Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continuous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparison between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparison I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
    "".join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
    for _ in range(10_000)
]
samples = words[:: len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with cdist in the following way:

cdist(samples, words, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like cdist is a lot faster than directly using it. That's why they should be used whenever possible.

Benchmark cdist

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. That's why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-2.13.5.tar.gz (975.5 kB view details)

Uploaded Source

Built Distributions

rapidfuzz-2.13.5-pp39-pypy39_pp73-win_amd64.whl (971.5 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.13.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.5-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.13.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.13.5-pp38-pypy38_pp73-win_amd64.whl (972.2 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.13.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.5-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.13.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.13.5-pp37-pypy37_pp73-win_amd64.whl (972.0 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.13.5-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.5-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.13.5-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.13.5-cp311-cp311-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-2.13.5-cp311-cp311-win32.whl (917.1 kB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-2.13.5-cp311-cp311-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

rapidfuzz-2.13.5-cp311-cp311-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ s390x

rapidfuzz-2.13.5-cp311-cp311-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.13.5-cp311-cp311-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

rapidfuzz-2.13.5-cp311-cp311-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

rapidfuzz-2.13.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-2.13.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.13.5-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-2.13.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.5-cp311-cp311-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-2.13.5-cp311-cp311-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-2.13.5-cp311-cp311-macosx_10_9_universal2.whl (2.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.13.5-cp310-cp310-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-2.13.5-cp310-cp310-win32.whl (914.3 kB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-2.13.5-cp310-cp310-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

rapidfuzz-2.13.5-cp310-cp310-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

rapidfuzz-2.13.5-cp310-cp310-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.13.5-cp310-cp310-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

rapidfuzz-2.13.5-cp310-cp310-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

rapidfuzz-2.13.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-2.13.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.13.5-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-2.13.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.5-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-2.13.5-cp310-cp310-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-2.13.5-cp310-cp310-macosx_10_9_universal2.whl (2.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.13.5-cp39-cp39-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-2.13.5-cp39-cp39-win32.whl (915.8 kB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-2.13.5-cp39-cp39-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

rapidfuzz-2.13.5-cp39-cp39-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

rapidfuzz-2.13.5-cp39-cp39-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.13.5-cp39-cp39-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

rapidfuzz-2.13.5-cp39-cp39-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

rapidfuzz-2.13.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-2.13.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.13.5-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-2.13.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.5-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-2.13.5-cp39-cp39-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-2.13.5-cp39-cp39-macosx_10_9_universal2.whl (2.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.13.5-cp38-cp38-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-2.13.5-cp38-cp38-win32.whl (917.1 kB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-2.13.5-cp38-cp38-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

rapidfuzz-2.13.5-cp38-cp38-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

rapidfuzz-2.13.5-cp38-cp38-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.13.5-cp38-cp38-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

rapidfuzz-2.13.5-cp38-cp38-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

rapidfuzz-2.13.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-2.13.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.13.5-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-2.13.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.5-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-2.13.5-cp38-cp38-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-2.13.5-cp38-cp38-macosx_10_9_universal2.whl (2.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.13.5-cp37-cp37m-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-2.13.5-cp37-cp37m-win32.whl (913.1 kB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-2.13.5-cp37-cp37m-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

rapidfuzz-2.13.5-cp37-cp37m-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ s390x

rapidfuzz-2.13.5-cp37-cp37m-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ppc64le

rapidfuzz-2.13.5-cp37-cp37m-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

rapidfuzz-2.13.5-cp37-cp37m-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

rapidfuzz-2.13.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

rapidfuzz-2.13.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.13.5-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-2.13.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.5-cp37-cp37m-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-2.13.5.tar.gz.

