Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continuous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparison between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparison I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
    "".join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
    for _ in range(10_000)
]
samples = words[:: len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with cdist in the following way:

cdist(samples, words, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like cdist is a lot faster than directly using it. That's why they should be used whenever possible.

Benchmark cdist

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. That's why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-2.13.4.tar.gz (843.4 kB view details)

Uploaded Source

Built Distributions

rapidfuzz-2.13.4-pp39-pypy39_pp73-win_amd64.whl (970.2 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.13.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.4-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.13.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.13.4-pp38-pypy38_pp73-win_amd64.whl (971.0 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.13.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.4-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.13.4-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.13.4-pp37-pypy37_pp73-win_amd64.whl (970.7 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.13.4-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.4-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.13.4-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.4-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.13.4-cp311-cp311-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-2.13.4-cp311-cp311-win32.whl (917.2 kB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-2.13.4-cp311-cp311-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

rapidfuzz-2.13.4-cp311-cp311-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ s390x

rapidfuzz-2.13.4-cp311-cp311-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.13.4-cp311-cp311-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

rapidfuzz-2.13.4-cp311-cp311-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

rapidfuzz-2.13.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-2.13.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.13.4-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-2.13.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.4-cp311-cp311-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-2.13.4-cp311-cp311-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-2.13.4-cp311-cp311-macosx_10_9_universal2.whl (2.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.13.4-cp310-cp310-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-2.13.4-cp310-cp310-win32.whl (914.4 kB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-2.13.4-cp310-cp310-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

rapidfuzz-2.13.4-cp310-cp310-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

rapidfuzz-2.13.4-cp310-cp310-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.13.4-cp310-cp310-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

rapidfuzz-2.13.4-cp310-cp310-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

rapidfuzz-2.13.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-2.13.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.13.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-2.13.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.4-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-2.13.4-cp310-cp310-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-2.13.4-cp310-cp310-macosx_10_9_universal2.whl (2.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.13.4-cp39-cp39-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-2.13.4-cp39-cp39-win32.whl (915.9 kB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-2.13.4-cp39-cp39-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

rapidfuzz-2.13.4-cp39-cp39-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

rapidfuzz-2.13.4-cp39-cp39-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.13.4-cp39-cp39-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

rapidfuzz-2.13.4-cp39-cp39-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

rapidfuzz-2.13.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-2.13.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.13.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-2.13.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.4-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-2.13.4-cp39-cp39-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-2.13.4-cp39-cp39-macosx_10_9_universal2.whl (2.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.13.4-cp38-cp38-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-2.13.4-cp38-cp38-win32.whl (917.3 kB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-2.13.4-cp38-cp38-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

rapidfuzz-2.13.4-cp38-cp38-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

rapidfuzz-2.13.4-cp38-cp38-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.13.4-cp38-cp38-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

rapidfuzz-2.13.4-cp38-cp38-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

rapidfuzz-2.13.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-2.13.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.13.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-2.13.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.4-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-2.13.4-cp38-cp38-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-2.13.4-cp38-cp38-macosx_10_9_universal2.whl (2.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.13.4-cp37-cp37m-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-2.13.4-cp37-cp37m-win32.whl (913.2 kB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-2.13.4-cp37-cp37m-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

rapidfuzz-2.13.4-cp37-cp37m-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ s390x

rapidfuzz-2.13.4-cp37-cp37m-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ppc64le

rapidfuzz-2.13.4-cp37-cp37m-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

rapidfuzz-2.13.4-cp37-cp37m-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

rapidfuzz-2.13.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.4-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

rapidfuzz-2.13.4-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.13.4-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-2.13.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.4-cp37-cp37m-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-2.13.4.tar.gz.

