Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continuous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparison between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparison I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
    "".join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
    for _ in range(10_000)
]
samples = words[:: len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with cdist in the following way:

cdist(samples, words, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like cdist is a lot faster than directly using it. That's why they should be used whenever possible.

Benchmark cdist

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. That's why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-2.13.1.tar.gz (841.6 kB view details)

Uploaded Source

Built Distributions

rapidfuzz-2.13.1-pp39-pypy39_pp73-win_amd64.whl (969.0 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.13.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.13.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.13.1-pp38-pypy38_pp73-win_amd64.whl (969.9 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.13.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.13.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.13.1-pp37-pypy37_pp73-win_amd64.whl (969.8 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.13.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.13.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.13.1-cp311-cp311-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-2.13.1-cp311-cp311-win32.whl (928.7 kB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-2.13.1-cp311-cp311-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

rapidfuzz-2.13.1-cp311-cp311-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ s390x

rapidfuzz-2.13.1-cp311-cp311-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.13.1-cp311-cp311-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

rapidfuzz-2.13.1-cp311-cp311-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

rapidfuzz-2.13.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-2.13.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.13.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-2.13.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.1-cp311-cp311-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-2.13.1-cp311-cp311-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-2.13.1-cp311-cp311-macosx_10_9_universal2.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.13.1-cp310-cp310-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-2.13.1-cp310-cp310-win32.whl (925.7 kB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-2.13.1-cp310-cp310-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

rapidfuzz-2.13.1-cp310-cp310-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

rapidfuzz-2.13.1-cp310-cp310-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.13.1-cp310-cp310-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

rapidfuzz-2.13.1-cp310-cp310-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

rapidfuzz-2.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-2.13.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.13.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-2.13.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.1-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-2.13.1-cp310-cp310-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-2.13.1-cp310-cp310-macosx_10_9_universal2.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.13.1-cp39-cp39-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-2.13.1-cp39-cp39-win32.whl (927.5 kB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-2.13.1-cp39-cp39-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

rapidfuzz-2.13.1-cp39-cp39-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

rapidfuzz-2.13.1-cp39-cp39-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.13.1-cp39-cp39-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

rapidfuzz-2.13.1-cp39-cp39-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

rapidfuzz-2.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-2.13.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.13.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-2.13.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.1-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-2.13.1-cp39-cp39-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-2.13.1-cp39-cp39-macosx_10_9_universal2.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.13.1-cp38-cp38-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-2.13.1-cp38-cp38-win32.whl (928.9 kB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-2.13.1-cp38-cp38-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

rapidfuzz-2.13.1-cp38-cp38-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

rapidfuzz-2.13.1-cp38-cp38-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.13.1-cp38-cp38-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

rapidfuzz-2.13.1-cp38-cp38-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

rapidfuzz-2.13.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-2.13.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.13.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-2.13.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.1-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-2.13.1-cp38-cp38-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-2.13.1-cp38-cp38-macosx_10_9_universal2.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.13.1-cp37-cp37m-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-2.13.1-cp37-cp37m-win32.whl (924.3 kB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-2.13.1-cp37-cp37m-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

rapidfuzz-2.13.1-cp37-cp37m-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ s390x

rapidfuzz-2.13.1-cp37-cp37m-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ppc64le

rapidfuzz-2.13.1-cp37-cp37m-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

rapidfuzz-2.13.1-cp37-cp37m-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

rapidfuzz-2.13.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

rapidfuzz-2.13.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.13.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-2.13.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.1-cp37-cp37m-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-2.13.1.tar.gz.