File metadata

  • Download URL: rapidfuzz-2.13.5.tar.gz
  • Upload date:
  • Size: 975.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for rapidfuzz-2.13.5.tar.gz
Algorithm Hash digest
SHA256 1c425ffa7a3fbcaa4bb90b6d083dabc974b96c535b73f03fb6ef0ae3fb47b4a6
MD5 6c006037201631334d23524a26ce5717
BLAKE2b-256 6914a64b52cf0dac27605be649bb0c3c1facd88b354acfad1cdbfcc0c4893854

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 8f3e85b9a4f16843404d5dd7705761188b823bc3f6cf8fbbdd922d6f99cb22e0
MD5 5d957267a650d510aaed76618e6a2aec
BLAKE2b-256 605e48dc5c2f79f1a591c4c2ef41f762da6d94dfe6d9baa918aaa6a80fea6286

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 69dee5b35ba0ecd8d68f9c8e018cbec20e65fd5e1ada1117d4f72c34e41a592f
MD5 58c65ff8e51b8a0c9857cf5aed8fa37a
BLAKE2b-256 f43b47ae274155666ff580f6595b31ab27aa50c219aa9a3cf13a24fcd567e235

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ed5554942417785a410762cda4f4a79568f4cdfc236724c3e12d0c9c41529e49
MD5 e8fda6e4a093e90ce9c3b8d532941ca1
BLAKE2b-256 13787e62421fc17085765d4027de6b216f0c24b3e06ceaabccf05252c2349a90

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5a237c5253e3db82f68561733c006a5d206bf1c4afb4590185bfdc977df49877
MD5 e6cab3f51148cee28038968d10a23095
BLAKE2b-256 3cfa7edc68182d13087e7ce0fc29ecd7770fb58bc0a5d226dce95c5cfc238f32

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ab240115a800e2fa127c673cc09d1e572ddb0bedf7c182b1c4aa15c12f97dcd8
MD5 9bed96b18b4b8078e7f5f911ec36c317
BLAKE2b-256 48ee3aa7160d6001e9b73e49ffa1fa237fea3a76785f47cce79e5e2bf79f30f0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 cb5ab62e75aeb593048157e32e79180662af8ef42f2cc7ff428bee80b3e3c70d
MD5 988207f80110eb68ca876bab12cdaec8
BLAKE2b-256 7dd71abf7431ff940125fee6bf590621b1576dadd7b5b39fd73ab4cf00dfae3e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5cbd628a3281dffe54c82f411cf95262d52a96982e155f30a5f0d856b6bb961e
MD5 c5b2decd6115837a338b4765c3122bda
BLAKE2b-256 562499a8000f176aed887755189d0a4b93b4bbb1a079ea26d10d1b07353e7a66

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8c27f74ab4ebe5f2cda62d22e8bb888fb705551758f96d8d7f1111ed0a943424
MD5 e026f3d1046a1bb65c834556a69271ae
BLAKE2b-256 c42416a72e130006f42489a90b6410971e39d997a14d65996c9de18517d46e19

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 09036bdedc78ac9e1a5c1f2602d49e149298bc4a41aba4cb061166d9bd01c526
MD5 c7a871d49341f0a46c9af3ffced35d48
BLAKE2b-256 512e2bb0e47a5d4a4e560ac0eaacc5ac14db7249bf06aa67747336e330db838c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8d3484439186a6ad06061dc5f129df1f85b211c3f7bab428adc939e5b682628e
MD5 6191fe9bf11dd2340f7b6e5fa8ab8b16
BLAKE2b-256 151ef3e0bfdb8b52f0b0fc0f68953a2ef4f3f17c4952d8fb48167a3756c53bc7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 d97335672f9e8e8f0808dbcd9b041b6f1bacf07215d30bf74fe0e59dcf1b10cd
MD5 a2164d2ff015d2a3390e386c66c8703b
BLAKE2b-256 07e2125da82e73c5fa512f6deaf146fd856101a9ebf58a3c13a0a7fd2b483693

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4720b2280e69674cd514ad991dd0d2e360ae0dc9971c7f2de739873f4c3d04bb
MD5 f52a826d6d447cf8ea998c825cc8ea2b
BLAKE2b-256 dcc8972711637182dbb311c974d6d64af78c5f6ca11cc82e4cb9e655ed71c044