File metadata

  • Download URL: rapidfuzz-2.13.4.tar.gz
  • Upload date:
  • Size: 843.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for rapidfuzz-2.13.4.tar.gz
Algorithm Hash digest
SHA256 85f5e8667b8e6cb7687c86374c60b133abdc76b2af24455172388c5d7ab2787b
MD5 478f2769e54d0ee41ab71bae90034fa7
BLAKE2b-256 87d44fcd1d0f6b702969f2d1f1068d2bc618f2a1e859c8f4881f523687b855bd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 a32d8fd485b27486cce562732986acbd5c770be88b79e3a2a6d57ae20f491919
MD5 0cd862fed266448d32c909807d720de3
BLAKE2b-256 ec28e918a213dba58887f4b1d217781c8bde4c473522d71f1486c8d52c21f135

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8f739326df930dfd76105ec6a8facdf88439786dc307d9f8c8ccd48a4df04cc9
MD5 7498a597bc4c647879e70c71d69610f4
BLAKE2b-256 d9980fd9d28e2b1973db3940783164c71d7ae421a701ce7985c7549051276eb3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b202979cbe08444f134547cecbbefb40b5dd078f2f747f9303d80ba9f5687564
MD5 8ca2c15e8d606e064026f7f3f92d3a01
BLAKE2b-256 68eb542b1f5ac287c734fade3060fd832bf410912932ed43623117200d339bfb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7583f40fdae8f4710adfaa5adff6d0daae3eff6b244bd68adcf72a11450336f8
MD5 fc54f87220b7247dea929d037bca5e7a
BLAKE2b-256 f0e1c8a96787ce7b1c48d76cf01c233c93e69e4c8a3b771edb02111db8400c1e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 db94901bcb9e0c437827f25c9dd400032ed107e05115b5df430573bcd4a84874
MD5 2ad7bae6f34df55b8826b73db48dbec5
BLAKE2b-256 0eb0d1c3222d7e234548c573d562c57d228aca8394081ba3275813072011201d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 fd9a1dd6a0bc099ab614c6d644173d4ded27f43a483f483a3a6d98c8afdbf3e6
MD5 6f45d4a8b81f3105b23f2a842d4833d5
BLAKE2b-256 31917cba59ae328768d841d4a6df2d52a8bb01e91f9fd83d5e9a4c85f8f27060

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7cee538458e921a4a94ef03f04ac7a618ec552e66d198b4e470e1f7b79c28f67
MD5 fa3cde19f0d955989aaf9abe8f8c3ebf
BLAKE2b-256 26ae58adc787d7441ef9d3e21e89e5c81f3516891c86ae7f64f9b9bbcb2945c2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2046376a36b6ea4729097cb91522a6fef0271a4cd1be205724202ac78f013b94
MD5 3c68c71190199324cfa8352796e63c25
BLAKE2b-256 e423d1d94631ae0458a3cf33b408c1935d9d97faaa655c3700fa43f958c59c9e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0f01d95700f00bc88ac84b2b933416a7ba188dc2b0280c87614012698e78ad39
MD5 19d7024309b1723f34ed89770f8a0d72
BLAKE2b-256 80be83ddff208802bccdb220b4e136dc37abb3a2e12441747f51ec3385852ccb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 25e4af378b80bbf9e5f8ad2ee3132d9a2f16beb46bdfc98ddffb06268a56dade
MD5 1fbeb5a8cf6988b330b92d572d88c058
BLAKE2b-256 31b4f1ffc12afbf2f0e5e026c06b744bf4f1758347d598a9e52114e0b711e7d1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 5e105c9173fd5678068e271eb2e824d60fe9d75d0ba2f2bb921abdc4b1fcc790
MD5 78419fb2380772c95563a4244919b985
BLAKE2b-256 882f575cd34f5e21547ad2047681d44441d5ab588a4254b4802f03519997e108

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c44102cfea3f1f94d4b5e7d4104fa8bafb7df7359ab701b96717019493f582ea
MD5 2cc8044e9149f5c9d78fde0b3f47606b
BLAKE2b-256 718f25889cf9d8a87a1ea20fc42baa032400dbfa63e359e9e27bf70393086acc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7349cbe1de1b3f902a6cdb0a834a5f6c7f17e081e56b7549db621634a8d72325
MD5 95469ecd76b1167d9dfe5f072e9b56fe
BLAKE2b-256 94998d7a30d93d1b7c6fd3db4dcd710f00e4afabe2f8d2f40e6d45b370804f63

