Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continuous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparison between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparison I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
    "".join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
    for _ in range(10_000)
]
samples = words[:: len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with cdist in the following way:

cdist(samples, words, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like cdist is a lot faster than directly using it. That's why they should be used whenever possible.

Benchmark cdist

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. That's why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-2.13.3.tar.gz (840.7 kB view details)

Uploaded Source

Built Distributions

rapidfuzz-2.13.3-pp39-pypy39_pp73-win_amd64.whl (968.9 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.13.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.3-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.13.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.13.3-pp38-pypy38_pp73-win_amd64.whl (969.5 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.13.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.3-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.13.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.13.3-pp37-pypy37_pp73-win_amd64.whl (969.4 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.13.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.3-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.13.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.13.3-cp311-cp311-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-2.13.3-cp311-cp311-win32.whl (915.7 kB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-2.13.3-cp311-cp311-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

rapidfuzz-2.13.3-cp311-cp311-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ s390x

rapidfuzz-2.13.3-cp311-cp311-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.13.3-cp311-cp311-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

rapidfuzz-2.13.3-cp311-cp311-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

rapidfuzz-2.13.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-2.13.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.13.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-2.13.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.3-cp311-cp311-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-2.13.3-cp311-cp311-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-2.13.3-cp311-cp311-macosx_10_9_universal2.whl (2.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.13.3-cp310-cp310-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-2.13.3-cp310-cp310-win32.whl (912.9 kB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-2.13.3-cp310-cp310-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

rapidfuzz-2.13.3-cp310-cp310-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

rapidfuzz-2.13.3-cp310-cp310-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.13.3-cp310-cp310-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

rapidfuzz-2.13.3-cp310-cp310-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

rapidfuzz-2.13.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-2.13.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.13.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-2.13.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.3-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-2.13.3-cp310-cp310-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-2.13.3-cp310-cp310-macosx_10_9_universal2.whl (2.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.13.3-cp39-cp39-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-2.13.3-cp39-cp39-win32.whl (914.5 kB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-2.13.3-cp39-cp39-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

rapidfuzz-2.13.3-cp39-cp39-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

rapidfuzz-2.13.3-cp39-cp39-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.13.3-cp39-cp39-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

rapidfuzz-2.13.3-cp39-cp39-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

rapidfuzz-2.13.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-2.13.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.13.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-2.13.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.3-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-2.13.3-cp39-cp39-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-2.13.3-cp39-cp39-macosx_10_9_universal2.whl (2.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.13.3-cp38-cp38-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-2.13.3-cp38-cp38-win32.whl (916.0 kB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-2.13.3-cp38-cp38-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

rapidfuzz-2.13.3-cp38-cp38-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

rapidfuzz-2.13.3-cp38-cp38-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.13.3-cp38-cp38-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

rapidfuzz-2.13.3-cp38-cp38-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

rapidfuzz-2.13.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-2.13.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.13.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-2.13.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.3-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-2.13.3-cp38-cp38-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-2.13.3-cp38-cp38-macosx_10_9_universal2.whl (2.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.13.3-cp37-cp37m-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-2.13.3-cp37-cp37m-win32.whl (911.7 kB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-2.13.3-cp37-cp37m-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

rapidfuzz-2.13.3-cp37-cp37m-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ s390x

rapidfuzz-2.13.3-cp37-cp37m-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ppc64le

rapidfuzz-2.13.3-cp37-cp37m-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

rapidfuzz-2.13.3-cp37-cp37m-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

rapidfuzz-2.13.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

rapidfuzz-2.13.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.13.3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-2.13.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.3-cp37-cp37m-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-2.13.3.tar.gz.

