Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continuous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparison between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparison I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
    "".join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
    for _ in range(10_000)
]
samples = words[:: len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with cdist in the following way:

cdist(samples, words, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like cdist is a lot faster than directly using it. That's why they should be used whenever possible.

Benchmark cdist

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. That's why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-2.13.2.tar.gz (842.0 kB view details)

Uploaded Source

Built Distributions

rapidfuzz-2.13.2-pp39-pypy39_pp73-win_amd64.whl (972.3 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.13.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.13.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.13.2-pp38-pypy38_pp73-win_amd64.whl (973.1 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.13.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.13.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.13.2-pp37-pypy37_pp73-win_amd64.whl (973.0 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.13.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.2-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.13.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.13.2-cp311-cp311-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-2.13.2-cp311-cp311-win32.whl (928.8 kB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-2.13.2-cp311-cp311-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

rapidfuzz-2.13.2-cp311-cp311-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ s390x

rapidfuzz-2.13.2-cp311-cp311-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.13.2-cp311-cp311-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

rapidfuzz-2.13.2-cp311-cp311-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

rapidfuzz-2.13.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-2.13.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.13.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-2.13.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.2-cp311-cp311-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-2.13.2-cp311-cp311-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-2.13.2-cp311-cp311-macosx_10_9_universal2.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.13.2-cp310-cp310-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-2.13.2-cp310-cp310-win32.whl (926.0 kB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-2.13.2-cp310-cp310-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

rapidfuzz-2.13.2-cp310-cp310-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

rapidfuzz-2.13.2-cp310-cp310-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.13.2-cp310-cp310-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

rapidfuzz-2.13.2-cp310-cp310-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

rapidfuzz-2.13.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-2.13.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.13.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-2.13.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.2-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-2.13.2-cp310-cp310-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-2.13.2-cp310-cp310-macosx_10_9_universal2.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.13.2-cp39-cp39-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-2.13.2-cp39-cp39-win32.whl (927.8 kB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-2.13.2-cp39-cp39-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

rapidfuzz-2.13.2-cp39-cp39-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

rapidfuzz-2.13.2-cp39-cp39-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.13.2-cp39-cp39-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

rapidfuzz-2.13.2-cp39-cp39-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

rapidfuzz-2.13.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-2.13.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.13.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-2.13.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.2-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-2.13.2-cp39-cp39-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-2.13.2-cp39-cp39-macosx_10_9_universal2.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.13.2-cp38-cp38-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-2.13.2-cp38-cp38-win32.whl (929.1 kB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-2.13.2-cp38-cp38-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

rapidfuzz-2.13.2-cp38-cp38-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

rapidfuzz-2.13.2-cp38-cp38-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.13.2-cp38-cp38-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

rapidfuzz-2.13.2-cp38-cp38-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

rapidfuzz-2.13.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-2.13.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.13.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-2.13.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.2-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-2.13.2-cp38-cp38-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-2.13.2-cp38-cp38-macosx_10_9_universal2.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.13.2-cp37-cp37m-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-2.13.2-cp37-cp37m-win32.whl (924.6 kB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-2.13.2-cp37-cp37m-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

rapidfuzz-2.13.2-cp37-cp37m-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ s390x

rapidfuzz-2.13.2-cp37-cp37m-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ppc64le

rapidfuzz-2.13.2-cp37-cp37m-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

rapidfuzz-2.13.2-cp37-cp37m-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

rapidfuzz-2.13.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

rapidfuzz-2.13.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.13.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-2.13.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.2-cp37-cp37m-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-2.13.2.tar.gz.