File metadata

  • Download URL: rapidfuzz-2.13.1.tar.gz
  • Upload date:
  • Size: 841.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for rapidfuzz-2.13.1.tar.gz
Algorithm Hash digest
SHA256 794858517ed8d3f17516ab85054bbfed5bdb9354fdba59d0643643b35a5ec4fb
MD5 3b8980c2e705e0ea8c238447df428c66
BLAKE2b-256 fdfcbe62ed92af087c1dbb4fd5196082ea138050c9ddfc9fb977d4f3ecf77e35

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 317b1d986abe1261d6ffcc19345db64d13eb0b0975be4a45a5467a61f59c041a
MD5 207224bf78e2808ae1b64b45deb17d94
BLAKE2b-256 3711ca51c0ea1901bb7358c32b68e743eee0381c2aa4d2b6deb9c31cdeae1a8e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4000ac171e904c3be46c20d2ff75bc087126d8994fab41891806a80c2cc077c0
MD5 287168e26a3f636aacdf5c65c098c109
BLAKE2b-256 15ce2f2aa4458ef22693c1d0f8a9199d86c541e1e1b91893b05870f5f5b461af

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 45e532cb6851cac350898293e6f57ba41544a0aab956403427909139e8587fe9
MD5 ac4ef9e5f3b7b45ddd9491eb19ee925c
BLAKE2b-256 0c27819f6bfbccf390f5b401f98a3933bab57f51b0ff8ace59a7782e61af4665

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f4038e27f672983c7586a7d91d2c9039b8637490efc705bdc6b3432d0845cc82
MD5 95e1fec62af522578bdba0566c86a927
BLAKE2b-256 0372f2ee1bb66621595819cefc416fde4a205705ea3b20d7c41be8f64a4786bc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a895173559fa33084a9a94ccecf9e1a6d455134bf680b84a26fb01aecdb4c89d
MD5 3a60f59c7521ec99436bf08d89928a5f
BLAKE2b-256 2d214269b0459c5d0f827ffb6ce9af3a9dee8f96ac7e60b006738bb07cf70ec1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 2e2af01a2d090f71eba16954536b2c3a713bf2f005f23b827ef62f0ffa83e310
MD5 848ff345ffe00fe2efc90f6148bcfa2d
BLAKE2b-256 0010464d82666fb7f9a082f849bbb83def829be4510140a13cf402a4594e2ae0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0a9524a22db1d5cb386c0cfea8b533fb0c7f8bd196682579e559febdf34a8b8a
MD5 100f6523d98d2b27e93ad97102b32b45
BLAKE2b-256 6168bb3fa9992a7b72b7198d40468896188674266e8d639c5734a78b5460a4b9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 aba223a34d60f8a15701a38450dceabe646cda1caf64448d914087cdca8c0aa8
MD5 c56b7b410a231ae1b315a482595b5db0
BLAKE2b-256 113b645d946a76705143f48a0f6778abf296cd742ba887c1343e8d02409264e0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 159fc6b4dd1a0e2b7873ca36307de61b385dfa0bb8fa8c8485b23bd40c5b99fe
MD5 e418ec42ffbfe1bd94f319a7f337cb81
BLAKE2b-256 5cb937948eda945666c6a29fcd9460b2799475a97e742eaf7ffa445f77dc78e4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1869e213378d187ced55ae45077c9613a37e59a6429d2431343f0b124f235e1e
MD5 2d2dd4a4755ab28663ee7cc2c56c18d6
BLAKE2b-256 d190d2647ef497e4b15af3d5a272cbbb3bfd31f85dd7817d3e0fcd117936c9e1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 200363583476fb09e2db2809507e544809ec8b624ff5c0585d169e7497124f56
MD5 8b2ed8e83e901346db5aed48078f98ef
BLAKE2b-256 0eba01b556d23e520cfdd72d91ef861811f3a37d1cda5cbe5bd2d0787f60064f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5c1c58fa810a9bf8cc27b5da720c6da6da08c3b736ab56c1fd0d53db724a3182
MD5 ea14fe4987f836f02c54aac951f8230a
BLAKE2b-256 63d9214d2d47c948d6624501e7094e4a56ca941172c51727fbf00821e72828fd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2d493cab218f9aeb177b043b0fca3cbcce60ed6116835dd50ef87eebb253e840
MD5 c123e085823b7d91c5f97f0c353253fd
BLAKE2b-256 ad77d1a3f5cdff2e7659dcfbf8e0042d4b23d935e5da18d589f3ac761f80f4a1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 599301048ef558a1de0f24e48be6b97d49b2eaecf66f6e8815ceaa18c78de45f
MD5 d25d4d0739aa02f05e3464854294cbec
BLAKE2b-256 9ad395abcfdb501e735802c7243def92027b126c8eac7df35568136fe163ebed