File metadata

  • Download URL: rapidfuzz-2.13.3.tar.gz
  • Upload date:
  • Size: 840.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for rapidfuzz-2.13.3.tar.gz
Algorithm Hash digest
SHA256 c734d54b5fbdcfea605f7365dedb7083e7499d394fbd03378d663b398e9790ad
MD5 2b55cafa247b9eabcabb01f694443455
BLAKE2b-256 57938a975f8462fadffd1b608a1a5df2bb9feea569e5bcef5a6abfb154853e24

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 6ddf120cf7862e9889b8a24530439528a92bfa0aca822d10ebf8c72c1e887d8a
MD5 db13c5b3b0e69e895cf73070463b31ee
BLAKE2b-256 b472158fd482aca68bc12305ee212b4a74cb98de8337fbb10815c2e464c75aa3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b39aa709f37e20d03e37cc2f7c25f3e69d565a5446c4f22915a0b2365b7991ff
MD5 ce77dd952207adeaf8e86e15fe362c47
BLAKE2b-256 24c1bbf1ad80b13aa5484e64a6747906266748e9669597f4e766f77cadef3de8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f8a94f18224678eca6989206ec7432d75d1250e7a85a167cb96aeade4f40ad71
MD5 53cf3894125a587332d6cef9e8262fb3
BLAKE2b-256 51dfe05579932712215c0b9fdac809c99364869d21be1e710d3e8a21c169abe7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1028697f5c6b0e0bf9a0a4497ac61f35dd7e02d513f8359110102a661b67a7ac
MD5 e0849d246774fe1b51acfe6f3f75d906
BLAKE2b-256 e2f4ca56ec1adc9e19614bd9e16208421c5ad870e0c02b56a448a61093b77297

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e26e69cf9a9c81a19b4846dc23f3ef3dfe1cf8d8525474e646dd51a21f94b634
MD5 f23f7650364dd7cc3a20dadeec98c180
BLAKE2b-256 b60a157daf0018ea29b4f958892a5ac32ae9274e8e2500222870428fe0c3c66b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 971fdb684df048a8e3348b44fab9afe5cdf33f8db63300dbfd9ead87b0cfe733
MD5 7dc6a44e71ee5f782197a4aa9b5fbf76
BLAKE2b-256 326a1a03b657c8712c15f7d5cac71fd97b8555cf5c7085bf5da4f404771fb380

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 61dd2c8ef4b564dccba1af7d560653d2c0b18eeed64d0d0386bf47cfc0416a7c
MD5 1935a4e33383e4dc7b888d7272874e5b
BLAKE2b-256 531b75bf370aba67bb35ff81290334402c8c3d3ed59d228b6c61c83afc2096bb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d9ff479a7c92012fd9778c1184f8ccb40f196a86704c337a5d3920f47ca4aa24
MD5 6ad21fcbe444207275909f029a676ed8
BLAKE2b-256 17dc6328ccbd8361e996716679da79171c838acc2add1422a0fa10cb4f9ba4d4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e00a9123e7dc1975e5f9b06fa4e764ba579549b32de559b94460f32b2ba1791c
MD5 0bcca8237a9aaf97a555efe88b50051a
BLAKE2b-256 30ab207b80ff5634463490eda8988472ca58229b64500c882b43e8cfbaa8b456

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ab85c6a9a701c3d25367624b38ba97241a77932263191ac55d8041d2a2435c09
MD5 33100101219c79056684a0a8067aa23b
BLAKE2b-256 04a8acbbf061ac2bb353d734e581d15db4cd26007f670ae92ec17f76b16746a8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 755b292271c55d2ed96ba7e1043dccf7f505c1688a40a824cc55874b1ddbed17
MD5 7a2c070857f8fdad9c5011673e6ed9d2
BLAKE2b-256 83e527601dbfffce097035ad589f5f0b0382bdc6adce3dcd0ddefc1d68106b16

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 65190371f7a1bf8a66279801ef3a411dd50ee8670cd646a17c4a2a8d86cbbdf8
MD5 9124e2e06171a910664ff9ef50e663e1
BLAKE2b-256 8655426b549d227583fa556c900cc9973e0689712947515e7c871203d7ad1da5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f19960c240488790c932af7fbd6191ce1d990820d9a0ef100da3dcfa88fd9595
MD5 064045f13fe6e6a4cebe001ac8d25584
BLAKE2b-256 402e142969e1da1fc12b7f184b060e5fb6f5271a702a78e6ee9c264f1c626c41