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2763eea723c63f0b7c7c497f54cd25ab589872127cdbb4c9da749b3d5e355764
MD5 a1677c01bf6f8344294de81f29b9cf83
BLAKE2b-256 b400fcb6c85d8072881b77aa0eb6f417c3bdf60bcd7af4155fc8e667e37eaaa3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8f831f031e7b07e75099030e9a56bff6a6e18ae7e9a3b8b6834715d1384353f0
MD5 a9a3afec8597a27db9c570ec87b15d27
BLAKE2b-256 635e2799f535c1e0fcf4ed2a63f415321a51d519f0f93fb024e2b774908f8258

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6365aa163db96d20c7374e03ec62fc6b5c7c9dd25777c24d944a98281b83b831
MD5 5a32361ef2d1222239d404023778b046
BLAKE2b-256 00f413f3c8e07574c561a3dbc582a5c23070030532ada457dd99a66f3f57044d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.13.4-cp311-cp311-win32.whl
  • Upload date:
  • Size: 917.2 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for rapidfuzz-2.13.4-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 ff65e787f12562a06bf3d0676064ff8653ce44f3502a76407bef202392b52a4b
MD5 9d0efb88793687a05cdd25d50f7c25da
BLAKE2b-256 d187cda38f206c51a8dac229e995e55ff8b9cf478a1370d2a4fecfb24b6ced72

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 fcc43cc8a4ba7f103d4e5325cf867a9110aea40cea20957ca994c74d875b9a3f
MD5 68cf5bb078b3cfa808d33161ac38fdce
BLAKE2b-256 a2f94b4d801de4c26be386a0dbf75d32e11dd8c8c1e87ed2e296b24133a41fa0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp311-cp311-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp311-cp311-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 1ee9ebf72535233bfe909c75c1edda1ff029e6f7cb046fc36d9ceff6767f180a
MD5 7959398d714153bbfd55a71b643061e7
BLAKE2b-256 8f6fff25d58bdff059e73c05aa03c09ec90fc7ac31f1c26e1db6421bf3785a9c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp311-cp311-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp311-cp311-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 4ce3671c326d8bd5e33089fd5f62ce5b04fe25752250e655e0fb6685464fd3f1
MD5 c141dc995f63074d786e15410a536948
BLAKE2b-256 1da2fa8de0b133355e330d4de940779e67fde5f46b4972598e42759db13100b2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 895bd6805eec4f8479e509904334a85dd0cf6c8e3159119c5e20e69dcfa6ff59
MD5 b81bf4c5005d198f82b341babd246220
BLAKE2b-256 1ff5aee34330d00b045f798c95e68a81961a9f345189cfce2f748d1a987fee18

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 f4e3d7aa89951a23d0c8b81c145cc6956a6a1a4b81d865eb7922c123ae6d44de
MD5 65cfe74584aa540f043881dce194f1e0
BLAKE2b-256 66ff885d26056e9273ca394678f5db8c86081ebf701630ecf9dc451ec49bb835

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 74146b009f8ca4077cf528130c7e2d89bfc6260afca55d731b1991d8b089f71d
MD5 80f19c3d11993200b87d55fce8baee16
BLAKE2b-256 8eef8e1660d14f7d06d927f426b3a02f8341e4d47ff1d80c36ecfc6aa2d26d6c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 e0525371ffe671c5c44e87473a5c14e9de16cdcb8a7d9b101642ceb0b40042c0
MD5 4b94def6b491d3b348912134dd9d3028
BLAKE2b-256 4aaef9cd3b74abbb4146ad8a42c7824d5714dc8e8a9220661b1cd0a92a06fe8b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 6568e16362b9d6df3f9897cbf5f027711d4d9ff62a2675bdf18de9c2eb5ffe33
MD5 064c2f838396f5d60a6ee9c6cf80aaee
BLAKE2b-256 200888951a21cc33253bd39b0454a6bf623bb3a898c383681c3c551eace768bf

