Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continuous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparison between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparison I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
    "".join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
    for _ in range(10_000)
]
samples = words[:: len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with cdist in the following way:

cdist(samples, words, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like cdist is a lot faster than directly using it. That's why they should be used whenever possible.

Benchmark cdist

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. That's why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-2.13.6.tar.gz (1000.0 kB view details)

Uploaded Source

Built Distributions

rapidfuzz-2.13.6-pp39-pypy39_pp73-win_amd64.whl (971.4 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.13.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.6-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.13.6-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.6-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.13.6-pp38-pypy38_pp73-win_amd64.whl (972.3 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.13.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.6-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.13.6-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.6-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.13.6-pp37-pypy37_pp73-win_amd64.whl (972.0 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.13.6-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.6-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.13.6-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.6-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.13.6-cp311-cp311-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-2.13.6-cp311-cp311-win32.whl (917.1 kB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-2.13.6-cp311-cp311-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

rapidfuzz-2.13.6-cp311-cp311-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ s390x

rapidfuzz-2.13.6-cp311-cp311-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.13.6-cp311-cp311-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

rapidfuzz-2.13.6-cp311-cp311-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

rapidfuzz-2.13.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.6-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-2.13.6-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.13.6-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-2.13.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.6-cp311-cp311-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-2.13.6-cp311-cp311-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-2.13.6-cp311-cp311-macosx_10_9_universal2.whl (2.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.13.6-cp310-cp310-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-2.13.6-cp310-cp310-win32.whl (914.3 kB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-2.13.6-cp310-cp310-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

rapidfuzz-2.13.6-cp310-cp310-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

rapidfuzz-2.13.6-cp310-cp310-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.13.6-cp310-cp310-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

rapidfuzz-2.13.6-cp310-cp310-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

rapidfuzz-2.13.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.6-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-2.13.6-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.13.6-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-2.13.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.6-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-2.13.6-cp310-cp310-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-2.13.6-cp310-cp310-macosx_10_9_universal2.whl (2.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.13.6-cp39-cp39-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-2.13.6-cp39-cp39-win32.whl (915.8 kB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-2.13.6-cp39-cp39-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

rapidfuzz-2.13.6-cp39-cp39-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

rapidfuzz-2.13.6-cp39-cp39-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.13.6-cp39-cp39-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

rapidfuzz-2.13.6-cp39-cp39-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

rapidfuzz-2.13.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.6-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-2.13.6-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.13.6-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-2.13.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.6-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-2.13.6-cp39-cp39-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-2.13.6-cp39-cp39-macosx_10_9_universal2.whl (2.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.13.6-cp38-cp38-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-2.13.6-cp38-cp38-win32.whl (917.2 kB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-2.13.6-cp38-cp38-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

rapidfuzz-2.13.6-cp38-cp38-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

rapidfuzz-2.13.6-cp38-cp38-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.13.6-cp38-cp38-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

rapidfuzz-2.13.6-cp38-cp38-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

rapidfuzz-2.13.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.6-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-2.13.6-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.13.6-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-2.13.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.6-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-2.13.6-cp38-cp38-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-2.13.6-cp38-cp38-macosx_10_9_universal2.whl (2.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.13.6-cp37-cp37m-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-2.13.6-cp37-cp37m-win32.whl (913.2 kB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-2.13.6-cp37-cp37m-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

rapidfuzz-2.13.6-cp37-cp37m-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ s390x

rapidfuzz-2.13.6-cp37-cp37m-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ppc64le

rapidfuzz-2.13.6-cp37-cp37m-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

rapidfuzz-2.13.6-cp37-cp37m-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

rapidfuzz-2.13.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.6-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

rapidfuzz-2.13.6-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.13.6-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-2.13.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.6-cp37-cp37m-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-2.13.6.tar.gz.