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7eeb2f8ec443aa1aaca02d9e2705482506f90ad77a95b117e11b66b2cd965ef7
MD5 139ff837b16d6d0b9ff1a31d4b9db551
BLAKE2b-256 4bd88ff478949a260f9a621ccc8c91b76e1c325b3081a7849edc56d060fd47de

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ff8afee5e8da945e81632989457851ac76ea1ef0668797b886bb37071929a64b
MD5 ae83b3b5f518fe9054d161f987e4e961
BLAKE2b-256 5051791054718994e8fb7f05baaeb7643afcf4d8f109d3d16db1af473a20abc3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2615f2cf97ead0890662eca39e8973a8b9230d6ca7d20f4e602aa8ee1d4a4da0
MD5 315416c72348b357d31f946ff0d3813b
BLAKE2b-256 e9773a4c1eba5801ce15b7092421e408290e6d7ab3444e2f75f670fb2075e3c7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.13.3-cp311-cp311-win32.whl
  • Upload date:
  • Size: 915.7 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for rapidfuzz-2.13.3-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 82b36669f3287ac2bc2ea9493f3ba3d038c448e0c101cad39cb91283481d8482
MD5 d1745d6d9e5e201045ff2d01ccf853b7
BLAKE2b-256 dbb9ba120c407bf73d3bac568965af590946efa9ac945f3507e233c2367cce09

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b19939ef72c37e893d00400fb4205e344d5dfb3dc5aad7871cd0b0f346117576
MD5 ac42d1044a6f4365de64a730f349ca88
BLAKE2b-256 3dcc6e807aed5492be35215eaa58fc198362427d7cd23fb19f4fbfbd26192360

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp311-cp311-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp311-cp311-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 6d83b98342aeb3c2ace9416f2f3112ad9a4773ecd38de1314afa6a5afbb09e83
MD5 9f6b94ee7333fd3cb03604f7c46422e4
BLAKE2b-256 8dd1d1ccb66b36ce6e388d394f02948668b2080637ce00dfdcf902eab74a2335

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp311-cp311-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp311-cp311-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 5314094d06c5e9b5046d619c3742b8d4c7c7b69360f9e1c21c15b083fa1ac098
MD5 96423d7a0708f02aba1cbbb06f3b0b3c
BLAKE2b-256 2f03fcf0f14cd1bd3b4927d14efb0ca3104b724d41bd4aebfd2de85751d85209

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 c87f3d04d90dec2b6d802c589f9ddbe8bc27d060af848e0ff4dfb78def9be49e
MD5 59c2888b6e5c52791d11dc86f9f235c8
BLAKE2b-256 5fd57560e22ca943a3480e76389084204b18e8a2299736ab9562944d4c1b5aad

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 e027a2dfd3c12115af44ae8eddf077e67b5a04cef5a46a2942c1b4e4c422fcd8
MD5 e6ab25618d0bc1383ac195ba5b59c017
BLAKE2b-256 941b9c317b17f77610c9da3e14a5c8626be4f1c2536e7a5968126cca6ebb3f9e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 805014161362eb9fd7119c5921ef4c8a4f4181004e5ca8ca735219e95fe84aeb
MD5 68bb903ffbb6b1d50f84dff83c0ccc7b
BLAKE2b-256 882c93861b5a10e4acc3fb340cce18f7025941e090083cb2ac15b9ee61b24177

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 a60eb9dda0c1f47eb78914c9bbc1bbb49d0a32427c11779a98faf5f8429f9f7f
MD5 5bc17dbe1eed3d6fc412b78e0d9ef584
BLAKE2b-256 e46f0ca9342a4cfe64685d30a077bf11a72d859aa084cd9529dfab8ca26f3c3e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 2f677f95076b92c0042887a136e641c01667332e0a16b19155f3d4026311ddb2
MD5 608e677845244d65bf5f24e524a01fcf
BLAKE2b-256 94ae75dbc3e9528b0c7ab30e90f504b1989ac60f384feecb1a3383d77587b93d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 179927453ab594b117c8ca7ce1de8ff456cd45a636c8bd5bfece8daddb66eb39
MD5 904241b9d22180b5b37ddbe1397e9370
BLAKE2b-256 c9dd62dfe01235cd791281a0567aa6de4c4bd2681a1578ce8b1c3818bde2b814