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9dd5c7240c4c2f8367ff29100fb8668924dced3af3fe13faaa528026707fc7a4
MD5 214d44825bc6f573d5e976f20b103e6a
BLAKE2b-256 c69d39e7132faff7efab5fc85123a72cff8c3f4f4f90434f6f62956544074c6b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e493f7361e24e14e93ecbcfd5d4460b21937cb105c627610fbcc2336507984b2
MD5 7852f68680f8192032c745811ee13583
BLAKE2b-256 071de6d6754e0cefa05386e28db2b2948e694779ab5ee10a9ba391f4e53119fa

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fb8c0c46a5345ac88ff402dade5a8cfc510d2cdc17fcb0ce5bf5260e2a9d3327
MD5 90166fe8798b9322000166163bc512f4
BLAKE2b-256 390f7a4a6778d915699a1feea82a2bde2d8030e8395045d1a5172509a6342e8f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 44a6c7ec07a0f5fce02cc836de87ad7525503b8b517c284f2d97c34d5fe2d4bd
MD5 deeee52eb1e40af39fee7f3cf3bcdc4f
BLAKE2b-256 94c7ce600b53c347844f6ccb6a8b5763cdeeefa6443cecf030aec6497ad5dc82

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.13.5-cp311-cp311-win32.whl
  • Upload date:
  • Size: 917.1 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for rapidfuzz-2.13.5-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 a0bf81585b684f397a58220f4d827a07173f7e2e9367f5e1e734898751c781f8
MD5 04e231ef34c715cba8242f244494849b
BLAKE2b-256 39d8235bb8fc8a33dfa90511bbc0737cd873f0518e3105f99969439b3e23acc9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 41a4caf5d3079778d00855ffd618565ed4b1ad08ce9dec26fe927325096aa6f6
MD5 27ee36f7ce8da32a738bc729a55cdcd1
BLAKE2b-256 1dceee67ca5a5ab9d995ef5fe25faa727a0772bb3615c111aaafeed48ed80ff3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp311-cp311-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp311-cp311-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 1ff26276f6cb86f36935aed247aac5791c75c78e0d62359dfe80f8f1e44fc0fd
MD5 dd739990a4c3d9e2ecc54b421ea401e9
BLAKE2b-256 7f3066a1066e3e403d03ff054cc5a1554c5ca926d59ec66748776e4088fdb6de

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp311-cp311-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp311-cp311-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 de1d01eaf3d46150cf0e2809dfa65031b936283ac8a04aac6a3a07054ef18cce
MD5 03ee2a245f47f9e0f2598183e764bbfc
BLAKE2b-256 a2fdcb84803112bb4391c5fd3f3f9c9358644863f11377b77b348921a54f702e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 be00cd0db071ba3a0fcd0b9cd0d2488ea486c76c38435a08a9caefb7c85655f4
MD5 1c3132516f2180cfd3bb6e72a9e4a769
BLAKE2b-256 186a49541e2816921f07d16636b9ae7917721f4aed4fd665003274639feef7a3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 9359c2112edbc78451c4bb928effea1ba2ebc73112e7c40c72619ff8ca8cd091
MD5 faadbec131850ecd67304ec5736100de
BLAKE2b-256 32bced8551e412a6b4245afed51fdc69abe1fddcc77abd69cc0f811ddc5cfa8a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 afbb352b69b685f9de1cc9c2a3f67a9e7b567444021888561a491fa13ccb650a
MD5 d6691c2365cc076a530e7873e4a3d9b3
BLAKE2b-256 23331401f265282683710d277b198b0246483101c449374ded0900c9310eb0dc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 95c392d943a51124c14cfed84ab04c80c9faeeb730dbc32fcedde32ddf8193e4
MD5 ecbe95f3fc147a4ed435fa7c661772ca
BLAKE2b-256 8d0ae9e784cae849363c7e11c7e9b8778436aa72cb3dcb9ea9f825b3b1f522b8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 31aa886758095601e87b918fb33394af2865b60b69d9570b0082856279b6979c
MD5 964a3b358d876102f4d60b4ce0c8d00f
BLAKE2b-256 d3809a69f495ae2b94fe072a161726f7dbf99d05c97f564cfe111d3407fcb53b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 08f35ce2d0224c32e1332dcc1824c37e104bd09ee9ffd6944872227431f43815
MD5 425277081ec60339ed3fc33659535189
BLAKE2b-256 4bfa82bca46936f3a26d04cf75d6f46305ae3113eb25295095276b72babd370b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9a780182ec536736e0c1da0da6bd5e9571513ea07f6fd6a5fba5e0db6073f54f
MD5 d31344168c8f2968c28e8c157367e0b1
BLAKE2b-256 d967f4072b601e907a796e62dd41fbde57e46227b94e0f227ac5263aa62ebdc9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 51d215d25516cec881462857ac9439bac63925f808523fa483c62ff9ccac228f
MD5 1a801159e40909d872ff4fe60757d7da
BLAKE2b-256 56b30c388881d9e0289acea6540f1838cef1173fdaeb9aefb6ff3b89b21bb15b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 91ac95cb9b271fe777d8c448407d31229f28f1a0b503408638b5c02e9ca1d307
MD5 521857228e9efd15dbb4930b9817bc0c
BLAKE2b-256 d559149b0f30a0354e365948c0510f3f3e6985b38ac214e4f3bc389a05ad94b6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 ac7debd9f80f8e6f849bafad03b44d82a9b5371f0373e9d65a8d8e3ee24a648c
MD5 29bbe0ef346ff0b407f0e580e190dee9
BLAKE2b-256 4ac85896bd7f1cfc5048f6684c5badef6a800416900e3ec8174cafdf79673d29

