a0c925de6e3b3f3173fae1353b73632641cb07b055a8b398b1c
MD5 5b95d8fd36196460284306d4f85f3957
BLAKE2b-256 142edabc205bb477bf06faf08cee5d593b13d0231da9249afd9dd9b5ffa9c80f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c5c6be7e781d307057268465a29b520992fb6b415e1c346325a4f3c63ac8360f
MD5 aba3764b6ede3ec8ff93cf1f7d5c9055
BLAKE2b-256 122444b8cc297b56054146577c40d71a18af46fb72af1f0d57bc919a226a8421

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 9b499189a9aac32b66689c7cb51a893f6c5c61a25afa75999de128615ac7fbec
MD5 59ce25e3b401f28e097b00f5fbe7491a
BLAKE2b-256 a7393a40bffbafa43f50997dc925296e10a5378528d2d5dc0b11a4508ee1b1dc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 2f4ed0335fed40366092f3f7d3111eaeced997b5a402d0bc843fd76a0d090cb1
MD5 ff2ec80a4859d6f25714068c34fe4d06
BLAKE2b-256 164b0e4b505d23c8efcdc25ebb1a45c759f13c865295471c861332e8d6318263

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3f5eeea70e98edee61f231da0836d30900b6c91a88bf3d778ff1213b6945b76e
MD5 8032de0ca3cdd73f7337699426264478
BLAKE2b-256 e1158d48b80400d6f7d71dd3df6fcdbf7073601270e8ddd1568ca8c1b7c977d9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d5ebf336e1e416559098781a891464f78825d6965ea73b7cf9536b1ac549f5d0
MD5 423e92c960f4f2304f5eaa5d8fb879c9
BLAKE2b-256 0119e2b7856cf73719b1c0ef3924344f671b469f0bbd0b153c6f71698d80fdf1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9a378bd5f507e844ff540937dfce0f3e259453b1e17adb61da4b6a3e1d7a56d5
MD5 7d2e966851409b3c71732157aac27b01
BLAKE2b-256 15ae104b4a0ff6dff39e50a842250b078cd8d84ad4a94891753026cf21189fde

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ec36b350989d4a9a8564be5e76c0e0690e843d6c669bb6d1ed07ed0f24d7b011
MD5 df2b3a71cdd0134b185b3a1c1747d8b6
BLAKE2b-256 c8ec939a545c1bd4b312a8f29cffb4837a25cefc8439f8d955c48a95812df424

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 3e97135d91101d73202914c3b8d0629be5eb75c22a29868c569c33ad28c7b011
MD5 1cfbb7c6eefb2789e568e7b31d7ad3a7
BLAKE2b-256 eece502fcf5f358e6e972f3c381d6f6044742decfac740d3fc36870224d2231f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4b0a45cccb009bddaf27088578c89a1afb591c09bb5d12c74f2bb999ade373b0
MD5 69c854daae8d9bcbe097c3875d7b88ac
BLAKE2b-256 80691621a816ce8d9bf28f325009fb46af15ba67375dd206a5b2046869871f9d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.13.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 925.7 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for rapidfuzz-2.13.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 d22b6958023e14e05359379e351b53e1c560149f296d58d942f36318fc6617ac
MD5 1b83583763df981cef1dab6d23ab6431
BLAKE2b-256 5a1bd194f1c060a97515715997fe1d43e7649c83aa3e59599776286af1f613d1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d91b84ca159c65977f032bfb90f0f2f1d0dc19f2b4e26053511c582633001200
MD5 8744e7c73f27b0457cf31ad2e16a4f2d
BLAKE2b-256 6872048ba0e50c7187001bd0996019d26b15045ce34d6bdcd80ef877dded8a59

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 258d3c4387a73da92bba34fb438444cbfc91f8a694a07db964ff7a7ceffca2a8
MD5 8408abc8808f5cc700fc8bda3d15be29
BLAKE2b-256 d7d00974c6ea8e901d1e650ba38d208caefe97da71a68544adf7ee75a1cf5b2e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 40c064e0c60d7be065a2d195c5fe3dab75d7aebf7748a6770f9f1d004b57fbfa
MD5 5938f93a8aa2cb7ef9732eb43e630af2
BLAKE2b-256 4eb5dc04ef7573c8a6c9a22e4a7cc93565f17e382d7e6364313a63676b4cbb08