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8ef9a9e9f73d088bec7f184f77e58c8da3fb08ade150c74425936fbaf67f6646
MD5 39e0667c4375ca7ef29a3e0145139211
BLAKE2b-256 5ba1337c0f1ae16fcced05595fde32c8828403969cbf611984384efa2efb87f4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 817c20012d7a4a332ba17dd3720a4fd3b47271b5da05ab7ef58cfa5973ef4a27
MD5 ae5dbd243fa48ab96e1c44c56a123671
BLAKE2b-256 a2926ea0475c455cec0e1fe43c1252e95ca62373f15a26c4474344af46c22890

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 22304c2ff91f94840c3a32e83076964b080786f4ba92cb7b99dcbc21e8f226b1
MD5 af488ebd1d042431c9de3f90d5bc2159
BLAKE2b-256 5f4285bb231d50455733d78d7891391d38cdd6547910c47f7d302b34ac3e07bb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7b7662463cf82072f8cf76fb313798c2cd3211df4e5fbb9d27a4317fc9783644
MD5 5bb350f7005ed8587d83f4e393ae8e91
BLAKE2b-256 6dead2e4d0230e58623c35452dd62360fdfd9a68eacec4ae01ee27b491f29aa0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 dbd0bae2bf74fc8c76ed3c41ca5565bacf737ca92fb8ce3e2c0a4cc4aa9e58c1
MD5 64adeb8a77856685b9ea95e4bb1f108d
BLAKE2b-256 a6d476c93ef5cccc9b9f3b7a5770b7f32cfaa46eec371612d7b5648a6c18e9c6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3b0ac50b17c2655e5816353130e1ff399ffc6426641dcd8e795a16e579ef57b2
MD5 a90f5e35311fc6f0d7584e424e81ce71
BLAKE2b-256 6eb4fcceffedaa00a00d62295c2350132918cfdd8416f7d14bfba9829144a628

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.13.4-cp310-cp310-win32.whl
  • Upload date:
  • Size: 914.4 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for rapidfuzz-2.13.4-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 c833780b8674d831400b656ea1d2744369e11002c2be2e9f4d2a4a7629d00cb8
MD5 2494c05e9fd4a0a46d2523b1dd69172f
BLAKE2b-256 848945bd02248dae40b3c08078a9edaaa5279685819c19fb26c16e50c830740a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 be2f459f2c2427d0d7decf90c773a660ead34e3a9828fd80c6c8f8f32c0db5e3
MD5 3dc94bc1b97599df1eb40ed2833593ea
BLAKE2b-256 4b8ff9ef0338483a06acdbff6e8d4b4d4f7cb48211ca3b914670209e365e8b2e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 ac30634247af8384acffe920b2f6db972d1a36d41bf48349189e550752d72e79
MD5 5cbb27025d1812895d1abfcb38d2f12e
BLAKE2b-256 cbc4f5961d3e0a55b3d8b6fe0cc231ad7c91f0610ba650968a270587adb1c402

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 e61496e8e92dc267eb5331a16f129aca856a80c2dcb4130e454aa0bce0458a88
MD5 ae45d4c27bfc18a90efd77b189ed1018
BLAKE2b-256 77a2287aac7b183def7fb65acb7af93971b6769d3a875cd29783c5b7101b7f51

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 4eea58700abe0d9319b13a6799c8e6df62f00ba7e47052e71487d43a9b205285
MD5 ea77526d34696733ddb98f23a2f403c8
BLAKE2b-256 496c1d9d46245e8cd2411bc17dfaf3b88a5e28eadf0c4d232cd5a5e01cc987f3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 5c23533e846cf2ea5790bc14db422dec4a388002d259878ddc4dc58fabc7add1
MD5 f52d75aa5113342f20b27d2cabd9226d
BLAKE2b-256 27a365072bfabf8134b296bd009ac79b882abda1b2386bc1ea2da8637a6f737b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b84132b46afff57bf2ba7f4e0b6ac72514272fbc203e55ebe44d7838c06e0bb4
MD5 20688219454ae9ddef719028e26e715e
BLAKE2b-256 5259e33a324190b3b4500935dff5d29ac5727504e98a5c4e6db3cc14304be74d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 643e76cb678547ce9e9d58192907d62c99dfa312a817aaf12aefbefebf73848c
MD5 00f4cac3358f55034494cf6cc456ed9a
BLAKE2b-256 6bad501fe4a03e39dcb8480967444e7aadd5333b01f50b7f0ce27e6414bca6ab