File metadata

  • Download URL: rapidfuzz-2.13.2.tar.gz
  • Upload date:
  • Size: 842.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for rapidfuzz-2.13.2.tar.gz
Algorithm Hash digest
SHA256 1c67007161655c59e13bba130a2db29d7c9e5c81bcecb8846a3dd7386065eb24
MD5 8f25c5c627c7ffca8787fbb0f6accbd7
BLAKE2b-256 7a85b880d556130d19ac415bfaf1af9406263f7597b5b7ba062db1f532e587b9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 ac6a8a34f858f3862798383f51012788df6be823e2874fa426667a4da94ded7e
MD5 572451c547692f9a1b1f60ebebaf91c7
BLAKE2b-256 71d43470ded6d8b87582ddccb8b668a63a244ab9749b697ccfdd025b282e38a8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8d4f94b408c9f9218d61e8af55e43c8102f813eea2cf82de10906b032ddcb9aa
MD5 a00e1eff4adcb4290ea3b43cb54ad50a
BLAKE2b-256 2ec5be598caa1c6e2514fa270038b595518a18ea10b7efe6d5272aa01001362b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 791d90aa1c68b5485f6340a8dc485aba7e9bcb729572449174ded0692e7e7ad0
MD5 f8b6a84a1818f072ea847dcde1482dfb
BLAKE2b-256 bd189c7dd29013558e894cee85ef10d181170226969658319ebb719c2728eeee

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3aacc4eb58d6bccf6ec571619bee35861d4103961b9873d9b0829d347ca8a63e
MD5 db5c47e11fa1d3aef0bdc7d66541a30b
BLAKE2b-256 a337a7316783e88d2dfb441f086861e29d35f69051385360c1005d77e6c1dab4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 41610c3a9be4febcbcac2b69b2f45d0da33e39d1194e5ffa3dd3a104d5a67a70
MD5 e4a96a966ba58db48b424a6559f3c663
BLAKE2b-256 e225c652c9a80c294ceaa1942a3e1aa674f1ada67c8f62c4a06fa5f439450db8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 83b1e8aca6c3fad058d8a2b7653b7496df0c4aca903d589bb0e4184868290767
MD5 add4d9d072175027f3d6787788515677
BLAKE2b-256 bc85c1a30da43a8334fb934523a0059fbe506bd1eb3429a88f50b4680b711f6d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eead76c172ba08d49ea621016cf84031fff1ee33d7db751d7003e491e55e66af
MD5 07bf0452a64e0798ab0c5233135f36f4
BLAKE2b-256 286d01e48b1cfe30da38ff5d8a6309c3c0f8428ab62a85dc283f5a6a5117e697

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4e5afd5477332ceeb960e2002d5bb0b04ad00b40037a0ab1de9916041badcf00
MD5 b6bfd56b9749c59f8af925e516e0edbf
BLAKE2b-256 2ea4bddbf600dbb02e45949ab5b9f83e57c117831c4ddb01a5040b9e83454347

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6bee1065d55edfeabdb98211bb673cb44a8b118cded42d743f7d59c07b05a80d
MD5 a90ecd3cbaf822ac65ed41577442c448
BLAKE2b-256 3113eea117ece7c6b9e601b56a653245e0ad8ae2a77a660d56c30e6d6cecad52

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b6a0617ba60f81a8df3b9ddca09f591a0a0c8269402169825fcd50daa03e5c25
MD5 affddfa47112c7a91fe4085d18bcb472
BLAKE2b-256 698bf9cfaf855626293133955d9feafe3b19529989108271af47214d76f0897f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 deaf26cc23cfbf90650993108de888533635b981a7157a0234b4753527ac6e5c
MD5 90c1938f306424b43471c337c560a38f
BLAKE2b-256 0d4cdb3d5250d239a24826525fc631adb527d33cb8769b7843c44f8730aa1d1f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3f93a6740fef239a8aca6521cc1891d448664115b53528a3dd7f95c1781a5fa6
MD5 3c30a1a46d22c103fe7ab8b8450c2f62
BLAKE2b-256 805458884b5faf9b4464ad953668b07846de3b31547f59d72060fd085aab994b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8d9d081cd8e0110661c8a3e728d7b491a903bb54d34de40b17d19144563bd5f6
MD5 6b1e04e0f8446911fcc7a7076bda5296
BLAKE2b-256 5f9716d4112dbfc507fba73d77bdbbc4a7e4e785ecf00a6fa71742e7daf8f490