File metadata

  • Download URL: rapidfuzz-2.13.6.tar.gz
  • Upload date:
  • Size: 1000.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for rapidfuzz-2.13.6.tar.gz
Algorithm Hash digest
SHA256 948445a054d9fb30a93597c325d8836232bd68e61443a88779a57702aa35a007
MD5 7700c4edc2593d23ee667e1d2132de6f
BLAKE2b-256 cc42f3bde4d6e5711b5ba266dc66c66bc0659e7c2f2016f46d1927c76d40ad57

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 e5f5e3eeb6816f98973428582b27a8d709e2e4f240165c59b9bfaf564a4d94c4
MD5 c2bc7fe60eb7551fcfa08fd5ae208a49
BLAKE2b-256 06767bfaf2cb06beaa661936cf22f1df0beb0c881121541b821db8512585aa90

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1f85b751e0c0a5d5fbe9d327e53446c2cfae0e77b16600ff4854671f4f9237a5
MD5 c947e6b9486767a6dd7bf40b6b2026df
BLAKE2b-256 87ce015ff213334cd4326efb7bd4c6a36659bac09a90edec2099e238857b0d3c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d7812ad1ff06a570a6e0e5f1aceee673e7dd5db2c304d34aeebac0e5828291be
MD5 cb120ee8ea9e76bcc0e300e03829c861
BLAKE2b-256 1236dd30143c763edf6e74b8f2028928463667960c81a0493893ae84cdb48855

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a0350caf368aa58b598276e85b5109bb4d3262a7089beddcf45d9e2bdc219415
MD5 cb6cb67cfcadf659bd54856139ab6acc
BLAKE2b-256 c43433778bd7748351a550e124fba0ff15cbce3ffb7d134c48ee0c21469ae286

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 24709358f4bec9a5a1cb0417edc8fc8ec8161b86d546b98c6cecc647bce967cf
MD5 dcbfa8c9eae764b78aefd8bb762c1ee0
BLAKE2b-256 fa77c637e44cc973bd4e234dad642c83ce050d77348cc929637b077228fea81b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 6569a14ed01dc2ee2f915b97bbbf9290d924461e15f31df9e770dfab9c64b42e
MD5 4a99b6ee5692a02c0a031df732f907f1
BLAKE2b-256 fa9feeeb3f391756ac113be9ee212bc374cadf05443189c669b798a4f3e227d2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d2c2d05ed5ae8bf7b57366255f85bdea5420ce5ce32c898bf44bfaf55c043ece
MD5 d44d805ce72d376a41a1c8046d2be49e
BLAKE2b-256 d110abcb0bcd4b38b95111d04c862bf07dbf8f496f81919123da13211697b934

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 df794809b916ab868b3fb0fc8ffa14ad8ae9deb0fbcc7f697ea900512024b4c8
MD5 0db601d145006359e27dae1b49bc14b5
BLAKE2b-256 f97552774f3c67a54f4b793638457fbaa68c9653b45b446fd17b017c2010b3b5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8a19a644f8abf265a30b7787bd16b2845b75f6925c21ef9a1745415ec79f740a
MD5 a7aeda81095e9e5c6ea22726fbee8245
BLAKE2b-256 da29b11d8826b006075fe32f03fc5224cfa9e2e222cf379b5fcad27022e61461

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7f2799e9b7fea1c42f36d1132ba2bf265724161a57f037b085aee91fe851d0ae
MD5 687b9fb6d14d96e1d80e930acd36ff70
BLAKE2b-256 37947ffb909177f4a4ed2c7a14f779c4f8f3959c098bc64178e348e5989f74ed

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 699ad346ca8e462808eb48493f9b28d82447e329bc68f6bea1f1b41615578a03
MD5 548e6198ac1da63a8fc93d3c4c004732
BLAKE2b-256 d0fdbeaf02aaa5aaf855d13652ec6165e45dfe74b67b2d03d40a589cdc3513eb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 19d872bb8fc106cfabe5f0e8fc2e23911e336823d4c326f4186f2b0a7f5ec0a4
MD5 691fe7f55d06581e4609ae72b7b18926
BLAKE2b-256 e24f563e1f36e4c81cbe79981a03b0630d9854fcb2da0265f69e50f76ca130f1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5179cbdcb97638d8ad4b2a638f76fc20bdef54c3f32879756bf56ed38f9199ad
MD5 fa42580006ed51c5443cf50da0d29aa8
BLAKE2b-256 2685bb5beeced4bc32f454fcebe9b8ab997a14ace5e2ac5a913d0bc83808389e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2a422aee665b096bd5b02883ae1528d3e5e484069925d54e99db7233852fd1de
MD5 f10bc56a8a3d38ead02ba0ebb8082cce
BLAKE2b-256 4322e947daab7d01ae1ca87000103c7916472bba1500e44328a95f857d859867