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 79c4b7a5b61a53019eada388d279b976289a333e8e49da00c58227f7319d9ec8
MD5 68c40badeae55109519e3533ce055911
BLAKE2b-256 30e552037325331c114e5cca9d3d24fd16e7340b7af0ef22261cfe7c1c260f01

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 11bb0cbbb77721339c86e0779a73a5878b401607503321fd9ae338e2526873e5
MD5 95f0014492889a71498737e186140105
BLAKE2b-256 e25cfc8d626a4dfc4a30e2a5e8ceaf1e2b9e63502f9c5b42dc8cbbe5a3095870

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 01a12f6afc5d339774ea674e821821eb4ec007479b66632a155709b60e70a809
MD5 1fe324878cbce10ee2db7ef202b5415e
BLAKE2b-256 f8376ce359cb6bd4560bd00487a5413ba854e1f91ffea732d1e8f45fe3dfd8ca

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 16bf1cce7d0038289b34e1cfba92686c54e866e0697a3b8e68423f8ec8a22805
MD5 405424891a067d1296563cefe23c983a
BLAKE2b-256 e23c5d194527baa49e932852c5c99c41443ad9ed0c87a86539bbca69d1755c70

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 43abe1c771e1b7caf3e1c230951e0d0ec966a02af55ebdb55b8a11e83b33b3d9
MD5 ff85ebf3f13a4bd3e5e547acce2e2686
BLAKE2b-256 ad865c70b8e6364988cdcdea6a4afe5ee463dfc2060868ac1aa960dcc4d181fc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.13.3-cp310-cp310-win32.whl
  • Upload date:
  • Size: 912.9 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for rapidfuzz-2.13.3-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 ebb449658b8baf639c06af520b9d68ca476622d6764f3856c2b34fed05c51617
MD5 459f6a75bb26eeab60cb4a236682f055
BLAKE2b-256 efeba759cb7429d39418b9035ba86bdd06571fff2edc47eddfdcd9227710b7d7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d592166beedfa9e0383f913c1562a933bae9aa49380d70aaa65c100cc63dec20
MD5 a120c672968178466be5e3ed1e9db6c9
BLAKE2b-256 88aead94e01e9e98e9ad4db42970f40b8a5c845754b96691084454dee4248601

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 ebc38e20e8c67cc82687a68d006a9e4ce2924b6c8ec8d156475dba95fa7a7eb6
MD5 6acaa18fbbd7c810dc21ec133634b72f
BLAKE2b-256 c468dc01c3fc0804bf9e7eecfafc23a149bf89d280c94d9cb2997c3942987c62

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 30741f77db0079e8af5c42e6e7b564d491dabfc1e9d40f52d5ed4c1c197502df
MD5 78d807f9697d18d711e28d31b8bbde31
BLAKE2b-256 d7f78b36161cc9a41749279f507a9d21a70ee5d8aa48a350e9f0d264a921d8b7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 bef9072fa8308a5721b63c169abe074fa46e4f1f56cdd4d23820fd9a4385e470
MD5 7db06df95448d3074a064a865b1cb103
BLAKE2b-256 64da01f9ee3cce01a3485e00ca56e1ef151310ac607b11690ca2df212b9c3a0f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 936f23e2b9cebbcd39c0760bc9d7d974aa94cd7cbd8e8581b2aaafd4582fd05a
MD5 21699bd5205c5197dcdf48a27fe55bc9
BLAKE2b-256 9e633e43038ee2ed8a989713cb10b5029f285d168d2acb404986fc2bd410ee07