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 343fe1fcbbf55c994b22962bfb46f6b6903faeac5a2671b2f0fa5e3664de3e66
MD5 ce29636171f4bdb6e74e4fd932cc8ff0
BLAKE2b-256 61f7421bc8f8d2a3663583b8d3c52d3b3b1c158fa91e2173bd0d7e80e07b276b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d6cb51a8459e7160366c6c7b31e8f9a671f7d617591c0ad305f2697707061da2
MD5 89a8439056214783df9f351984d5f3c7
BLAKE2b-256 fa387697eb4e098473c7ed8d6d2716b7911ab31ae70dabdbc1542bc6f313e599

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 98be3e873c8f9d90a982891b2b061521ba4e5e49552ba2d3c1b0806dd5677f88
MD5 c4c6a48982b1a5886dc6e9a21f957eae
BLAKE2b-256 7da5d2f7f1043d36f8b1d899ba9472d40888315160a717cc1725daaf4a0a29a2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.13.2-cp311-cp311-win32.whl
  • Upload date:
  • Size: 928.8 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for rapidfuzz-2.13.2-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 580f32cda7f911fef8266c7d811e580c18734cd12308d099b9975b914f33fcaf
MD5 f195292b5983991ed0b98b7d9a3e61a7
BLAKE2b-256 cef3f070862e2a109d613665468d115978173227e7fc2e4081ce0a1d989a4615

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f7cfc25d8143a7570f5e4c9da072a1e1c335d81a6926eb10c1fd3f637fa3c022
MD5 4d15b1bbec3df7db175f53d61bc82e4f
BLAKE2b-256 a7b66c4302939d523df7ff290fd8486b52f9136fbb95691cb6d5b6e713c351bc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp311-cp311-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp311-cp311-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 1f363bf95d79dbafa8eac17697965e02e74da6f21b231b3fb808b2185bfed337
MD5 c4c5523f3454b54d7529828de2f4d37e
BLAKE2b-256 e850431c1a321fd53df6283204ee571915654b3df8aa285dd856ad318920b50c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp311-cp311-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp311-cp311-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 4b785ffbc16795fca27c9e899993df7721d886249061689c48dbfe60fa7d02a1
MD5 91cff4413a0f8d3a5e1d1825bf8546b4
BLAKE2b-256 c11c4bb16a7dab9c9e5e9832561ba85e3e66a525c5dd0d870364ba4a0697160d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 cb4bd75518838b141dab8fe663de988c4d08502999068dc0b3949d43bd86ace6
MD5 835100e1e05583ce751eec752cce37da
BLAKE2b-256 95c03895a462c09d5729fd9d8a25bc7e7cbfa8390e025ac26bd849319981c11f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 0c324d82871fe50471f7ba38a21c3e68167e868f541f57ac0ef23c053bbef6e6
MD5 fd3be34b074a5b430b5313d5ada2ab05
BLAKE2b-256 4a69b51d2475ae4139b49efd283faad0754e2476994a850f83c7da703ad3be6f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6a4053d5b62cedec83ff67d55e50da35f7736bed0a3b2af51fa6143f5fef3785
MD5 33c80a58aa83e679e1511795a491b48a
BLAKE2b-256 8295328adbec8869f5c16ed5a21e0311288ffec9749bda6e955f46ac735746f2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 c40acbadc965e72f1b44b3c665a59ec78a5e959757e52520bf73687c84ce6854
MD5 7d66469ab2bd6170cb463305c81cd4bf
BLAKE2b-256 03f73bbb5f91a8157ee09c3121e2422cf40ff6035de45e07b9f6dc8054c0a2cd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 352c920e166e838bc560014885ba979df656938fcc29a12c73ff06dc76b150d8
MD5 fca0d2727a36324c0b8c23a6fdf19d20
BLAKE2b-256 27c6a501ad2dd87be00d42238b0763bc8875bb6b0e6d259cc4e9712747ab582c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9abdffc590ef08d27dfd14d32e571f4a0f5f797f433f00c5faf4cf56ab62792a
MD5 78658b5f5c03df94d5b05b36328520f7
BLAKE2b-256 ffaabe7c6ee634ae8504b284409ee5c9875d6438a4e85ba7654edc1b01fbaa47