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 db5b3eaa21e0b1a7c8e2dc9bb07bc0d5bb4f89b3881a29f31cba22c863ff50a5
MD5 96d00df7b4125aeaf2876cb119b03105
BLAKE2b-256 9f38ad99fd39ac00c50ae15fe7ff68a39dcfb3a3bcd5978d4f4419a69c2091af

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e8926535c3b3dae1418e8bd4dbff7e8dd3cdec1327192f467bc76528c3c35f83
MD5 2223ca839cb167af5489ebc66b620fc9
BLAKE2b-256 38961684abc67ab753eb4ccfa1dd3545710843af58989b32c865f4be696a5898

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 91b7c0c9a8aa18eedab6df8fa028f82e73fb5b7e46b3a9935e625ea85859148c
MD5 4bd558c75a913e808f7b4c4241ba2ec2
BLAKE2b-256 b81060140c307dc227439ab5357fe23fb0614ee65292b350989fef9bcb142cfa

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d8ce8b3fc3da7e77bda3b9195861c81909ab960f04e5828ba575f4f584f91bdc
MD5 e0c8f1d7d22594c3b85fa04740310229
BLAKE2b-256 cdcee396cb7a910b1cb58c580f5593b9420fd1c846e0b5b78b2a012eff5df414

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 67cc400e23aca3976068ad7fa4539a2c0236bbfd269ba56a927ff0f28cdf06ef
MD5 d1a3d7367716e7345ee19ebe6106c498
BLAKE2b-256 2379c291e9580104b52729e1d1fe78b8bfb5ee30aadea7354eaf367e836abd08

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 33c540b6c0e34df13c5bd722ffc7738527642e1cee282cf6e4c8fd78d70346ba
MD5 718f6632e515215a1e649c43e100499d
BLAKE2b-256 784c9f6864a82a3bc37f7df7c97d7545f4c1b52622df72876fe7839420bbc02d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 cca3a522385917eb46e846c16fcc3e0807f53035e93b879f8a59fe80a604eda3
MD5 4325a850c5768d675de616fdcc3289cf
BLAKE2b-256 c8bd11a1e64b2529c074400a6b549ec1bb56d914e004eb49fd783fc4150fc767

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.13.4-cp39-cp39-win32.whl
  • Upload date:
  • Size: 915.9 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for rapidfuzz-2.13.4-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 6d2e89c7449d75bec2fd8ac9ef60e5e00e86b520df9c40c64bd47c21a4b00251
MD5 797466cb6b7d627fbd58431acf077baf
BLAKE2b-256 6197c29e69847bff5ae1af9335c8e6920c3f8b70d7ce155a2bc463723a23dc9e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2df2d6207fb354f751c644aecef12ea2b881a280d2998afc3aac5876aa17538e
MD5 90e4ed4c44227da6ef16a3a3e9a3f7e4
BLAKE2b-256 b9890b9714236f2ebba463235d1792a02f4a8098cbe6b908163412510b26790d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 e4ebc235090cb63fb864f063c3c5230d69f40ab3642e85f1ea8bb7307483d729
MD5 c2d90e92bce64437e1a923070967cabd
BLAKE2b-256 12f8d2dee07bc5697cc90b72f1e60783e12c26ff3a7a2e917f3ff0a0905a762d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 f1f23a042b0a45b0a365597e20a22b6875a8bd968ab200b32cafeebab9194fd2
MD5 a678ecfc672d00ba716fbaefe7d7f6b3
BLAKE2b-256 e0d750056ea3ce4fd4db2f6891cc936e99fff59a174e129659a9fa0b44204efc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 884840da5b5e43aea5a741c5b920826b07bc0896c8e569a1563e1824d77f408f
MD5 dea5b82a7262cce4b038a096e4ea3814
BLAKE2b-256 555063d823be070f7cd3a19162eb4cfbffe565652e36620c058b9141a0ee5304