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d211283a01927baa336c326de02d4642c5cfc90a5f031311304a76481f48a6a0
MD5 245c599b40aa19d52d863400c7ec9747
BLAKE2b-256 6b4107a141a905bb480dc6bf1c5deba47ee901765826c3aa1433ee537879fb16

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 d2db790ba8317fea823221089260687ef382758a32564b8b12c3e6c54be292c8
MD5 a7d8a60d23b18b18a3979171c9795a84
BLAKE2b-256 73c5c4ceb0071a602e41486843f656391b8f1fc6fa60271dd825d723d5924cc2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 063cd9e81b0b49374186aa357e3ac196ac7a26f006590724eb1f1034b40cd6de
MD5 530c228688f4c6526a7aa840b69d9704
BLAKE2b-256 8cd77ab66ee6fd8026a49c6ae9048f1d6966aa949af6f6821802e6e23e090c9b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 79f621648bc4e2a51217feabdbde9202206f100381008d2730f37313420ca76c
MD5 14345288e2549717b3bddc8cc034807a
BLAKE2b-256 6d50ffdf08e5fbded6661265e395809b3177551b08f28414ae5060bae6868943

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5376126ff87379f4b63226106ca49d7f13a09749e1f016ad24a4549032c06b9a
MD5 7ca3b3cd7a475011f6da98e8f8ab3c82
BLAKE2b-256 1b68f1ce1e15c959a051adaff80fa09ab1d0b3d00f82ed43550d8343caf8f7c3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f32a4541667003cfa4d2abfdb19579231653d73bf97d50af298b17be1541dd08
MD5 057d69363246f80002cfa006da5dbc6a
BLAKE2b-256 56112e320263c3fb92ff0df897e8bfac815cb1125b43dcbbeac8c365f7a5781e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3044abd371698aeba51e1e149baa8228293991d1b56a1bec3f676960a9f2d019
MD5 327d96e5a637866b4df7e68f5f6749b9
BLAKE2b-256 663baddf74b37167228f108e357d7737fd5adcc1714706d56e899e39a2ffce57

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 ebdd360f7e9cc30ddbd54f094e1255c981ade8af3ce0a51bf56857eef047e90f
MD5 40b05b1351a02adf682fdd8e71a7379d
BLAKE2b-256 e91c7194e948fad5f690ae868ad3fa150b440326a4608709f4d721b53aa9d74e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7d3205ace3e018bcf40a706da89cbf81521f8e10402080e90b0e88643c2235ef
MD5 91793852fcad1d8cd9ae7dcd001fd9b5
BLAKE2b-256 7b2890fcbdb41fe69a553b49c91c970f4bc089ab126ace4b9b01f903075db625

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.13.3-cp39-cp39-win32.whl
  • Upload date:
  • Size: 914.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for rapidfuzz-2.13.3-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 10400e0896f68ae6d7e6644ebf1bc8dc2006ac369fde5352bdbe10465e1bbea0
MD5 fcbf5f6d4f855332499d33723be0104b
BLAKE2b-256 e28bb40887ce83adcf5d999040729d5cde8188d7b07c74f2be13c634454ff31d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5fa1cb29b9ceb12559cb5cd68b4a06536373ca20c5611111ef008eecee8bf1a5
MD5 b674ce2d73372fab05f0c10bc7bf2fe1
BLAKE2b-256 cb19435894306c73ea3491ca4365d38094d2ac033c8c38781c57a87cb1668ed1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 5d567fa4592f7138d1bc6565bf1a3b459337b439671aaabc10ee7c59b794605e
MD5 296316bf60954a83a80b25604cdd3028
BLAKE2b-256 c2fbf73730c7527d24e54a45f26a38fbc41d372a1fb9c0fda1d157d52ce880ca