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 38727c4b856c7b91a18abb9a58101886c34cf4f9098f0a76fc487582d32c5f93
MD5 29e3a995e80007e9fdd65bdedf84c3cb
BLAKE2b-256 87a9e7280ec50dddcd9640deeae0a5b73448d49d43b18e2a8a3ca4249fc63dc9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 a8d124fe0b1942279fcea5b774c74ca48553da5407e904670fbd6c1e823bcf45
MD5 914ac5aa051bb0517f493c7a4fc3314c
BLAKE2b-256 96c3db299471669de8601a6353fb040a1994a47a142be71d7d949e3546033f17

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.13.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 928.7 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for rapidfuzz-2.13.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 1548e3ca0b496286a21d7f0007e00931ba2cfd1bbce0a855237ecff80ff312d7
MD5 fef1386d856f746e4a4fca1207c87a94
BLAKE2b-256 9ccda07cbcbe5d361c10c02b7cc10bb06f8bc0db78c7386517f8c1f9386d7c25

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 682790babbe4234d06ff89116d523269c5e2f7c52af0efaca01959b2e33ff1ef
MD5 f3aca5fec5f76e06a64fed5e432e1c66
BLAKE2b-256 c7ecd52fc1521852c5b177a663948a80b7c2f1f62f9deb862ff28bc2dfad8a54

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp311-cp311-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp311-cp311-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 4cbf24b94cbb4c40aacad8a542a9c016083a16262c79673599ed0c5a23700d25
MD5 3c84e146a9e7683201185cfe7517316a
BLAKE2b-256 4d957cf6db055aa84357d0421973363ee17f648ecff2a29affd2a5dae4aad3a6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp311-cp311-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp311-cp311-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 62180830ab02ba7163d59e723cdafee606908f001ad410694b41fe3d98acfd44
MD5 7d063a20cbab806c2bf2dee31ebf9d88
BLAKE2b-256 0c5368ef51bf75622cc57f584904a63fcdd712731b2cf33432c98c2b0c0b7a10

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 3389a5113bf82fcb2a07ab73b3ff539a86a06df53c2bd979739e01a28521d2bb
MD5 390a4fe086b46542896cf069a1a71f53
BLAKE2b-256 4971c445c97d7a435dc7222e1acd1e9e9524330dd4e114a9ed75e7b0308336a4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 faa9e3c531fa4e59c5297cbee178cae43201cdf1d150ab0e44b7d7d2620a2d8d
MD5 2a53804d6675a777ce64ce1616d00cf0
BLAKE2b-256 2a2c9ae3078dc88d36d828e4a7657de2037e63bb4f0996b8f3e5db149902ca7d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 187f97eb3b0b36447d20d80c5934a4a65cf0749a754029fedc1379c657f00bf5
MD5 1ab2b0155f61c87a2dc9159239d05dc6
BLAKE2b-256 177a1a9c82f241b9e47414324830b93f458f36dc0168c41d2279b14c9234bc1b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 976a28d9651450086ea1666b4c5c6e4695623fae155b55b8da5bacc8edf1c7a8
MD5 4177b5dd2bb93dd15ac8b869b1ce5b6f
BLAKE2b-256 8063b8643ce5fa115b5a72e0f4c93466674cab77026e5eb1622e460e09efe283