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 db38d0fb8a2f317b34adf0d418d1d0f3ef0eeb3543bfda0058abf34a506992c5
MD5 e78793565e261e3ee4af2130a69d93c2
BLAKE2b-256 07e33d3242b1c79a810e0b6f72f2938cbc493ffd4bf1ad605a043c1528ee82bb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ea23efde72c7d9a6170c2fe772a5be9ea1fafcf88cb11d935fbc665d2c48a36c
MD5 e13daf6b20ba93f5053999d8572d14aa
BLAKE2b-256 7e15ac770614e1c6e27b5db448d45329a22750ea9b9775befb3baf431439bc78

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.13.6-cp311-cp311-win32.whl
  • Upload date:
  • Size: 917.1 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for rapidfuzz-2.13.6-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 96c93f15b578e0332345a32035836034b66e3a8f10e62b6cca79d9ba25bf0bd2
MD5 11758fb0b6615bbc30fd0beaec244573
BLAKE2b-256 6508f488faa36ef5f5098d38c0125a00d6efdff1a593b7cc1fbe5c1ed20a7e6a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 52f2c6ea7c6ebc09b7a09f707273e7c8cb590f89093bc1de9c93ebe7f4ecfd95
MD5 f6afb4c35533e752b5f247b680d5690f
BLAKE2b-256 ebdb931902d75c38bff965afe383f334ebad50fa7fa2b2091125127d918d2efa

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp311-cp311-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp311-cp311-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 1a7a1069a81c1fae5903d4d7ff80de723f3a492635a0e40699491460a5ba84fe
MD5 7df53f3cedac4959fc8e63de1b4c0196
BLAKE2b-256 a9293fb64c97e0b5cc59ee244299894033347c7554833460a05a7db93d7a772b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp311-cp311-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp311-cp311-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 79812801626291f9ca6abbf89dfb1ca17e8165b5cf8af4656985be30142b758f
MD5 1fce18c2ff3cf219f0a43be07d0415f7
BLAKE2b-256 b1a239cf77a24582961d07da04fe8c20bb941c1c954172c76fddf9d74a9eb124

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 ea5282cc6939c7f1b75d2d95906cd6b0f90c9171e08f74ff7ecee806da2e4f61
MD5 ef1b0856f2e40e4b0812124674ba2417
BLAKE2b-256 3fc8d6f6d6caa9a1c598c66aef4d3b7b727bc1734fb395124e2d7106b3e6a5ae

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 1aa89d2a02af1552370d64aaa971094d458c1cf53dbe3e4b09b68c8811312433
MD5 ad1870bd89c44d79d27831b41ae348ef
BLAKE2b-256 cf21640d19f7375b9de5f8d4d664918ba2bb4481807b76005537d7a747e2426f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 86767725208a2b76a0d8e338643260765435b9e7241896b5fb66d3dc1dace79b
MD5 a31180c2a7e078a6805f939fbfcff926
BLAKE2b-256 de60285a9ff4a20a85e9141324a8d279e26fbc6a9366e5d75cf6963c18510496

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 f4a5cf45f5ced9a02d04a850d71b584b3ab248e72c560d8cea9eb1ac67c51172
MD5 09598a96038c89682f167cc39297117a
BLAKE2b-256 6bde29a65279651343545f51aa82593485bb4375aedcb4122adb77e881dfa62c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 49d10f5e330f3fd8871f19ccfafeeaa595f7f8b74adb669bf637c619f2795810
MD5 ee20504ec36f945fa9c554717f356d57
BLAKE2b-256 8e5af56ddb6e2c292b6feeaee20d7ba49639bceac140420fa0a7cf672233d573

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d62fffd06f6dd29873e2d901f5fcc3e2391dbaa3c8f38fe351556288004baa2c
MD5 b68da8d35c4cd712baac14ba6e05b9f9
BLAKE2b-256 98fd69a9c076ae3df8e5ca19728e4cc2ff7c8e0bba28cf67c64f04f71d510ed7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 42a0c8589f1842486c1d7f2c9a58b2e30a723094e069123984fe0b05efcfa616
MD5 932961fde5ebdfe6ad9433c352a18002
BLAKE2b-256 cd48a71defea84e18fd6ce347b9ff60e0ad4f5dbd87872cc73dc5f0c5b0dfb4d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6da83fe0ea10fb21988b80ea38949f1d5a968b0591c112c30a9c763d188b8c45
MD5 5388eb0985acf029eed96c27726758d6
BLAKE2b-256 8749f644d05d513e005d12811e1f9a4893f307eb2778fb5ca8ef9ef5a49982cc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a52177ee3d48c1d27bae3d010c0e96890deabf65435c2654006907946e29d97f
MD5 ef777941d61b89e6383625388096d934
BLAKE2b-256 cdd17f9b5227dc617233aa706fe89f1d8b2fdbf50035d5c8d95ef25c8da48a24