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 cc8e63ff26319ea6f411c2215de9312b3ee1dbf520668709c4d6c103e8a3bef7
MD5 406d3262a6af892f17c1b4b8755ca814
BLAKE2b-256 81e29738f5dd1796657f23de375bf98ca4de0b56cda78499d265e1748716801b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 9209a8bf36f7d4d38b6c20470ea5ca91026f0d38cdf019777262d8574cbb1431
MD5 43c9a724f094dbc9b4b30a0ac3ba4ce1
BLAKE2b-256 5415ec10444a7545e9fdd0aef335470a516221cfcf10ae3f7f627f47f4d26943

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ed3bc5e57175b8ef1874a8e4d995b8ced1131daf5ffea59017f8fafbe7048eb8
MD5 1f647de913afec94997aa9537bdf0922
BLAKE2b-256 9954daffdc01981fffb28217997fc4191ff9f712c8815ec70e58b4efa3335221

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 da5f487c19e06d4e9934405200cb4fe46fe5c943f757b61e0423c13b70a52e6c
MD5 311c3e2073f08e350e52df205b83eec2
BLAKE2b-256 0a6544d746234f93e6cc70dbc86354027c836c6aca3fd5dd12b8f2775e09a92a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 1e4ae5a9624a392f38dbbe751c589d0c95202609b094cb0a44972a978ca63836
MD5 0e78065ee9c59889f7ca9efc1c5b14ed
BLAKE2b-256 760f135fc06492bb72f035f1078d36344a675e712109fc5a5be75aa3511e40b3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 68dcb8716aaa17adb1caf855a04ab4f4de4f5af96c91018c0191ef77ff5e0fb5
MD5 a3db5fecfb604bddb1306f895e26e4ea
BLAKE2b-256 c106fd300b52ce5b724c5e387621cbd503caed663019244e0aab8e594d46257a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 561b343726afde7983aa20b32f454cd6bd803f783940b92b1f7fadb47e633f6c
MD5 31e2898a5e74578bf5c02d3b9f777891
BLAKE2b-256 1603b09e07cdb5f0a93cbb47c66bfd225193d4bd033afe06ae1ec7e8ad94e394

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 81032491dc5fab173123dfdb137d09ee8a15ccf2c8939e1a9cb59053b0c13794
MD5 21cf5c4d6399fe1062dadde3e0894b9e
BLAKE2b-256 ce34f24eaccfac915542678429801427c2e8fc67678c885203029cf5fef43647

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 88c5cd578367b945db8bee1348a341cf7263af6b18c4294c158edafcdc97560b
MD5 33dc581b0e14f5dfb0fbca3487b1fc21
BLAKE2b-256 f99a91c2b692df3036935b241c3940896505f3ff42bfe779de6c9ebc692b77a0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 757fb4798ea3fe2a7a8ad71aeb80a4d7c9543661d97845c0b063a1743415eb84
MD5 5fbb6753ae4c17b62a11dfa1cbcd6e6e
BLAKE2b-256 72c7b67b0370b9a86903a2ccc5c62fdf206e56794fa644873240ddf360743d61

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9fab0b311eba60bad9d6b8c1fceb5fb69754b5185a5f4eba71c79d1f8d60b37e
MD5 8941d35d76e45de58b9ebafd81d8f294
BLAKE2b-256 25663b22f5a329120eead7316f41b4f7fc95a0868af9680656521a92aee3b618

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.13.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 927.4 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for rapidfuzz-2.13.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 6c8e1815d86a67064fa6bc0e73bf56ebc9c28b3ef847db1a88ab6545dd29de4f
MD5 dcc6e6617268a6a8bb5eeb34526dbb85
BLAKE2b-256 c2f87e7cfde2c64f8cdf06e1512b8eca085f3654e8b3dbdcef023c8c95d6233f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 27a69e91c4ab9dc4bbf5553db0612965a598d3977fb3e8dd4b814b794fd7475e
MD5 99868a82df4af4fb3f2c602b0461d557
BLAKE2b-256 5f923d780df9d06e721cfdd44913b24225d2ccdbc604e56e68bd5412fb9363f4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 ed3ac8b4df45843d092783e2200ae7b4b66d6f9cf95c94bfbca63c0d521da071
MD5 a9d0eb98fbd81016b1ad1838752e0317
BLAKE2b-256 f853ee7ad0b34f349f1728b3ef24c91bd48e486f16df56d6c4c4121162b4bafb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 61eed07881f041ea05ee676435aeda376b4b42c6d08176f0e6589b2faf38318a
MD5 4eb3f41b779b9f07cedfa86cb10601d8
BLAKE2b-256 207d925d9ce336dae90d3d6ce58caf5300767972fc830cbfcd39e7006120fb35