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 20b44ee57e27154f1fc16bb95847d247c81492122b157fa1b606dc357bd6f726
MD5 af178451f10e92c5b3bc7b0b29e856fd
BLAKE2b-256 fc8064326dc03d7af2822a030045f6d0e7457c1a65a3baed99b06bdede4106c4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.13.5-cp310-cp310-win32.whl
  • Upload date:
  • Size: 914.3 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for rapidfuzz-2.13.5-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 6f16dbbee8fa63ffb03864c0aab40894568d972847d1ad69cacf3ad1e0e2f430
MD5 88735a591f88d77273fdc8366e97842c
BLAKE2b-256 db05d97c72b5b94ac164be5c0fc70d2df8b8e2ffd8420ea30d41f43deaf009d4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 cfac2cb1ed883903973cc508021586b7f27e67f2a72212965fc7b812496b1468
MD5 2254801b8627ab0aa9850f94a2ee0f19
BLAKE2b-256 c64d95e753eb489e07fb084c386196418d30c41c3032da42ebbf953585b3ce5e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 97db090eca7ddf7921c86e2cac4cdcc2969e82adaa7155d0fd435018243412a5
MD5 fcd9b47a97b84a635e00bc43bd14fa8e
BLAKE2b-256 530b36c2bbae246f3cd32051e64d948492848bc7c90111d0a37091e992738161

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 4a38731c9c75ea34042c3efdfee1ec3b8abe4f533508a60219905168535fa906
MD5 cb870d59415e49233a08a1237d6dbcbd
BLAKE2b-256 09a74fd5658b056fa95d4e820c2f39aa96461530b3e80b84a492bb0fa93bc9b0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 4661d20ce67133a333c1ae61f830b80e6d9e304632530841c05cf4ce1e0748be
MD5 16832210fcbd070e7c999a55d600b32a
BLAKE2b-256 f534311b6774e35109a8e10d154af4737fb757239583801cb5cf5ca6c2b707ee

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 12ca14d98ef4843928e3e7b96aa14b4f351483a5182162f12d002ccd27ef50d1
MD5 5809691b28fde39f0eb3e658162ab78f
BLAKE2b-256 63508761bd0774ca7c9ed7c985e0e6bf7255c4d841e4b5244652555434a36cc0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 de10172dccaad83e14f1bffc84f1bddd8c560493b8052270eb86e8db50458b89
MD5 d3c84b20a6a486b5e59cf18733144567
BLAKE2b-256 501106978a22615e237f0b3cd570bfcb1495a18ec8f3ea17cf5780070acaee60