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 8abdb50bd6ddc7cdbf591ba00e7a69f2e42e1936cf27f48b80d66ed9123912e0
MD5 355ff2d05c888f73900df89980493a0e
BLAKE2b-256 410787e3511f963544f4316997a59a7b549ff59ce99b653882cf07488e1087dc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f119d57ca994813ea8715c8f694b724a0a18b9dd53263955d83bc38e48dc2482
MD5 5c9371154beb03d8fc05af8900309e5f
BLAKE2b-256 552117a475369021c629298a142cebba2ed3d9816c46d33f6c7be95326781191

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 1ccaec24cce386f3207288d6bb30b00e2ac586e30c298a24db63f37d6dd2aa42
MD5 9f8f064e0122ec829d7cc1e265313540
BLAKE2b-256 d87dd4092025e46284889559cfe088d42927ef1af7b4a3cbaa41dec4f5985e75

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 27f633a6d7c87005766ee23c7beb6c41705045d72b232e2f8bf1496d1b58267e
MD5 7e0caf11bf440483980d4dda27c07f21
BLAKE2b-256 e344a3575e5997e339f9dfff32791fcd21ca7fea8ab5b384861bf1aa6fc19395

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 6e5de3acb7ba3b24fc4ce45f21c1ac02ed52f88131916b393a65018e3a413a51
MD5 d1a56a2de7af3e9396cca6c2a89fb3b0
BLAKE2b-256 606eae1786d10d81f63e3d151ead68845ee5f9a00c240babe353eda5f742c15f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 805c8d3d7c0a7b9115b4a00042221d539081fc36d4cc034aac0ef04c4311b21e
MD5 ad5d1deb205d1c6cdbe418e91604412d
BLAKE2b-256 bece8632fad380285257117013e2b73ecdbfaa76e8d1db27af3fa8c386163717

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8bae2444921cab38ecf8f42d60863f8263a30a8930bf24c82ec587b364bd816f
MD5 0ba21ab79d5459ceb51f07c067a916d2
BLAKE2b-256 968a4efd477b60eac2b64e81f2abe710bf7f905e0eb00f4696a3801cc05f7ac1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 894a8e4d3e0014ccbca4de7cf8b20e77965a2d20ff74b4456ce3672c9590324d
MD5 7efaa802605ee776a9fc27775618a33a
BLAKE2b-256 2ca98dac1bfbab34807848a8ca0dcc325a6987175aae007bb02f47f0f86d1f47

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3905cc8cb5e2dd40985f30c5e2356af92b8c945bfb2441a3bf1b5b31bc793c49
MD5 bf9eebb1be122d5f299028f4f38f805e
BLAKE2b-256 1270742627ca286f7313a749947f4e62f722734e9f4a25d63eee71132bdaf723

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 821bf713af7763e1dae60b5b5758db904ad353199867e203cf38ea263f4f54e3
MD5 278dde2720d5b508684834e996ffe919
BLAKE2b-256 482d9b1be73f042a7b067aaebdd8611ad9d706f2accf7290ef065005456431c1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d93ab6ac3dae43fe2a4192a33521aae332826b9643089a0600eb4160d5a7b044
MD5 a7d9d801abae5252d71e3a816f181ca6
BLAKE2b-256 998fd73f73dbec8dbd1b7cf39de12281839cfd8e3eb27f4403ebc0b24a463328

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e7487e9caeaafce8eeea1376b2380cfd0108ba8edeec95de30cfde12cd282e06
MD5 c1b525c5b504777fe07e054f6d9beaab
BLAKE2b-256 c7ee657618fd1f33a95e657ae7ef9ad513fe42f8014f16db57bff81dba8c6fbf

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.13.3-cp38-cp38-win32.whl
  • Upload date:
  • Size: 916.0 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for rapidfuzz-2.13.3-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 602098d423ebdd7babe3002a39068ed714b8f77c1694abbe29dfc8bac5e19e6a
MD5 ad122b5457e7842fe23e739556d82b94
BLAKE2b-256 16d0890cd401d4aac616034f39c22fb564f1a2f6d69efdb5ef2c9d00ef574b13