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 41c0febba7907b366d6bf6d058a5856839f90e943a01f92cc50393a724a93234
MD5 71f2fdf3e673a710f63aa45a0065a30f
BLAKE2b-256 efcb0bb5ba5cdabd5858031b9d5752ffa2e75ab9955fdcfc7eefff3a4008ea00

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 59f32d67aa928e02ea380519a6807b281f23998b4213b024c085ad50ab5d3175
MD5 26b65644a407cfbf9657b806f3e3bc4e
BLAKE2b-256 0542f8ebd59638b875812005442d5aa4a7f03503f4b07d4d56c988f56437854c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1e7e100ca14b79385b96a199504063fadbbe65517115ae8d6def64481625357b
MD5 79a57e679a0ab4a25412db1053f16388
BLAKE2b-256 0cd4694957010c1808c182a339aac54330e9c4e74f3947bba957f55056730274

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 fd1afe34d17b0fc910dec8ac1989b3e1ebb83ce6fa9c77912300266666be9c57
MD5 38d2028d244862e58c85d914c4203f7b
BLAKE2b-256 54ad6505460fd124058bedf5f70929ab3d27b1e181725577f941de9a3000c90d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 35a4af8c6f2820d979f0a61ab4233081622411e10659dadae61bafa3b0c989c4
MD5 03f2e8bf5edebb3571cd3f8a2b7d6f3b
BLAKE2b-256 ebb8896a7e0807fea83339c47dfe79ef9510d3c8cd0b1577c33a0e61e82fb76a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 508e22895b9e76ef5e43da09c17e3bbe0d4199848d846dd62c790696193c6ccc
MD5 e17b605072f8d5f623c456780c77c7c9
BLAKE2b-256 b75bc96a9a6472a24ddb0a49522e2d66fec1f43f5ff3d28c724d485ea93f5505

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 397434f5a64c1861afa38cc7f32aaabc9f5c52adf67785473433d77d96d6fc67
MD5 3a3aa04ff41789a704e81d35ef218f08
BLAKE2b-256 e43d567a5adcd5b3a3536bc848a6cddd009546468688ceb0ec69271c100f6624

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c32aa05b27a8954889f6d15c28cee839d4f03376e9e236e4c9cc6bedc470ec24
MD5 c48f4d2e02f9c7193c65575022e8eab6
BLAKE2b-256 aafd502af7cc0257dd31ca4e8fbe9f168fa785ff44d3ead1e1852dd7ce8a1b2a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2d6fb1c22aaceb7b81a2c2e2a702f04f0fb03e9d0678e4136beb92376d8f6850
MD5 41ff0a08d714bb9a728aadb09d529578
BLAKE2b-256 7978fdfc843ba68a1cb4e481de5a791bf04da43d4ad359fecd9a6e92519e886b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 8442913758bc30513fcc359c0be75e6b8763ea4eb68688255b3daf6ac1851a96
MD5 bc2013fe064c5789056ac75c7c146310
BLAKE2b-256 3f205a7540622a081f56b5fbc972b9ccfa911013da8d744097081b1303c74b38