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ed0f99e0037b7f9f7117493e8723851c9eece4629906b2d5da21d3ef124149a2
MD5 3897463abd15482ce88679728ac0ad95
BLAKE2b-256 17051424ab4b86ddaad3391d04660e03f3a1283f15393d1f742dcee95a4ea281

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ad78fb90540dc752b532345065146371acd3804a917c31fdd8a337951da9def2
MD5 7eb77d93221566063f527acf786b01f5
BLAKE2b-256 cb7ede1060d83ad701eaa72e71fc5c78ea9ee67fc200f306761e730b70fdc38e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dbad2b7dad98b854a468d2c6a0b11464f68ce841428aded2f24f201a17a144eb
MD5 e233dbf4a1f8b7895e1276d1371cff13
BLAKE2b-256 9de87d38e5376e958b21211e7887d2a9bd83883b213898257521506fdf7c476c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 a599cc5cec196c0776faf65b74ac957354bd036f878905a16be9e20884870d02
MD5 f39690383aeb0e9d7d96ee25eb628628
BLAKE2b-256 c5c6715bda0526ce01867477097f63a546adbd49c965ff57652062467f4e972c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 84fd3cfc1cb872019e60a3844b1deedb176de0b9ded11bf30147137ac65185f5
MD5 3327831993feded913f91260eb3cb345
BLAKE2b-256 f10cad7df81905f5146bbc7f88bb1cf838b734ba5abdfe937989f0d9603bc134

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.13.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 926.0 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for rapidfuzz-2.13.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 b4162b96d0908cb0ca218513eab559e9a77c8a1d9705c9133813634d9db27f4f
MD5 f9391723ac9bd4a0e5dec0fb0cca8393
BLAKE2b-256 dc20916daecff16b30b3a6a524b6efbbea713d97e1d06682e2f97f84bc5c0bcb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ac95981911559c842e1e4532e2f89ca255531db1d87257e5e69cd8c0c0d585fc
MD5 b6cf6dbd0920b46d8d98c1f7f5af4f90
BLAKE2b-256 7cc438e806ef0ee46e3fddc585c51e68caa19fd21eb4bd0c3ac12db6f7c78b66

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 f5d07dca69bf5a9f1e1cd5756ded6c197a27e8d8f2d8a3d99565add37a3bd1ec
MD5 0cc14417654ce21e0f6a135e2b7ac2ae
BLAKE2b-256 d6d8f54c2256c1c38ec21fcd2e3c2837244b41d49181311888ac9e76bf9631fe

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 e8d71f1611431c445ced872b303cd61f215551a11df0c7171e5993bed84867d5
MD5 42ac41d60f559abc55c32246b754bf0a
BLAKE2b-256 07e4a3d1d8a25ccb133e3241dcbdee325451cd3cfd0b4e983f1e1e00aa109c11

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e39ae60598ed533f513db6d0370755685666024ab187a144fc688dd16cfa2d33
MD5 2e2ba00d534ce9916d2bcc76990295cc
BLAKE2b-256 cc57a83bb8d43cee1a9805ce83bdcdff077178b8f68734ad5175761c5b77619f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 daf5e4f6b048c225a494c941a21463a0d397c39a080db8fece9b3136297ed240
MD5 a17cebe45833c3a0d6873385080413db
BLAKE2b-256 27a7f41b27a6bcf9058bc32c8dc535bfb4154a3d8e482ae8603a54776a85e8cf