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5a27eeb401f90be74bff43f74ade235e94b13af99e39a7210fa1ff224fb70956
MD5 f2778d257630418a7927e6597e069097
BLAKE2b-256 495b13efc201e7f6c3d929e971defcce0b63b15c3ab758ac5b014cae3d4e1afc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 c9a0b1a5ab19c58ef4a111587e37ccb725e3da629d4291499d91a893e82acbe3
MD5 bc25b9beb75c467a355766d278f2658b
BLAKE2b-256 3ed557198b92eec07172ea7d58094f92dded47f47de4bfacfea62824b1f8bb5d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 995c46570e703c1f11524e82ba5fcbdd38a8b462fa13e42ce53d4d2310512fa5
MD5 c62245e2a58a6ad7d7d103bfb7b17b63
BLAKE2b-256 b4ad0ed181eb03b9ac4ed1b92df11813ea6217d76886e79e9481d5e0e5286503

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 7283fbbe32824e1f029296683f2982f3def2637cf1e1870b2669fced4d7591e2
MD5 15feb8a7f04633597bb1455b5ffdec90
BLAKE2b-256 256b44cd9928a7bc71b85b6186ad1421248ba723cb800dbe7d3e52935e7a9806

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 11745d85ebe028c6dc773028a6da8705f499beb71f09b69477c2e1a47411d0bd
MD5 157e15784721cee82c851bbc6ae988ee
BLAKE2b-256 10ff9966d4c994fe70e176138a39b4a924572fc0a82b0fa67e5fb177aec59c64

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ad539e28021d489b113c3c0f15775efd72bff4d87cf3adb9f669bf86270eaefb
MD5 67f2dccd4d4fb1866f0da339dbba4843
BLAKE2b-256 49bd47f72d2bd431fb1a06e45b29f54e42c3edeb4558c72fd2fb7255b322b3b7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 e0da28db21654a28512c290eb5f210f933504e879d9afb70e7561add4e5a44a7
MD5 d3cc432792aed18689517be15114cc09
BLAKE2b-256 1d9173d222b2cf5a91998c918c6165fe4d6a2a9113d42df3b4f8f9105b4152b3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 7af0c851a754d715e921fad1c027a6f75b3681bf0ec8732172b0648c61830ded
MD5 d2931d577d2f5232b23a8ef067bd0f6a
BLAKE2b-256 bb2ca94f9b22e03c2c3ea52b3a4904b04a84b23b9ec6c018c12db74dcebb0cf5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4a22e5f762a3869bf25d88c6ea1ae99e4227660814650b17df537eee9dd7fc2f
MD5 22de3a25d2c5318dadc03c3d6b116bf0
BLAKE2b-256 47dec4472a9d54a01ba0a68cc1ed71e39003740dc8b30fa155c1d5694ac14b0a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ef61d5d7dc0e1e70a71777dd08333f1f90700f279588d320bdd7a1c47e7f4d13
MD5 b361f8ef81df29f213cb20ef5f66f455
BLAKE2b-256 ae2b220662dc0f2ab4f5161000ba3479796eff5a5d239a7dc4640d9f9f751cbb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c882cc197d8dab88f4226dd77101bdcf04be281c8a007991cf1ba81fde086598
MD5 823b3e7d55113c31bbae536180377f63
BLAKE2b-256 9740debc5470ecd97a4a6eddc31e6a72b422e729373cd188689baa60887b4ec4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f90c5075fb8971e10b1287cff38ce5556d398132a938d407cb89e213d25d62e5
MD5 4b35223b7f1de00eaadb5ee4ceedbb05
BLAKE2b-256 7857d501416c6d45fbb0052bdc045e1c8f2800fdcbae16ae666cc92f2945ca7b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 85fe357e99bcce4ce337b510fd27fa9efae2df758773cd983b5c2645636b8659
MD5 c3d72405b39611658e80206ec7ae4547
BLAKE2b-256 02520e089f40d75aee764488c632762311ccc954a70e2714feaafd15700b1a3c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 bb409d9449ca1027d0dea3a754f84fb783b44bfa256f3e4972e5aeaec8502a1d
MD5 1790def4c467e355880417744a9f12a4
BLAKE2b-256 2852bd6a65e4fc8857fb92c8bc554baafb6a4ae1f52acc8ef1d864d68779a270