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 61e415d0a3918af2486577cb3f694e50f6e0c0f96503df72ad4352e75b979d38
MD5 df3cf18e9ff33682524cdf1a3f3e2772
BLAKE2b-256 bc5f3dfb6767e7aabf7144a7af6347c436ba77ad66da6b700c15d583059d1418

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 5d5714afa328406db2143220b6e7310d50d6e1f029d401610366d21d814606cb
MD5 7da4f1fd7dfdb10de1fe0eac9b214a38
BLAKE2b-256 562315984cbe5afa6b5380d1f7fdc036d312db582cb8bd264ae97f97ae7ed404

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2d0b44ca6b5185570e44869e53cfb37d5774a4f3a46c1e748acb4c34ca7aad3b
MD5 af3452d720d04f82fda8a053ab04aff8
BLAKE2b-256 a057221a49e5d5eeb938fc9299d3a3df161e5db220931c1be64ab214b2f98279

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 adb82181780262a8d19efa6ab6d31fb996b4336f50e25e6859f271c4132695bb
MD5 fece41bbd16869a07cf8498d9029a230
BLAKE2b-256 2866305b1ec1df4df11d5e239547533b4ff3efc123ecfa64f843ae6750aa787c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 164ac7388096a3ae07d72ac626a1c3904d78b7068bf47c87577722f3b1a3c873
MD5 810549f3e9423d4a0a7ebfa3d1076ea0
BLAKE2b-256 6c9c9f85be4f4bd8bf7f4acc56d5a68364156b4946b95d38da6f5b38950fe459

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a057a3cabb1ce818f86e5fa06584e3bc9d4b8ed1a25c70a64b15f66a1143c76c
MD5 3e66c8c202f1327a6dc61af391f16e9c
BLAKE2b-256 d2d5e0ce6e09535d7b055d0833d88625990366cf5b55fb8b5fc1d80da873b684

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 32a37b1abfd0de9f0e84fe44a8b5b82f015c40628efcda51f0fe5df150d0e8b7
MD5 fecccaf6db5ea0a31d6b1aab88b5e2c6
BLAKE2b-256 3ee15b4c592807c8f9b803a5a57b7b549d381552bfe7820e943e2179a4d56d83

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3ac81203b1634ed69dadd6cc1827601b2e9c6e7cca97df108e76c44fbf7690f4
MD5 e499eb47c3b85c6cd15d7c1ffa70131d
BLAKE2b-256 3e9bd0aa8109ac083a00691d9d8ec2a2f5e4243186d8e6d79fe4dee477015e65

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.13.5-cp39-cp39-win32.whl
  • Upload date:
  • Size: 915.8 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for rapidfuzz-2.13.5-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 230cc6ca737b62c67b80232a82baa2ea54b8837ed909a4c809cd8260b11d3143
MD5 20893a8e8a930caec87e0030807560b5
BLAKE2b-256 f36d2c9e0a96d9ce94d39d07e87d8a6f5002f049d1eb94a62b1b7804af00f272

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5236bacef4e3226ac3c24d72a3c23fa55ef62548ccfd14ee0eca8962f9bc239d
MD5 65d0eedf750c2b589d23f65d2ce96602
BLAKE2b-256 eda1c6c36f2e620e616b73822cb686bb6ea1bef1616277408d534136d3af894e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 e034c75686702ef76e5aa7c921014abf01d4767ae3953c95d2122f049b015638
MD5 7ee918f3d4e26d619797d6f361c845d1
BLAKE2b-256 369801cc31f9157594241798ae86ff735989c4a42dd38dc3f556e75f4b962e3a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 b582428c4a3f1a0d643e02424595d97e64474d223e0bf01b59e8e4ca4095f361
MD5 dab2496e6e0806df18889e8d267789df
BLAKE2b-256 0909cda9df2946e477a6b4c11c8f8d7b3d5c2d1dce15125b5e253421d781b92c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 aa41b67cf558fe3dba042acb49dd26b2cc811892982740157634293fb3acdde1
MD5 a463f8aee547d698d931ef762ef9be30
BLAKE2b-256 87da94c3201e13becccb3eb070c3aa89fabcf8ff93a441a27f058f2ea7605855