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 898f44a77d12e2d199096f5ed81805fd1b53d90ad1a47787c3108361600e6923
MD5 e43ef65cb187714f1c37d645da234d5c
BLAKE2b-256 8818c4236a0626df79f9999f5b7c605d9670f4c8c69883bbccb332fa543c477e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cbfda5c6a10adc3ec18b0ed8b1aebcd8f1b63d4555ff352521d7be56a7fb19cc
MD5 bd287773064eca6fd6e84171f535e207
BLAKE2b-256 55bfe89f32f3ac1b7b5c9733b372782e411b9de9022a4515f70b0da61bbd4674

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a52bb5781e4246579e01950c73b6c6c4963ca495063748b1b2641c756fdafb13
MD5 e85e480cf71eb575dc710f4a0c74b559
BLAKE2b-256 544f09d8194ec19e675194ddd52c65ca2c1725be0fed553a31bab689e813590f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9fa33dc301eef34ef441a31327e027a14a18fd9d3b9f50369745d21e199a1f03
MD5 0d52578b06e1c78ff570d7e75bc165c4
BLAKE2b-256 179dfb20fc6d72f77dedb94107ac62b155d6e614d0bd72dd2d88dff46c416493

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 613982d09586087b24e0c850d7b3bb0dc1a3c7aed11dcf6fe5c4dcc9ac2d63c8
MD5 889928d67861f7c461c785e32d395ce3
BLAKE2b-256 ecb6d015ffcb3cdfb4832b51869620c58c9d9f55f0f93b3e31154ec734358c1a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 4b3759b1f59118b9f54606da8fb23f775320172609f796a22badbe94cc5b9aba
MD5 02752a120c5380d94a31f4f22ac79b57
BLAKE2b-256 82402f5c5d7f84a90bd5a8141a9d0f38ee4159b2b20ef59300592679e8057991

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 1c82e9065add225968ac3b34820b0b91d26d88289102e2e34c817643ff1616c2
MD5 d5b9d8e57dec7c88e6dedfa875a03207
BLAKE2b-256 857c186863ae7051e021c4b73c4211c818cbd21e9b693bd981ebaf021553780e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.13.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 925.7 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for rapidfuzz-2.13.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 17b733c64ea52ebae625459da348bb21788a6f74d63f6efc760c2d1fd98e6b25
MD5 cc13858a2881b9ecc92405dc613db084
BLAKE2b-256 f8eb68086cee6bd84aaf7669ec106724bfeec8aa564528fa45116369de25b575

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 89560a047cabd48703c38aa8108817c31cfd029109690474c7d52a6c1fa4cb4c
MD5 03e0845fb59b2ca49eb065e761f5d309
BLAKE2b-256 318724870e4addcc52e178c753f2561ac0498fa412aac57cebb18f2e6e9443ba

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 1f1ae125e6b89f83ba9fcfef9c9b9fc14ab81243522ee78009d302d138a695db
MD5 e0e97f7bd3a3af4fbc6647f5a4d775b2
BLAKE2b-256 157d4b8dbc202d27d154b86505353c03f81b0e8aad4a311eeac7809d362fabf7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 7d474cb2b5e2b613c3c869ce9c0666d3a22551cfe1b49e4d3c344b83529454ec
MD5 d7d06f06d433341d8667e291d48c8d2f
BLAKE2b-256 d38138860c9a8391c5ba0186b7bd59738a27dadd8fe3f3c362d238de6864772f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 542b9e5c70a15cae3f182b7d2744dedde9d9f169b754e730790816f7dc51b730
MD5 1f6e3aa72f6fa9210fe8facb8d9d385c
BLAKE2b-256 11098945997d7333652b612cd24d47e4f2c0c6ab79592d397f0c3ab25c454e76

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 c1947fa6ee4d4bd9c73091e0ef75079f8114c1564603bc42bb506575e0b48575
MD5 7231b3f5c4aba50fcb150ee1013d0236
BLAKE2b-256 3b5bec12743dfbd525d8f194fa3efc09152e4c2319c89191d21db038293af6f7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 068dbbe59752f9eb8ec946df48af60669cd61bb722dfb89f48f142f9fbdc275d
MD5 27bec288470cc4b45cded163269eb591
BLAKE2b-256 8eb2483e27b299968f09547d9b1793ff611dc78622b905a32e70b10bff470629