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 026f6ecd8948e168a89fc015ef34b6bcb200f30ac33f1480554d722181b38bea
MD5 a0017a9c4dafb1c2b72d3ca2fef15c7f
BLAKE2b-256 6084f898983c9a4f9252df06077d9748c2dabb5f315823b6e0aeda93a980c6eb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 e1e569953a2abe945f116a6c22b71e8fc02d7c27068af2af40990115f25c93e4
MD5 cc04653b4864c91e76784e5375d43bdc
BLAKE2b-256 3931bcb2db0d94adb70242064fc5a00dd9297c50062c28a5601b49c5ea2120cd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 a181b6ef9b480b56b29bdc58dc50c198e93d33398d2f8e57da05cbddb095bd9e
MD5 5b3e072e6ca827552d31e8d5f4ce10f6
BLAKE2b-256 bb51e6d2c91cbfb060f1ecfeeca075039b034cee942d554e8171dfec6453b20c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ba3f47a5b82de7304ae08e2a111ccc90a6ea06ecc3f25d7870d08be0973c94cb
MD5 883742a6cac6c1ea1632aab1b58bf70a
BLAKE2b-256 da11330e4eaa61ec0c778669002d907e0d415db72f2fbf5ac22f5fb3e150d730

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 de707808f1997574014d9ba87c2d9f8a619688d615520e3dce958bf4398514c7
MD5 553b79a1379dd2820a24df3cf481e63e
BLAKE2b-256 d0940379397988d02d7f16073391dc7c244a02d40d6f79415aa22305601a8157

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ba2a8fbd21079093118c40e8e80068750c1619a5988e54220ea0929de48e7d65
MD5 ae9260c0e50d2be69958e0da4f251887
BLAKE2b-256 ab658fde0b2e0d96738ce83e287366d823294a4fbcd18f9f30c71aeec8e0ad06

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 26e4b7f7941b92546a9b06ed75b40b5d7ceace8f3074d06cb3369349388d700d
MD5 f9970c7e80778a937e93568f50fcbef0
BLAKE2b-256 36d9e052261ce1de9a3f794f652f560744d4c078973710048cfb0185d5d28a2c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 91c049f7591d9e9f8bcc3c556c0c4b448223f564ad04511a8719d28f5d38daed
MD5 7453e87de71735af44d9e443922698cc
BLAKE2b-256 db0500971769910c2ff4bf66489d617fe940dc5af7944fc3dbda949b6a9fd989

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 37a9a8f5737b8e429291148be67d2dd8ba779a69a87ad95d2785bb3d80fd1df7
MD5 350bb8712eb9a1d7caca4909014ce7da
BLAKE2b-256 b7ad00a475ef549c390bb65389d466b890cda2fbfcb4282ef02b07cb279a2efc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.13.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 927.8 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for rapidfuzz-2.13.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 fb896fafa206db4d55f4412135c3ae28fbc56b8afc476970d0c5f29d2ce50948
MD5 57fee3b34d15de5ab66dab55d4d03ec0
BLAKE2b-256 bb27d681bebf6840727ee1e65c14006d50908a7de1014b6987748a347c04cf38

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 13e175b1643306558a3d7604789c4a8c217a64406fe82bf1a9e52efb5dea53ae
MD5 deaad7c03b2f3246fb16aa2d97b9f366
BLAKE2b-256 55ffc11288b0e365952071bdaf50ec53fdc86848f7f14d98c98402a58c1fc5d0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 3a4e87aae287d757d9c5b045c819c985b02b38dea3f75630cc24d53826e640be
MD5 82eff3e45f2fce9ad87031133b2188e1
BLAKE2b-256 8c8b75ccb58823658810cc031afa929205165221ccd80f1e7a051238e09ebf66

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 7adb4327453c1550f51d6ba13d718a84091f82230c1d0daca6db628e57d0fa5a
MD5 019e4bb318b7a9fa7768bf863f8e78f8
BLAKE2b-256 cc1aa735d7307bbe802ac43a25acb52ac7b27f37f1d8e5cf5a5ff7dea8667336