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 17e2c4d2965032eb918e5b0185d1b1822edfa5e1d7d2f327677dc02d1982e904
MD5 3b66ae3626cc81739ef2f86792c41ebe
BLAKE2b-256 eb41af12aee1f387fafabd6ea78fb6d9af6a4504772c4e34eaef75cf4d6eca96

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 915e2b8ea1a1552cf9abe32b6b7d7f1f52b2c17aab3939b953920a6026a419e2
MD5 6023eb1aa76c0e2853113371b1d945b9
BLAKE2b-256 ae0bb40bcf16309f63ae93b224d59c3512e733eff9538aef00a4bd4ae14b2fc0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 b30ad0e91d7635b0ea7236b13739c9b55af82b567432833d8ebab85aedb758eb
MD5 9eb0141b20bb2746079354eff51e6b28
BLAKE2b-256 7a215287217c505429806bd2f040dc5fff35041bbf88675b2db563c1dc52df64

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 a1cb2940c39af58be27e74029cb169c722fe60e8a30004039ed2fe8d57205c22
MD5 0c53ff2b6135c379c22351c3ba4e5c6f
BLAKE2b-256 14c15e26be0b0afb160826dbcfd8ca46d2c7cfb675b53ed18e099d029c1ec7f2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c07555830f7b432432ca56c3f465803f8c63e4d094e5ce792374e7de2c85dde5
MD5 882f8327d75a86115a91bf8d378410ee
BLAKE2b-256 0da26f9bd3e557f9d33adc4e26dd4c4c752d6b268a072c720bc02eacca8f9842

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3a2c3ae0dcb5c668be3a513c1783860db4a8b09a443cf087064a2fbdc21d0f84
MD5 699bb216552c6000cc57e47a23bd980a
BLAKE2b-256 10229032fc1548f821064d36b000d0075656c1517195b93c99bb9fa6ec269035

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fa94f6de41047e23b1fd0a6fbcc441c9e91ede15385614d4880b91a6c4319315
MD5 2fd1584520c971b02e76e89d784c0668
BLAKE2b-256 09546b0c6797b70bb76af94850653737863ee024189495c54b8f746a2ffef0a3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7ba39bfba079a16f30008f0b01bb1cbe30550f291ccfbf9472f2bd9e8bc4ef3b
MD5 3d18d73098e396717145c4d1e4220a72
BLAKE2b-256 52e0477e7e9fa2a7fda4fb6c99e17653d252dd7af8b196c60bb052ef34170647

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 c0810d0c123fc876b3c7a88060b2a2f5d23bb35020f9466169a721561e8b8205
MD5 b1eff18d487fd6f661703cbfddd83fa9
BLAKE2b-256 3b75fad87036fb91767301584d5a1838506397d6f0cd5647b4f30d0b30704bc9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b3d41b5eeb88e79c429a6fe13fc4b587b3876e16fc574715798a84865e72f6b5
MD5 f1f38c6487e8612db0883503cfa0eb83
BLAKE2b-256 0cb280d2dfd6fb69c97e598225e1b859b26d2de4037a2d269f440a785a20c41a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.13.4-cp38-cp38-win32.whl
  • Upload date:
  • Size: 917.3 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for rapidfuzz-2.13.4-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 8949404ebbc3ed8afd064b5109efea5fe20fffe81a0b8f9d221d860947830826
MD5 981f2cf11f8572d68924fec8a5e5267f
BLAKE2b-256 8ccad9b3acdbdab3bd44583491459d9d886b8a06dd53b2de2b0de675a7f171bc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6fab75f3e910ca7758ec0bf0c865cf42aa9550925ab1fb9a4fc8e48b94c1c81c
MD5 687e16b5d0cc278629ded0d4ba32213c
BLAKE2b-256 ab051c35d1db069c6b326eff1de36d5cdfa2cc3a853dd698909bdff28e3ede58