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 1a21c3fcc1a035e0ac5b59296c72c83396890ac22c43b55482d463918f46b72d
MD5 087362dd28d41369a0dd90c704b1f26b
BLAKE2b-256 7f4efd92c294e07ae0b1b18d50df4b33733faaf213dce8df1bda56bb2048e4aa

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 26e9bf74c95bfedc51a7aec9e0000005070051f3a9dddc3cf85a015c6bda0119
MD5 1dec1c576ba529b0ee26ed097a90a618
BLAKE2b-256 7e9666cb10aa4b114d09f6ec77c630394775244fe5e66286af19a9250abcefec

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 10d3c6bb67f08374afd99c8069921ff4bdc5e8f3d3449c142b72ecb18fe2657a
MD5 996f8e0f673b1e749003dd1ce55a48eb
BLAKE2b-256 e6c93184851bbf006cef2afafc0ec8e50cf69af5f12017edec146ce29b9e267d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 4e0907127c609969f25c7a76767dd6c66336d9afacbf2c054fa96675d98b514d
MD5 9f03f9483540075a6ae988bbe349e25b
BLAKE2b-256 6b52009d9133c687919dcf4aab96149655dad72a8aab1f6971e299e42f5bac04

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e3174975d08b5c8879a20384b59f27a0e5bbb6675d0853a7c5b2d402fad0f251
MD5 413272483e03505b594050f15bec49c3
BLAKE2b-256 20867f0bf32623f72f5fa237252e23719571009d04cde17ee73c14a74a68d4b8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 920f85efbdb26b349dc0781605db8b7860363c3f7a6c65ec02c29e162c05aee5
MD5 9494ac4fb94d7946e9c1d3814d6187a5
BLAKE2b-256 f5bd3b8db5ff25dc9c90703f9bf9f377cec6e5a7b90f648676ac7af929e824ed

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 036ac2f66278225e72dc070db39d5cf640fcc14c97b95a908df9409e6013778f
MD5 b3d7013725da919d04964e0769a8ea6f
BLAKE2b-256 6d9a0937bfc46a247ff0ae888b2f6642028a40e32bd771772a583cf3ade7681b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e8332932955d75b65e13fa3d0b614dc29d336e90a4d3153bd98eaa1a5ea2e396
MD5 e74635dee4259478cec05c30b83483cf
BLAKE2b-256 ee310f93aa0b48fb1de1953b46e8702d2cec444a56ec116e79fda9dd1ee42f08

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 773b2e8b9c80a20f34d8058067fa418b4ad1d301e135dba6c397bf82a78029e9
MD5 407ba9c88412d87edf662081774fe700
BLAKE2b-256 a642baa426d73cf1071348dc13675036c470f2f2606be8736e1817041d22d29d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4adeaf9628e86184cafab3a7bbe4927a04b26af647a407fdd6649371a3402671
MD5 71061b4bd0f106c2792961b08e36bd0a
BLAKE2b-256 9e4d38e487dbf1a414be491b4178e5ff19145897acb7b5fb4534dbfd7b754161

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.13.5-cp38-cp38-win32.whl
  • Upload date:
  • Size: 917.1 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for rapidfuzz-2.13.5-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 87df5f209219087626359685bb5062fdafe52ef199d6274d963e3ed3b957c02a
MD5 3189b1f559c0f8d4ff8afbdf118d7f41
BLAKE2b-256 e2e923f5fa9a178f30ef8bdabe9d6f6594110c49c6be1ff692337c3b29989343

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d39f708ba6ff31b8bbf4e2f30d5e3752ba24e7db7d4f74dd2cf789d555bd7411
MD5 334ef845e6a0c13548b452c66963141a
BLAKE2b-256 913b012ffe4164bedf9d8332552929b25035c6b370b95c3470d9813b54bcc776