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 728790ed57682c4570e6637cacf3f1795ec786a184474703a53c431c5301b4d0
MD5 d8574e406a4f4a86e157b8b9fa7d58dc
BLAKE2b-256 7f56e941354d36761bb6289ab239e0b9a48eb3e995c113a16c7e131d48ec2a59

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 470b79619f0bbb96308dd77f800297c02ee4af1d1f7a24f33dd54885492e5506
MD5 b838f39c8b9fd37a942469389a530e20
BLAKE2b-256 bcbeb1cf218149e41262edb07d0650576a56b4e6e251b6c9b697273f8af48c50

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 75cf7ed7370d2fd8a4151e9a5e5f1aa2315cc1910060e05ed03065e8f41e13dd
MD5 d246266ab63ec0a358aff862c3bdd9c8
BLAKE2b-256 8bea7591dbe4af927994dc5cf47cecf6b435562dc5fad3ce6ff6920f99ec9b9d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9279eb1acbdb58a9864001a934d54976a6f7f3a2a1c1b5bcd10ef46557b9ade2
MD5 76e973429875c3abba2841fe3d80ad17
BLAKE2b-256 5ecb8cde2aad9e2eea0e4e39a424d62a734184ea8903b20d70e51973ed5c63ac

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d979e315e2bc5775a1e52d73e9a82e29844bf293be4f5491dae634c2c2d7a2f0
MD5 9b2469bdcf9d9be4f0349d4d114b83cb
BLAKE2b-256 07e85b68f1ec6943c7643ff4e50d2c418c373ce91d147ec99d540affa1ee6c2a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cb38bc3e49694bd568a48a81235e6e8e587b79e5f079fefbea4239dc609af713
MD5 b90792133dd4eee144c5572d6735755e
BLAKE2b-256 ce0b06e01ddef682c88022d82e2d6d70d0ca1cda8cf9593537fcc8b0ca8ee0b7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 60b9f30e24e73336644e5098f0b79fd164f54fedcdaf78c5c12ff30d668eb0cb
MD5 f06c5893ebdf9f23bb898063b427a183
BLAKE2b-256 97c12be233590ef738d1e691ab1b69c778fce97da318b79970d4bcdc9894b176

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5d52b8c97f66a4a67ceee11f1e81959669c3fcd3008e65c6941ab326cda7d8a9
MD5 a454b6b8c5ddea9f7f32f36ebda64d40
BLAKE2b-256 427856ef8aa34d160518d6d193e29c624af05f50e987fa714de42ffa93ee3032

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.13.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 927.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for rapidfuzz-2.13.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 aeb1a15984a6aaa3392a519dc1c9b1af98fbeb4b0a2a545806641ddb5f385631
MD5 13af541364bfa2b8e02249abcca8895a
BLAKE2b-256 1b564ffbee873a867abeae88e1ea122358afa126f0421e4e838d104122854c4d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f8d455f89ab9dfe95b516cdbfd5f946751f38309fe4f725c66620d7b1327e4da
MD5 535e25462172b462e2f5579264d47fb8
BLAKE2b-256 eda5a54b012d698bd6ec5c272a1a8f20d3d93348c55e034f7ce9013ed2bba5d9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 3f72c6e588f5e1617a7dcefc885efeb98ffae9c21d6703910a1d41cf7f86de27
MD5 ae587a69b81447c7480621570ed52b3a
BLAKE2b-256 d83593f508d904e54405094d38b5f32af2d2741f1b373f1c209958ff396340a1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 99c685fce0a69e3c1b2238bb7a28c7ec746e16524d2225f64ad91825d87659e7
MD5 64e0e0fbc070e9ec5c03a75b4441de04
BLAKE2b-256 df9a02f01130b8c6c3ea9c80607ca513ae653564881e154f952107c0cd401bb5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 fbdb56a12c6d218fb0c53b6e4327fcc1a7b3dea2923ec3fbd6d037a38b5222f0
MD5 eb7300bdb121b90ddf71f127c25c1f78
BLAKE2b-256 b8d9acebc32c8232d546ce85ffce6c56deb750778b28764e3e47d931c6d86327