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 cd8ca0e4e84d161330c3375cb2e7e29dbd451f7291873553822bb9f1453aed33
MD5 2756a7c814214c4ed4816b804c30645b
BLAKE2b-256 8491a8105bd1836d1010c6ecc1bf34bdea7f24cc1457a426bd71a69fd22d2252

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 3e3ba0056fdee693694b916f7f2de903127a56ae020a6d58b7a7ddc38ccd81e3
MD5 8be91091412d9c93b0fd9d5b3138dfd5
BLAKE2b-256 143719b51b98977aaa5e7a892d85b6bbe3ab974c7824bbaee9e7b123d505d6c2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 93b66fa0f6299ea51bbf3cef926bb7e040d625a0b000b9cc9bc0d65f0b92db16
MD5 7eb4fff16edab6e100a7460cf6a1dac6
BLAKE2b-256 67a32e30590d8ae1f2af55e17ce15f26aae3176c3ee13202dc954f2a9b61a35d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 57808f19a5a75efa2034c7f89fdd96795f1e9a120fa84221095b3a9edf3a401b
MD5 b9909bb88838639dbfacba821a7ae6c8
BLAKE2b-256 bf4c2633029a03afaecf4b72fb5d4073c9e2842ff52cdedd9134aaa5d03e400d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 993342be2be3d7cb0511720bc2753dfcb47c41014967d6c8e067cd61cd70bf32
MD5 054fd89db2c87f999c043329a6c1f6b8
BLAKE2b-256 fc915f33a7a7430791cb1be65c9b5f66ecb70e443bcfdadf5f65e0a7e587ad82

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 b216fdfabe152faf23549934ed8276da64e066294069c083bfa239723cae43be
MD5 571e9f6c9ab762d817cd5b6250256681
BLAKE2b-256 0ef26681f0ee5d1c6c1382f426b68c95c62ce46042ef2508cb20e7b0f931b22a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 2e7adcc2e3929213f7337b41aff71d40ab674b9bbab1d70d21f0d4975cfe09e2
MD5 4e45280fcedbf465d1a1777f0bd47d68
BLAKE2b-256 b1b97af25f859a069849fd7ab508cb604bfde296f566b1fb586882c25d5a9ab2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 92e4e21cb8f435c37c6996ab4af655741867068d9dc8dbf56f30857a481aa282
MD5 bfb171fc674814af36188f582c68e666
BLAKE2b-256 e33f98558ccc2f8fc147dc6cc4776075678c6160a266d476c49a7828652debfd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f21819f131678fd89d501adc1a8727c88e193b6be5fb98e7e11059ee5f2705d9
MD5 880415c221aa06e87feda3acef62e1bf
BLAKE2b-256 1830c471297135454236948ccf223a0858af3ca733474b1bcf91e383fd2d596d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 249f6e5a57b6e810afd32e3836e2035a7d3a8ee4e04c1a0e6cc97cc215893fcb
MD5 4081741f6aa5ad64420979aee27d3d96
BLAKE2b-256 b99cde54b34d987cc74231b842645dbe0a293214bd2d6a70843e99a50a99fac9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5a2faa716c5cbc66606164c0ed328f377999b0f223ee8ac8fb45eff3ebffd23f
MD5 5ea983312b1be46637eeecd6d2f028bf
BLAKE2b-256 edd9e042b93c24459dd7c3d1c48911dc8f6e4743c3ff2ed05e0db8bd7c25321c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d994ea8b0c09922449f26190c8ff98dd065555bbe06ba8e6ea19081f33b45b13
MD5 d6e831d8fa6ed27d652c565702246ff7
BLAKE2b-256 f8c6e970bb8806d0ba1649d361265849a271ac6b76f380021cd4cbe78501a18f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 6943c5c4ca584e95ffbbcf3bbd08f16e90c945ce79acfdd0dfe977f516b20c21
MD5 f0629714d075475a2294de7ed56b93a5
BLAKE2b-256 edd7724ccee58babc3787bb68269142c5feefd95448a8a0dcd725206bf2a06c6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.13.4-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 913.2 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for rapidfuzz-2.13.4-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 832479db73ed1936e09a4731f93f3588c719718759f4375c0b352088c55d5095
MD5 0a633feedecc40c4578c00d57e5aabeb
BLAKE2b-256 6d2b2184dfc5615eb88a743bbd519662d387c1187597074e6473c8deaf68fa29