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 1d20b139431266b3f2e72dae16cd34357bf6bd44a60b8e2a79dd01435d6da589
MD5 0181e3c8923a1f06ac9bf09a00a7b989
BLAKE2b-256 e1c669d7fa59bc57ba3f03e958aa130752b54fdcf29711a56fee24f60fbee6b9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 458bab815c908805dfafbdf0d14d48ba4b36a3a5171698f1f3fff828bafdfb0c
MD5 e362ea6a09894fcf34eb6a502dde95fe
BLAKE2b-256 7820341b580030441f7836ea0e5915694ff793a2624d1d428a27833b066e28ec

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 70168a16c3adf4e29a60319058c8e0d8ece28c1bb04fc5c6dd35c99ce1f27a3c
MD5 28394d6fc799ba390b381fd1908e03f5
BLAKE2b-256 101b107097b45abda443c22c6586f1336b01f9c90f3e7f2b876b325fd740082d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 e38ff3679484e64a3e4a61e1cda466b2bf62d31e394bb24539380d3564551a79
MD5 f0b7089241b46308923546240336a9bf
BLAKE2b-256 8aa8182a6555b794af445ac2d013d6a9c0e0495faaea1f5f34ecd17b8b43dc8f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f346e387494881c2607340b3668c3d02d16cc0d8aa96a3ed0e2a8eaa07900124
MD5 973efd00c129c240e94a1bff05aef402
BLAKE2b-256 569e6b3a1b205a13eabf841d750852666eac9e079cbe68ac845dc88b82a0c435

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 92f1d879b70dd2f44d2edcb0e7af702b044b2014a69bb63ba8a5f84460b93942
MD5 3a217b332fe7ea6f589d44bb6cb4640c
BLAKE2b-256 a2ac2d1891c71212efc39d0b3998af33959fc7af2f01293de6e5d158f004cf97

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 a1d0c01bdfa7fe08ff8c1780c84ea0c3f487241f37ec08d8aa6317866b81f58e
MD5 01d6ccd15e5672e722440c8f000de210
BLAKE2b-256 449d0ddea4fffa7c38954c18df8338282f4978a897e97c31ba2ca7450b8d4e89

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9d716c8f361ead7d0a9f802ba1da96adc4c8e9c1a59c289fe73b2a691d0e9a4f
MD5 4f460a84826ce776d696f711774818d4
BLAKE2b-256 fe9d6cd5020ff74e897029cc7d06ee55464fddcda1f7fc0ca3cd14218b5431d6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4037aa5f3c76787fb2957fbeac375d46ebb68863fde61d1ef02a224a341c57d7
MD5 5e7c89d74934b2f30d27f854c7314f57
BLAKE2b-256 bf22751f42ebcdf6a2ae39ecfb5d425229c845e7c9858e0341637cf611dd1e95

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d23872f965871d31dd3a7affcc079008c34674346e28c324d53a10e56c75520c
MD5 71958a7b55c2351fd55f2751f46d8086
BLAKE2b-256 f6eccacfbda0a010a255bba23a35e5beb1f27f8254a03cf527b4ef4d87a769b2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2ebff4d87a658c7768f5558d9a77df31ee81ee3732235ed8850ec891204352fe
MD5 eee7a738fcc9c0a4e5c1b04c88c408b3
BLAKE2b-256 28cb1ab187bab89fcb8b271572d6a7ff0bbfe0be73b11bee485317f16cdb86c4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 3a06e05ca85b403f641b26c2e2e5e0d3ef62cce809090312c3239a8b21ab3d94
MD5 0c9aaa2fc376327cfc94b0940cf5d098
BLAKE2b-256 0621acea02167e4648af8369390323bc145e8b64d165eecdbc3866a23a7b2131

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 5cb1116c114f5b7bcc8fe28159fd7a1058fdbe8c512eb56f7b9bb94ad1cf2d5d
MD5 7c4ed7adb2613b8060d41c1c6976d5de
BLAKE2b-256 31c50433c29fb65822dac5ca1b3c5e1d77d8943098ec94e4ef96cc1166408163