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 51402ceb8747d13aca21ce76df70a4309e9e0fceaf9e594397748855ce5ab113
MD5 0b8fe4ee575d6e3cc5d1d4325b12c11b
BLAKE2b-256 18020edbd78b2ed57e0b45a32d6ff265800979181c1d97828ecd521fb2cca8d2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e4d371b057679000f00296caa827a885c3ed74fdf4b3eddb99e95385b73f120b
MD5 4ced71b2dc5e1efae381979c55222138
BLAKE2b-256 6acb0e50e829bb39aa7fb3c7cbb4f24aa313a325a3a1386265a27ec9661233a2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 86c9102e65a9b1e66ff15f42cd67ef7999b82c21ec402a41eb2216ec7046aeb2
MD5 e1a6c595d0088da578ec5737cc599a10
BLAKE2b-256 540314427b6556380111789cc842e1ffed997ac270d0dde1b9a9fd404b25f434

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 9a2b974717613edbed2c74e45c1611a62711103555ab3ff6b4b18d16746713e8
MD5 0a57fb5de58187ab95cc61704ac5e6c6
BLAKE2b-256 fd17f1bc68ee5d1dfc4525630ef86f5f46191c8769a28acb6513546d1669ceec

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b1a6165a3c1226760eb3c9f7605264ce24b5cb33907cab00025f6eca7c2b349f
MD5 fa0f368c837065005a3cc5275b50d2c1
BLAKE2b-256 8a6a9c546e173511ed811bd3d71b6260d7e28eaff8d6d4073e1cb9edb5b05f10

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dffba251ed903b8741530fb296664a06ab32bae30d700359ec423dd546da785e
MD5 5c0fed5c636bdda7a9a58b4f14e1a115
BLAKE2b-256 8813e7a8329d4729d63923d03dbea558075f015dc435bcf940dfd732a012da81

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9b92621ab63f0de61fa2bbe391cc38c1bb8a7998af65f58607120f8979e5266c
MD5 28e21f3e08f23a98cfe61f8319bb3963
BLAKE2b-256 25c73000b7a9d1cfec4faa060360500fcc27e05b8d032ec912e48ab56d5afcf8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1b8da9e0198ca4f16b84aaa0ef4227c1dfde17d1ffa6e33b01f2cd1a0becbfaf
MD5 b8a23a9653e5f73d3c674c78be515c22
BLAKE2b-256 8382eaff14767f18a6de5efa19e379208b4b47e6c964225505c2458646fbb730

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 ceb459c9df17b9b35e7302c4e0df992de46fab859a59b70eeb6f55e6c7e8221e
MD5 742d8a2439d0448d1cb1e9cc3fb1dd74
BLAKE2b-256 f1e331e376ea58ffd6fc24c32f32dc33ba6939db92a938672df8417880040984

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 610db32a6ced2d2ffedc94d16cfc7762b1495727a5da6f31a84130a12c40921c
MD5 0cb1ac9d43d3879d7bdbc2e1e5359cd6
BLAKE2b-256 08402fccc8615f26f721dcf0b3c10ec375d796c962d115f2c48452c86230119b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.13.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 928.9 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for rapidfuzz-2.13.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 6d5c9690c717b884e031268238bfc2ef2afa32b033f4e3413a832802f427157d
MD5 73ed07a81b3f78b112e954ec10bf49a7
BLAKE2b-256 6d5bf46913fdc85a9e49f71b6ffa4effe562c207251a77b5ec2e42f90f07975f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 60687f534b46c2d216d51bc6bd886f3b7bb871d4c390012229169baf7f7e326c
MD5 a7f9bf74ac3b13a6d37f034a451f91d1
BLAKE2b-256 b54e5e403e236f8329743aa00a6ba26b5d8db00f5088a6e8963267e476cffb9f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 99f22fca5b0d9b3ce5a0cc6faad98caebd533356b5f786f46a2558369ea7bc58
MD5 3df4f924af945cf29e5c1eb4e5ce5081
BLAKE2b-256 9d0ef36d2e4c95b86744fb8ca0e6d1f08c273383e30cb3714be1467c4e3c7f42