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 3479a2fd88504cc41eb707650e81fd7ce864f2418fee24f7224775b539536b39
MD5 1e8c39d1b489e1743512d2a945703f97
BLAKE2b-256 5cd1a37a6ee6efd862cb9f0cd100e272d337499da5f09a71e030de898c3ef283

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 b51d45cb9ed81669206e338413ba224c06a8900ab0cc9106f4750ac73dc687bb
MD5 182a83528abe4604a4a3d43efbb8b705
BLAKE2b-256 94e005e87280cad2a8333b9f4247e83a2c77f1080de57a787ebaa45013d308dd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 27bbdee91718019e251d315c6e9b03aa5b7663b90e4228ac1ddb0a567ff3634b
MD5 313b46b9b62811fe4fbf542ddb6a24ab
BLAKE2b-256 d2b72420ffaa1d962baaa759f0179f2c7a66b069b0493a569fa0414a254afee5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 e49f412fe58c793af61b04fb5536534dfc95000b6c2bf0bfa42fcf7eb1453d42
MD5 0c2ec6dfebefe077065e08adea5d3311
BLAKE2b-256 f4d718698c7613ba8ad4741a1ce7d657d259cfa774e64a696e1f26fc2b29ecbc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 b27c3e2b1789a635b9df1d74838ae032dc2dbc596ece5d89f9de2c37ba0a6dfe
MD5 6b729da46991850fa47face9dd65f0a4
BLAKE2b-256 8d09e3b8bdb0a0f121dc517c40075eb854b946b95a849f551ba9b01539428a40

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f5d93e77881497f76e77056feea4c375732d27151151273d6e4cb8a1defbf17a
MD5 8abd873ee539fa0ef58f197f278043fc
BLAKE2b-256 188a7c81f242f2b618b934d2e61eb77a20b85b3a1d07f3e0de4df40abc3b06f0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dd268701bf930bbb2d12f6f7f75c681e16fee646ea1663d258e825bf919ca7a1
MD5 63e7f9c35cce3c551356048ee9bdb669
BLAKE2b-256 044572f9bc178f4d50d61f32ade965ea866b61602d0662411e81961d913ba085

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ce40c2a68fe28e05a4f66229c11885ef928086fbcd2eff086decdacfe5254da9
MD5 73249606a7d8af8f69df5a4b89d9b823
BLAKE2b-256 cabd635275a78e376eca7e3c83ff230e95e697bc2f51eca237079be5e1f6eb15

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 80073e897af0669f496d23899583b5c2f0decc2ec06aa7c36a3b8fb16eda5e0e
MD5 8993de7ad5cd61a42faedc9f890f9bda
BLAKE2b-256 767d2483f9e269f10f5e76b12351946f8a20038826eea1f7bc59256263676c56

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 aee5dce78e157e503269121ad6f886acab4b1ab3e3956bcdf0549d54596eab57
MD5 f23f7642971a1a387ab24290bdfaa575
BLAKE2b-256 c5d48866acb77e63070dc7afcf26d41d766851fbbe464cc0107c7c3912a3bbd6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e038e187270cbb987cf7c5d4b574fce7a32bc3d9593e9346d129874a7dc08dc3
MD5 5cced23def88db726e00a56a505ee965
BLAKE2b-256 647a8bfedefc034cd44f373053d8ff11f76c88e8476b584d5be6f8d97c057c15

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.13.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 929.1 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for rapidfuzz-2.13.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 8f09a16ae84b1decb9df9a7e393ec84a0b2a11da6356c3eedcf86da8cabe3071
MD5 5adf7076520e064ce60f7d6f3397b8df
BLAKE2b-256 c5a626a2c3a1113463ae81902afb6041ffd63c62e305029f77297dcace81093b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 47b5b227dc0bd53530dda55f344e1b24087fa99bb1bd7fceb6f5a2b1e2831ad4
MD5 37ee83422e3ef95f0a1b28f244395aed
BLAKE2b-256 76d8d304867b6215bec731ff6001e87bed03388bff72fe3126eb294a6e368d09