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8be10ca716354fe4db53e958e150a474ab9f0d3e99ffb5740a4fd41141b7d031
MD5 c56abc11afe501a0ec5f3990b3a9b5a5
BLAKE2b-256 86cc1452a66108a15f55f057b4265f8c76ad5bb137f21bdc7a2b12a88f5d64f6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.13.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 928.8 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for rapidfuzz-2.13.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 47e75657208fd4cf04e2a8bd18b496998379776229891446beb8f53610852fa1
MD5 1c30c75d1d7be1842134b26adf899044
BLAKE2b-256 889006b98995ec1fc1d74e8b6c99bed5892758433085afa57ec7a47a1123c5b0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d596e1857be599aafc49f1fe0f70ac70229dc8f2c1056d19bed0705c76cfef4d
MD5 ee38d455ac393edcd9d3cfbc02f733f4
BLAKE2b-256 768f79194b939b4dc7a8a7711c0039cf4b32fe9d942f6cde8981e73616af3869

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 7eb4f9cbe38b693626642a24b71a9eec65e06c8795f998c01e63044e195acfcd
MD5 973a1e03857bfdce837c5165615bb13a
BLAKE2b-256 a9b1dc0b8536016fdcd271a208fbb6870e8b628f31071022f68b55cb25f1fec6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 92262120094db6d73af6e9d1ff9947d021a3f43d53d14dc7d36d4f8d73a693d1
MD5 d135ea74c28067498556d58e45eaf6b2
BLAKE2b-256 e5483623379390f2ab8081c96fd4246b507619e7bd27c55aa9fa2225d9b6a958

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 8576efc747306a11cb187135f49bb39d871cc299c056f57ae81538b26a8588b4
MD5 8e7eb0abdc9a78320189244beda53d2e
BLAKE2b-256 822c88ed38faa7d474eeefd4863f48338c76bc159802076d7e30ca1f654921e2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 f942472c4ca30b6055f3ed89d82a81fd0b7ea7ecf20328b4be06f1acc311ae90
MD5 3e1243a3d8faacfe30b453dbc2ff264e
BLAKE2b-256 9d5d15c1b532325249e410c51faced2575e64a55dab14b3340eb19c0eb86e715

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 42944efabcc88c82c70e73d5b35c2be04afaa0b9704204d1c144b9bbe799ef00
MD5 43b2617eac67fa43b99169879bda54d9
BLAKE2b-256 eeb4cc18c6d800b6b85ae1ec4e0a4e64201b81db7a33e71ea3142da14b6fbc7b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 bf155c2bddbd84b9b31c5900767046f1f53ee1a362c8e737fcf51ff4ad464c34
MD5 076927f917d59fae0be332205cf81166
BLAKE2b-256 e5a8414a272e289b7c0e44ef2a951973ac225126337931a78a75dbf407dbb09d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 0e1811142746e47990807ec4034bedca3cec8f13808df601104c161649711b3a
MD5 f5663d5dfd50a4f9e6b061bd177f9702
BLAKE2b-256 0fb26822ed6d0f9acfddf06b356ffdcf4c24e787c154c69d2104d0cb0ebeb4b9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 485ef407c6dc8517670bef80d94e45e96cd8b0f4dd8ef8adf309d6690a1180a0
MD5 474e80853c3596a258a1f6ab21f5f108
BLAKE2b-256 e346ae8911b7b80ffe8d8edd3b867dfd76bdd13de7dee0ae95c23af12df21436

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2d9e6e9d4ca02f9f98a41df43fdc2f3c36d6e8b47d47cb7553b845ce28673ca9
MD5 c280a8b20f95221415e2cbf598bc936c
BLAKE2b-256 a58274b3e5d9165a8ad7a8f18c1cd821f0e5345accb0f49da2b9ea043cb53d4a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9166651273def283d85acde2ad7d12d8be7d4b27cb1403ea92be874caee8ef70
MD5 c100c446b7f893bfa33860168b69dfa7
BLAKE2b-256 ab9d3c66b1aa90b104bbb773b02b8137d940e49f5aa74116c92ae29c89e9e7c8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 46eb80791893d73519cb8a1b90bb623a555658a469753278b4ceee899028d2dc
MD5 15f6925d9f1a8bb40b0479ccd7a823ad
BLAKE2b-256 8daccb94ef124efd2b3206fcab9b21fcc2fa76b8868480c054226d8cff8de35c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 167ca8a5187129e58996bf3de1f5e09c44b5cd03da6e8766212817858f19e54f
MD5 35434758fe0f026642b540f0bbcadaa2
BLAKE2b-256 61446e3d348091665987eb0e40f4d937f5af70d47c9afa538807208f198aebca