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 c2b1575d24f58d7337391dad32543a5dc2ebf3ee771df479e5d334b36ff30718
MD5 e792d24df7146773fc32a558977dcd1d
BLAKE2b-256 1dc2ab42a618281f8527a3052a2a3abe770f9755f8c72a0c906cbc85c9615710

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 0fa9e82d73f64bdd1bcc85cdedd6aef3547c9edcffc55e413c28fbee128bbee7
MD5 ba50f92a3d418295ac3064af8360621d
BLAKE2b-256 2368b3a195a7fca52f61967900db374102f1ed04cfe1fd568a20e53f0c0a3502

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 717e1289cd6fbe182b287912e51b89a3841d07fd12e3ac58ea61a574efa82306
MD5 7079ba59fe94c737e09a8ecf8bb0d8e7
BLAKE2b-256 33b5fa07e0855d5736c6ec24abdd10cb4925bd4692f2f0cc4fc754c05354e2f3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 249b7d331f6940e11bdea0040c7251aa0ecb3a3f388f6b388efc9d7c951ff9d8
MD5 384ef3bd553d5a01c286d1cc1207dc7e
BLAKE2b-256 4851f1d142fa0598990d738c2681fa8b6527ce3d3a09c5f2bd9278c6c35e383d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 1ff41df445dd0903c2e2c5c943169deb616debc1ff26b19ddd4ab2974f6e2247
MD5 9c511d275ae0e065802c17a1e32c40d3
BLAKE2b-256 031db41db04d1bfb774aa91491cee408058e1e32b4b612ff180a61801bedbc68

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 a603f05cb6a6f6590549300d807d35ce193db5a0054c9cba9e7725b89e0be2d5
MD5 c94ca87a959f68f6cff4e29c67e017d6
BLAKE2b-256 0ef6b8e28b3c14efcd11850298fab95db937f5395ab3938b3cbb9b6046c93d1d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 abec93183205a3e022eb40bd55b8d20f59b2bd26b46a5389ff9ebab375ca3570
MD5 6d6d7e91f6471b6a461bcef14865ef9d
BLAKE2b-256 da5e3f9a716bd7b0bf5250d85c96b6a9a907567db16fd9035559142c779b587e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6faa0d8c5d2506a665a6635823d13346ce91480802995eb2e306766b883ee307
MD5 004f35f92d7c1e60e939ddbc72dea064
BLAKE2b-256 c9ed7e3d8a0d6c2a500c260e433b09276372e2facaad1fe9c55e14bde5413614

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1436fbaf695a05dd4d6b7a309605fdb738f14951a2d836cbc8e1b0d629891238
MD5 72859086811dba98a9594d848284740e
BLAKE2b-256 2c6737af54ca46164594789340a2a09be932fb8e0e114c07a45d9c9c1f297b85

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4ad8d13dcacb2f31a61aa31d414f9101370d4ec9dd5b4a1d721e73ff047997be
MD5 4177ce9879eb19db03604dd8b345b6bb
BLAKE2b-256 65fee64d71419041009816a3a09ef53649f1e77b83fed9de12f182d42132d873

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 3e65dbc81ecd8e799a79dc9a6d92c4dee5b8a81df5e0eccbbfa929e86b58c2c6
MD5 2f0abd1f2cadbe040a4b51c61a8867ae
BLAKE2b-256 ca2028f40e6f31b50ab3f60f697fd37418d490db8aa2339d38ae06de3e1af004