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6a344abd3b1f4f318e6f550069ac079af373a433221aaa18f10b5db76c8b89e3
MD5 ecc062ed7e23680e4ee18774fa71b0c5
BLAKE2b-256 0733e2a92f22523cefab67d9180d24619ab7a7ce2224cf3d75a21a25a6f3b87e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp37-cp37m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp37-cp37m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 36a1c1d734b49f407ba7eb8929c37db458e9ab1afa752204474bd18eecc419ce
MD5 99290ba4691a80e47a73d45b7cf27a6c
BLAKE2b-256 cceb8fda877e17562f3c0bf7d418e030b09cbb3f1fe17202c2d83d8ec3350178

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp37-cp37m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp37-cp37m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 f4bbcbfd6088d2e38045163751bbf3557f634eb8bb5f71f03320a12c4cb0a254
MD5 3ad55da896729e668b6300caa6353149
BLAKE2b-256 3677a08b6797b304c8ea19efa43bea26d979e131c094023a65f82ef03a2fe706

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a78d70de1fa2412c3317ddd2dd545d060bd51641c02740e43f5711f22b5fe334
MD5 f6ab61cdf30ea1f7822d34701e6b96ac
BLAKE2b-256 c2a3ab5ecd5b70c30d0fb073533848e80a1eb575add24d5ad2e13ad27a3b601b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 c9c8cd0866110c7dd9207ef3e9205f2945c9211e3171865e5b95b38712b9fc11
MD5 b3841b06e8723b760ebedc891f7e22a4
BLAKE2b-256 2af61aa3390826d38bdd623549944b61ca12a7d2355d3419ca034b7b1983b662

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4773f5b2ea6b50ba2ddc91e01c6c1df86be4c2944d97075cf8362ed0049f3cde
MD5 3ee4b4a9cdd3883fb32ced6a89facacc
BLAKE2b-256 17fd4d4e01c3b9975bfebb03d25c90ffa00964ae7029d306aced02391ae02b06

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 d07a5a54e8346d6e8b91fd7183a936cadfb82888bb4bc46287e6252f699a82ce
MD5 84d7bd45e1b182a1e6542f48d5022528
BLAKE2b-256 4c17f56ad5b1f2e74d26f7cd6ea7c8f9fbb652c07de371cb1884db7122cd5257

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 e7828589704648e8caf43982ef5f4580b8af4cf6bde987c8ab2997f7337c9357
MD5 1ba71dd2cac8aac18147b9aee8c7c0d5
BLAKE2b-256 ab283cdb0e80c1958ee99d5e265a732bb68e7245c44133dd98a0461a1ef75158

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6983a382d050c85809ac2fbbbce56ddae67a08b4f0cc85a86ae159826b576287
MD5 65ec0c17ffed95549676822dcb0b9b91
BLAKE2b-256 b77e6dcf454799e41c06fd588ad419b188765d365eb5d10c3b8fac2b544e8997

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 26aafff28c2638ec68fd9ce5103ad2482ef5ea8dfaff20c8417a083c7b73a481
MD5 42555b1d2192d337011b10baf80c7ac7
BLAKE2b-256 0c02aae55101dc4ae3dc8dcb0bedb2055ce65fc0a46fd185695d2a7274fb780e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.4-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.4-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 41fbee702a1f0646f92e7cd9344c65894eadbceb9db9e82b763293dc078fc8f4
MD5 ec056da05602b2532fb2198a6f5dbc2d
BLAKE2b-256 eb5a4e366de7bfc08bb395285948329b6e229d4da46bf294fdb233c7d62e702d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page