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.13.5-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 913.1 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for rapidfuzz-2.13.5-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 8f228ca66bed0eded49d9914ebba174a082fc2e9ab5d65e7ae357c0d8907c0e3
MD5 9b0beff8bfa9758e54c44555ee970079
BLAKE2b-256 90a7da9ed292410b5f5f2d967b830e4ad15fefdd036c8ad4a9bc9627f0001d72

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 50643566dfad4aaeb89932e6b80312a586ab838a8c2ada8c5cccce2fe683df75
MD5 7c6ab1eb8ac250dd18a75d0ffb59a14d
BLAKE2b-256 69abf2b60b12e1764ad22ed4d5c26f7e964d8a99d6e446f0084c85fac7a8fb76

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp37-cp37m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp37-cp37m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 6fcec38d60bb639581ddfe902951079fe3e23181b4dfd18122ff2e75a4ce4301
MD5 9fad82f2d2deee4620a0e2dcad1bb318
BLAKE2b-256 50bd43037bba722e07ce16bd1ff0c9f886017fd1f1282d31148b81f62876f204

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp37-cp37m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp37-cp37m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 56802805b3afe263af5e9f5a236d30511c44403ccdb38c7f9307c0eee79b0bc9
MD5 8b23befdf7c3d81a7a91e24eba5aee66
BLAKE2b-256 68c4d3c4fceb803160d67c301a901f374be8f372f5597c99f5f1549d2c9f266f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 528aeabbddf688889df9dcae89136756edbaf21abb57371ad04554dd26b5abea
MD5 55990d9699d2efc0860441f6f9b8a907
BLAKE2b-256 7752be45665410fd136ea5104e37c0336a251b07643d00820e6a644b6df9f6ab

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 570a85a3e549743434007d5d6561742c44948b56aaffbc468caac40abff05945
MD5 0b7c56100f691c48537cae41c0582d66
BLAKE2b-256 360c6473f5d6026662d4bb1425afd04d390b4a9c64b945215bad9a33fa967e08

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e8eef812c273d2fdf21f8c73c2402ec0de1993cb682586731c3a87b9ac18a014
MD5 cdcc3e4a1dc4dc29c9cce1e17acd4f19
BLAKE2b-256 2bd8bfe179e0c455161d6156964def80640409c25b4cbc209101bd79077e1ef3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 7a832c2ced4fc0bb6f9d7330cedf0f1cd766b1a26db0df89b3d6d8dadeaa7250
MD5 c8fa8352a49e25ce80c3f9d18f9b4c88
BLAKE2b-256 2e5f10784cb36c04e506bb98df56266c4d95994b20b30a324c2d86da91cb07a8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 47ea58485eb07ca4feb4487369e49735f9b3a8ca4d48f57b83968edcb2befb34
MD5 9f17bf389c497e1f6e8e665dfd463f17
BLAKE2b-256 fbe01f136da3a48241512964ec007a6ee634559b60d196c41f2335d1db18e624

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d12d130daaa015f712a721d04f16f15d09a2c0833c82d66f0350ce16964932de
MD5 9cce8b0be5fecb4c3ca3bd4d4a9a68b5
BLAKE2b-256 af2699c48a78334776ee4d79415f806519416bf036f12a7c19bd9860ae10259b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 47904b26404fa09cded8fe03e93570be44893c3a72badaeb663e63e90d2d6ab8
MD5 689f18e972eff3d3cc2c65db569446c4
BLAKE2b-256 42a230b15fb137ef459508bf3c3a694a54649a2f918a56383e6cb73aa374ea04

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.5-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.5-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 46d4e98e940d978350a8d718300d1c426790f5ea1bdb94ff4346e246f0727407
MD5 2ed4aaaedd50793f8d19c9deb57b8a66
BLAKE2b-256 5cf8ea0c29ee3ab1783e73803605b64af67cc99e5842079e773601e61b02a0f0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page