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 31370273787dca851e2df6f32f1ec8c61f86e9bbeb1cc42787020b6dfff952fd
MD5 61ed905dd44075290df1ed8f379fda6e
BLAKE2b-256 255cb70c11fcbb8272df1d3d901067f95422d3fbb6ac2aaadcd9191ad4a193a5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 2b491f2fac36718247070c3343f53aadbbe8684f3e0cf3b6cce1bd099e1d05cb
MD5 abf13e7c33744eeb0bd1a6b1aa196658
BLAKE2b-256 2336ba468e31ec67510a5095587240e1a4b41e9f4968cf205d19ea19ec608d18

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 12ece1a4d024297afa4b76d2ce71c2c65fc7eaa487a9ae9f6e17c160253cfd23
MD5 2fa80f5389d5cfa994fb55b966693229
BLAKE2b-256 8b057bddd450f215afd1c6bd305eb8fb199157d0e38c2b238b8ea9e72757815f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 773c60a5368a361253efea194552ff9ed6879756f6feb71b61b514723f8cb726
MD5 d9684fbde4f25fdffdcb2f1de6472e64
BLAKE2b-256 47519715ec41b6a2b093a25dee16753edc67007edb9995a1ffa00da19b9a979e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5c065a83883af2a9a0303b6c06844a700af0db97ff6dc894324f656ad8efe405
MD5 24da3b390aa5984d7eb220ad9b1b881d
BLAKE2b-256 d8b17c972a378c747ab071dc945d37eda84676b00625916a109f2034bf542805

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 94d8c65f48665f82064bea8a48ff185409a309ba396f5aec3a846831cbe36e6d
MD5 d4a615e9a8c97595c0e7fe713fb3038f
BLAKE2b-256 fac7f80e74b6a7a8c387cb13afcc1dafdba8801e35b25fec5a82001c22b8a720

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 83ff31d33c1391a0a6b23273b7f839dc8f7b5fb75ddca59ce4f334b83ca822bb
MD5 b3fae90fe8059cd3c00f42e2401cd6a5
BLAKE2b-256 91500cc924cd31d592669f9cceab05ebe5c9f0bb92650a3e68c598c3176c8eda

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8f0574d5d97722cfaf51b7dd667c8c836fa9fdf5a7d8158a787b98ee2788f6c5
MD5 66d1fca17c2bfc70221a4b8c2cd33244
BLAKE2b-256 e47afa031e5484eb17072f03f7310ef4fbc0f68791aae50965dbebac15678b78

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8d6d5ab0f12f2d7ae6aad77af67ae6253b6c1d54c320484f1acd2fce38b39ac2
MD5 b108eb51b4a9e4e597957095e09def99
BLAKE2b-256 f7a2d84a3b949c7c6107e4808e8ed25ff287880ee2e8bceed06d6602674d7494

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2c66f3b8e93cdc3063ffd7224cad84951834d9434ffd27fa3fabad2e942ddab7
MD5 606067c211440df686db440863dc7eb0
BLAKE2b-256 a0aa8c8a1849c5756db818bb93467e0d1c76a5c93dda67f9cbb70699c799e599

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b4df886481ca27a6d53d30a73625fb86dd308cf7d6d99d32e0dfbfcc8e8a75b9
MD5 f44d80558bca8e07c3f91702c173486b
BLAKE2b-256 70969fb8f4cf20ff5991a544704f4f462ed63fc51a6dda455a7aef5d149f5478

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 aa96955f2878116239db55506fe825f574651a8893d07a83de7b3c76a2f0386e
MD5 74c06c67e94ee02a26ba8a164955d73c
BLAKE2b-256 a88de0cf1b0668d463dbe477f310d9966495e4244b29117df2bbcdbabcbe7cb3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 378554acdcf8370cc5c777b1312921a2a670f68888e999ea1305599c55b67f5d
MD5 d20a571ab18bc81df243e193af229f33
BLAKE2b-256 531c28872cde0ee9915fc52f685cb67ab09d0e132797bc45d9b3c37bc19a9fd7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.13.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 924.6 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for rapidfuzz-2.13.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 9a740ddd3f7725c80e500f16b1b02b83a58b47164c0f3ddd9379208629c8c4b5
MD5 5d72bc51ba4b0b1cafdda41a399b2fa6
BLAKE2b-256 e513fcf6a6396d75b9d316f1332249c6cc8eb4fdc299a37ace9fa7a52a219433