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 a94ee9e7cd72111e69bff72e024c08bac53813e8e7f1f5bc8b0795e8f8995191
MD5 1c7514f666688a59b77b775524bfcce2
BLAKE2b-256 2ca52752120d27a4fabce13a6cea026d8baf82e943ecb02016d142d79e44ac30

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b4e6ca42666119350811fdf119aa82ad0539fd21f3daa6533a478bc0df650b3f
MD5 0f34221eb5f32921e4d593632530b672
BLAKE2b-256 63292e7277f18b630327279164bcd344f67576cd616a21d9445b5b0a35823305

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.13.6-cp310-cp310-win32.whl
  • Upload date:
  • Size: 914.3 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for rapidfuzz-2.13.6-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 ba8770c9436d08300a56781cacf84526912841927265a8feb61f0bc7547869b9
MD5 a3e6c0ac68ab1974d944017494617b85
BLAKE2b-256 672bf2101a4ed386d6b668405a7bdab6f08d7fbeb8c6b35366816cc8d62e7039

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 fa37236d6a65b757145c4df7ed34b4ada7706ea5683c985c2024532b2e4f8649
MD5 c34b4e73107152552f2bf667fe6d835a
BLAKE2b-256 696c677429ef9df26b91d4af195afc4a7f765e7c70c7fb1ca22949466f4162bd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 63ccbe0231b3f0c31db5532d7e9b15b9d7ee4bd6fba18b1beb68ee7d4f05d1e0
MD5 55678e11378928414cf9853d5e04f81b
BLAKE2b-256 91680ab69613bd8686aa78988b9a5d07a4272fe17fb15ab698fd19cdebdcc77c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 c6de2e6bdf16ae2acf4b49892b19e87fcf09b428b9d2343e58537ca0ae1320ae
MD5 66001d40e42a057e512d906d060ef4aa
BLAKE2b-256 58f01669ef132fc79928d2fa087e1305dd1ebff9b2c0d668ae5d5b4adaf4b77a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 bff8930ffcf6fe973b6ac08884e4553e8e7505e67de4047eeda46cb4973eb88d
MD5 b249622abfb3713c971e71773b625b19
BLAKE2b-256 75d1e712680a099a40a83e4bacc82e1dfc7335cfe34208ffd16b9df1f0a6d5d3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 ee32c175c41f02805b02b04818f3a0b4d7145043ad1b6788b5927e43675491b0
MD5 b6da775345beb4e36b0d6e21932b9da5
BLAKE2b-256 36435a590b178dbec9b2b9f79f60a5557668b345b1d9648745cca9758354f4c1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e791d829c2251a721aae9d5b99d4efa4a3f7d7fbe32564ddd9631188a241826f
MD5 96c3b8db780dc380956463c9359abaac
BLAKE2b-256 aa0c47f7ffbb0ba7c793a8d627a64c39548a1e7ec52f16589908d643da0e28bb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 5d1cd7a7f36f1dfa0923d520390b168e09e9ac2ff14e2f33637c9240f20b3c8d
MD5 7d5b132463bca7584357059cc60f5999
BLAKE2b-256 a4ae89432808043a4c37f77578af3e34427e56644c9e8922e2e103ec4501623c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 12ccc0633bc6f95d3cc10acec9ab61aabc0b8c7742f0e829c29afa1cd465b434
MD5 a44d1bb13e46ac67bfb81e7a0c7b966c
BLAKE2b-256 7efdf2517b5a187cbe54f307331033ba66e87941a39d802712a8f20bc69e5032

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2afc8811fbdb7b8ca43fd34007d96a4e90ea42dd15afd22220c5072e022fca71
MD5 6749d459b4f73d42f78322915babf914
BLAKE2b-256 5cb2529386922ea4354c16ecfb35a0f5e8c2a58ae4451b37fdfabffe27bd7963