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 8db783fd4a874a45489ade1b78a7b8d2fbc45f01bf6d349d48d5511be36f592c
MD5 1f66c28a1039997c218780bea604c236
BLAKE2b-256 bf14fd68cff215d49f68408cb579c1c08dc378e5b18a93b0300964a955b0bde3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.13.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 924.3 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for rapidfuzz-2.13.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 48d1404eb673275f90b4e725cf4ad33e7663b1f82fccf01fa51ebe11a93dfd20
MD5 c2cd09e7f63886de0cc3f9859baf149e
BLAKE2b-256 1f143ec7e89e62f0550d906f66984a4d2b38cd3572217ec814d893d7b90b6b9e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 90fff8fc261a79698f5b4326db5e7a9442670ad84c83f421d985be54e2947074
MD5 31c3d1f677470372e538861ec191f7bc
BLAKE2b-256 67563ea2e5ac9a653ee9ba6958e084ceb8b2ebedeb2bab74ae9e2db6d10c0074

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp37-cp37m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp37-cp37m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 c04921f442968e7c7760cb21bf4f897c1026840b97ad695c7c9c6caeddacea5f
MD5 04dcd17153ae01214f0fe47e83b77e22
BLAKE2b-256 1d095f8ecbf18c49f008f2f4dbf4ca2b204a1c00f24517cf9cf97bc0a159615b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp37-cp37m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp37-cp37m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 fae3e77478cabd3b5d772ffd50c29c871ee7aabdde0b8be4899a35a7d99fcd2a
MD5 b3f7d22ab2eb05fd84e378a900947cf6
BLAKE2b-256 c788ffe6722817a50eda313940fcb73d4ed08af02d9571e39bf0bd11077ff1b3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 0e8db03317d4d61fc35a29a6fbcaab286d0f93f9430855ee690dee1f01c10d7d
MD5 0ef7e54995198690fd05250fbbbc72cc
BLAKE2b-256 ae7869e53446dde4976c218d0d144f2852428dd3baeaaca87f5df58dbab53cf3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 43b09d7b1b91b6a438f8b28e6daa035d096867690d13601e79bdc91c42cfce78
MD5 9ab138b5193854671d1124d271aac200
BLAKE2b-256 4b2db03c1260ab10199df8e8c9d7bf679097187f027a8f863b877cce01d79c3e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4dc7baadba7478798a66e325789e6f7f19aba5e556caa9509a4f9cddf17ee5f8
MD5 d70ca24d7a6c40df324193738c7878d3
BLAKE2b-256 00679c8baed1650be0ff03535cc15cf6df3b1502f04817667d5e52c232a13d17

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 20634aa6571997391463ba07cd72294a296f22ffe8f6fccab2b78cba9efc796a
MD5 f8f1c4777ca29890e51e04c7f67d34c9
BLAKE2b-256 10805ac29c7e5581e112326b05567de4495bdcdafc5c99e275a1749222025f23

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 33ae43add9871311aa0115db6e98577b10ee8250f8038ffadb24f3bae94ce217
MD5 e2fc04f36489e3187a4e2b59d5d0ec8f
BLAKE2b-256 4b35343d9510bf0a6265b1da90739dc61911b9085b0048b22d9fac706edbf20b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cee41d563a1fa0fbd0d9028cca10775189cdc69e47f845d2ee2d6343264f183d
MD5 341b7b209974101d298cfa8efff6e81a
BLAKE2b-256 940e80831d486f662d170b5ed3d625de58f5e86691b9029849561d44650ca653

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 637cfcd7eb10eab0d02bf2ce3d478e403d9c86695100523300c6bfc67cd70452
MD5 c3e2c008ec1c19f398b56a578221bfca
BLAKE2b-256 8b2657b9b0c5dcf0b2ec2b63ef88e5f9219ad1c93aba5797af0dd6d46d9d88cb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0f2dd1fe2d1b614dc8ad65e76fd0cb58430a1029d371b1797fa353d9d1251e84
MD5 58c9c230b9c81d277ce8fb6b98670192
BLAKE2b-256 367d5852a3096f4db61331d8364a69a8cffdecbfce740fa0c946045ce1678921

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page