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6b68b6a12411cfacca16ace22d42ae8e9946315d79f49c6c97089789c235e795
MD5 771764b61426f45774e321956877ecdd
BLAKE2b-256 e66d304323eee98d08d4583aa3f3e7ed9d6c37579c949d21a3e6b396e5b8b0e7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp37-cp37m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp37-cp37m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 54fe1835f96c1033cdb7e4677497e784704c81d028c962d2222239ded93d978b
MD5 e66e363cbec6f72374bf7d6b856b33d8
BLAKE2b-256 771845d7efc4398dd9548a5fe4e2546411212736ec0871d5798845397b802a3c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp37-cp37m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp37-cp37m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 1e1dd1a328464dd2ae70f0e31ec403593fbb1b254bab7ac9f0cd08ba71c797d0
MD5 d576ae7dffbedb03a6eefee8d63deec4
BLAKE2b-256 3c22982ade009c9b78fa1ada8cbd2229f411d364d20af1fcfd2b104525ab2a10

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 2345656b30d7e18d18a4df5b765e4059111860a69bf3a36608a7d625e92567e6
MD5 5cc5f865255bcc0da0578e4ea264b8b3
BLAKE2b-256 e965d8ddf5c4788b26374a1b7595fc55c2fb8c095ab36e07337769050921a88c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 a2eeee09ff716c8ff75942c1b93f0bca129590499f1127cbeb1b5cefbdc0c3d5
MD5 7e1cd7f33d5503b214836109284bab8c
BLAKE2b-256 d03e2ee8ff565b010102a553eaaa35158d2aee0d82603d7c1ea474ee426d400b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4291a8c02d32aa6ebdffe63cf91abc2846383de95ae04a275f036c4e7a27f9ba
MD5 10134e6de571de4b86a66dd9aa343ce5
BLAKE2b-256 aca7e169f70c75ad1399b41b46aa3ee3c6d93e7b1dc588a6caa90a8824ee8d9a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 68f2e23eec59fc77bef164157889a2f7fb9800c47d615c58ee3809e2be3c8509
MD5 ccf26a06685d5e5c347874f1c97bce04
BLAKE2b-256 85bd0603c14a3df3955884eb7e1d9d0222b1545c4446240c340319c7f4f96bf0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 0f186b3a32d78af7a805584a7e1c2fdf6f6fd62939936e4f3df869158c147a55
MD5 4f5e66ad01672ec53cf04695d8f57139
BLAKE2b-256 5d3686dabe41dc3467c2ffb9265b21e6f0f1a244e083c791d0ecf25b53b87f9a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 da5b7f35fc824cff36a2baa62486d5b427bf0fd7714c19704b5a7df82c2950b4
MD5 b3ffcfce1e96219761e0f92223318552
BLAKE2b-256 f43d1c5f0507beb9466c20e2c93d059a1a33a40ca21b5ef219cccf679c7c745b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a0ec73e6d3ad9442cfb5b94c137cf4241fff2860d81a9ee8be8c3d987bb400c0
MD5 37463570d89579e4d0bab267a35e2596
BLAKE2b-256 cc5d448d8cd468db51c3dd5429d219b3853d137ba61ac13978b2c16cda17cece

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 de8ec700127b645b0e2e28e694a2bba6dcb6a305ef080ad312f3086d47fb6973
MD5 23e9e0cf46f0995e57d4f831d99733bc
BLAKE2b-256 642ba330d565d9c8decc9756b1df1298e31dda4e340fc317ee0890b21ba7724c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page