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.13.3-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 911.7 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for rapidfuzz-2.13.3-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 120d954eba295cdee334d319f3c35c5dee439d5a709cff01112325d5c6bb017b
MD5 c147944ca2964ac8962dc3ec6ca9cb46
BLAKE2b-256 32c0c9f95c46ebdd0d8417725995b42ec5e0e49ac39f1a0c1f8392cd37aae06c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1e2be097a878e673e2ec0df345943aba4b58781245d298cc192d88741dcaeb6c
MD5 d1c8b13c3ab2fa621eeadf538243ba24
BLAKE2b-256 d93aadc61578eacbd6aa133dc68ee7b89d217ae4e0422517b71d2c38e5701083

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp37-cp37m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp37-cp37m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 85ca97e74c10d45dfa3e7b0568343bd7272de5da3ba028146dfccb0534f7a2e4
MD5 f97d754ed8c786141a8a9edd4c7f26f2
BLAKE2b-256 c1cc640a193d3b64d09d531623878b907715f1f00bd12115879bcb9ecc95b5c3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp37-cp37m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp37-cp37m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 7624bcd56d28c59c3a58beb546d761540b5d57bde6f34ff098e4136366734523
MD5 27feafeeefbae0aeb803a72657df2992
BLAKE2b-256 bc7cdf7d17025e659782b5d861ef963737d6f5e128b5bf9d8f60bf4a7ab5bab6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 97bc1969f535e1db324b6798074534405a510c53505525fb05974f34fedef42f
MD5 848f8af8d142363ba8ac8d03d327710a
BLAKE2b-256 53bdcfcbb3171eeecdf4798995d46b507117e327daff528468ffac07b61a40a0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 8104e2a3b3400bc7dd965e67e1d1902fe234a03116c6a4a012504156ce884d37
MD5 7ac5cc6c2d3426920b59b0433d73112a
BLAKE2b-256 ceae786f7e87f51ec92aeb3aecc09f5cb845928feae2ac4fea2d53edccba7c78

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bc257865914ce11d4c5685033314245c55501c8a337331ae9cc6207e67eac20d
MD5 3d053ff8a10731503a0e794db6044e5e
BLAKE2b-256 0e135cff1b530b6f96523aba3a875894ca4ba43b29db712658ce3be19c743265

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 c7e110790d8400846488b7f3cc06bda0a638033af8f0994ea1b2c78af4af988b
MD5 a628bff572250c2951f9a552f6676abf
BLAKE2b-256 ab77c6b32a9ae722916bb87911568fca6c96f6235b12754ca349ab7f60b3916d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 1b7a86dc041be2904291bc66047ea94814a258dcb2ef7c424ccee8049daf7d1f
MD5 93fbdcec43cab3bb9971b6fe8faaa26e
BLAKE2b-256 76563e1a650fe648c3326b68e57f4c60ad09e68ab75d1025daa7e3197af70987

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4a7c850771f981a31f0c6826f9f5cec98e7f6efae1611adcb6ba7dccb935a85f
MD5 c9d3d797b6b2244dd1fcd151d23fe33c
BLAKE2b-256 372ff669ee8067305bdbce022911eaec46a894eb37a7a737adff53ead8cf71f4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1a35b3addcd170e58ad170f3b11678d6e8467ac0bd8c8c1493259c1e35b61e95
MD5 b60b61765cd5c42683abb3fbb43f7349
BLAKE2b-256 74e039392651564d1f2784696a71d9a57f756e396d61fcc2ea376dc09ca70517

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 65c6b917b289989026cd86c66a1db97d8728e82149487ab8f264b347f36fcabb
MD5 b0858236c0788a21114c66551f4dc497
BLAKE2b-256 b41b749ad4b40ed3fca7856052444b009384d6a4b4889b273b66245c954e8e70

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page