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 3c0be7dba68c6cefafaf3c4f92042f95f2df97f6158be423f94c3a677c2bc6e9
MD5 969925a9735db5d06d3934061223b1b7
BLAKE2b-256 cf4980ad916c2b4fb2b9b1e3d7083cd972655c977851ceb124a8aee5e7f85797

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.13.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 924.1 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for rapidfuzz-2.13.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 019de378d14423d360151502daf54588591adc76aec95a63d7eb8779568e0fd7
MD5 a3a6c08e4fd09d9e96e6252a5495c9bd
BLAKE2b-256 6c03fc6c02cd32c246ef780f0d7823668c784bc4b2a93399eb3f154ff3ed224e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3575ec81916d68f360d53913dffcef847f64f616cfd191ae28d495752df28354
MD5 1a1da2d12396548ebe660d39766d5ff9
BLAKE2b-256 bf0f384fdc299063876bb8e8fe4c7c734323ba186af11d4fa6778c1f772ee325

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp37-cp37m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp37-cp37m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 c8a2e610f103ba15c2a31cc70b836c5c1c048f13e3054d3b452c9afa9ec0e6f6
MD5 3efd7140063e80ecaff6c4a67745e7d6
BLAKE2b-256 5d61187631c388c55c6f9fd89af6da46df6fc2e47ee33d81ffb07a67f097c1ed

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp37-cp37m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp37-cp37m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 dee0a35a3c971492fedcc838940c13a44a509644980c7b14069b8131dcf705ef
MD5 a41a069cd2052f2483eca417c07ab5da
BLAKE2b-256 2722fe77fa1910eb220c5bdda9d501e8596c9ea0efce0a1dcee83a460482228d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 0aa3b9f3e788a01a8721b34e767e1a7859f3fcac8132629663f8ead8fd9879e3
MD5 3b187451c67029203d887f78c23af2cf
BLAKE2b-256 f70c578d42e75048e6d3e50adf7f0833e61be7233bbc090991794006fc18c6df

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 ab7bf641a6769776c2dae979ce0de8677a2852ddc2ceeba8c8615641e3147b08
MD5 51fa50969eb2a5c1efea6937c2461f1c
BLAKE2b-256 c6fd4c2b5045fae73b700e27fc1f156f714b9ccf2c32f345e8257130bbc23188

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b7371dd0dc3ea3c3f637156b54aab639e8f05b46c32940592eef3ebf912d916f
MD5 039e9a77d4b5258f7d48aa8ae771c154
BLAKE2b-256 0794c19c39354f5b20148e5bb6b9224709efd373a4adc8ccd348ce29c582b76a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 12ebc53cfed9dd72bb6bb740bbf07fbbbb1bb0360fada895618c7f8c400a772d
MD5 7eb8d88213fe17ccee1a730c483602f3
BLAKE2b-256 66bbcd41ec0550121ccabbda42501a3cb8a4924e8182e697143b6c27bdcad5e8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 7fb470e8207ab54b09813343c084f917fdf4feb13946205164f3c14759427f62
MD5 4fc04daadb5c84db5ed05c4ac267f5d7
BLAKE2b-256 ac35d0ab38ffee825bcbbc7dcf866e39b608aadaef133b5de5fe626c59fb2cfb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 15bf216360c1ae66ddd0eb33d12a40687d94943088d1b4c0dad0628e9b85e30f
MD5 6e799be1a42b2a2d624394cec83701bc
BLAKE2b-256 88a28f8406ad458e36e1fbca07958f810786dc7fdc8d15bfd475c8dcbbf679e6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f9fe10f5ff4049fd80020366ab6dbfa0decb02cf75202ebe1ffabe082f10c999
MD5 0b2d9af955e3c8e2a58ae9f3c60f18db
BLAKE2b-256 0f70190d2e15f41f65d7c4143b3be6a70f71262763657821ac01cda30634370c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2386321d6403b3b669f3f69e9fe1d19a0031302ceaabc07b5ad9c6511517fc94
MD5 5d5fb779ce93e4ef166b5e3c47655983
BLAKE2b-256 848af5cd2b4144b8a493f8f2a6996efb79e032841898f31817a70beb30148c79

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page