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9e7ab10f6cbcf3b2b48f843a52d5dcd0a490b3dc76d5db80489032a853573a2f
MD5 69c4b0aa9fed93a89d6fa553a737642d
BLAKE2b-256 e49a96fcad4040cfb46ab4b3d01ea8deda7bc5d747e65dd3578ac10122fea11b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c693b9c7a8b34cae92868c2c0c42d6fd87c3b8abd9586b7e880bb0a01e85659b
MD5 c990e4bd7b83680e63e2e74474d381db
BLAKE2b-256 6b3397b55032f77ba8b048355bccd2ee8c45ee71368875054717421dfdbccc71

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 34c34bb779238196690fca8c413ab9047481e3c8b10e5a99877d6c3769459764
MD5 9876f0c97b73c48b2a53001ae9881e5e
BLAKE2b-256 fc6e633a88c5c55a95e55747bc9727a2da1ca9b2d297e21fc47db63d7a612d39

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 5c4dabaa257efe1eec1cafa59612dbc142e9c81356d345ad5828046cb745304b
MD5 3a19c0c0b4aa8110a90ced325d3efad7
BLAKE2b-256 75c4f16cf43bedb55f1a50e0b2e5f64477f2f048892e4270862011f73922052f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 905c0f4304ea168cdc470e99496541dca1fdff084c22acb91a85ecdaa97986bf
MD5 51373c691c113a88fe6058d53c568a3c
BLAKE2b-256 ad929f016131103d62be8eb0f786baa90bc8c4e2e11541e5bbbd5aa18fec0bd3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.13.6-cp39-cp39-win32.whl
  • Upload date:
  • Size: 915.8 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for rapidfuzz-2.13.6-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 ba102a2fb37b1db698016aa7a8b9bfe1c7e610d333a6e69737edc296c1a40b91
MD5 9ebc2f7248986a0acd9aa6841d95d504
BLAKE2b-256 3d2900eda12062f6e4fb90fb09a6dd663d8522deaa6457630b876bd00d68a02f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 cade0fd49d2b04fd21736e9dc20b10047cd5eb9e842f950c7ebc00531c595145
MD5 3d1495c5f0174ba439e0b04e1c112e2c
BLAKE2b-256 6fe5a953e42075971faa157cfc3300831e69173e10ca4ef0524053932ceda3a4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 fa0d33447bac6280c7deb02186349546404f387906fb4408186079852545c8de
MD5 d86f889d9b36d2ae2438632a8d96a67f
BLAKE2b-256 3d2363e52df3f37e8823613265c8e7d1a5af65ffc290a76e8e6c12141147830f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 cb7809423c7146479a1d77d5a74cb4fe1b6dffbb6423c9a1a49f69906552929c
MD5 10a5dd9244bedd15c2af88073a09fe9a
BLAKE2b-256 d603bb547497063b5aa3ad47c19b148b5706e7c6e391d33bea39e84bd3965946

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 16dd88b64a4e11b1a8fc84a9db7a017f7175620a3cf7304dfad59add4ef85c23
MD5 c264bac27829ea415c0f8bd5763e348b
BLAKE2b-256 7ed22988704c739ebd0a5dd2c50675ce30891a2d884546d9ea302ab901792869

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 2d25ba295cc3c27c43fe4cbba6010407da70e240c18df979012cb6ebd70b8ab8
MD5 c0fd9f42362f74530490eaf41ffe93ce
BLAKE2b-256 34d8d45fe95fbc2b0c0618ab9009561db9cc4cccd1e0fbc69ff672dbd01a20bb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 260be139930db7e864e47518853476f92994ec78a83a1236805e527c52bcae55
MD5 b929e09d930dddbf386298be70943fd5
BLAKE2b-256 6129580d83485b03963e35c71204fda27fead91d312de33d160b3ac1de42aac7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 0d0d68bf0c53ff954e03a2da457989e065da52069ca649960f9d6830172fc607
MD5 884f70bbfefa10e3428f8af0d7730275
BLAKE2b-256 bba1df3ea534ffad543b199a60ea8d06f1dd9c7151613337c21fa650c5a36700

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 65379a26e0a042f3b5935d6178aaed499f434f73affb01893b9890c91d771a7d
MD5 e51b3776ef5341ecdd791b52d3f8f8eb
BLAKE2b-256 19c42a9382124246d0db78c9fb15d72ec387772e7d52362555e040431394ad52

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 fb08f48c11d37c0f6121d862e9e9567d3ba6dc22ff2f3aa6c20c8c5f38d6aa9f
MD5 4628c66217099026b683a28df1d58a5b
BLAKE2b-256 51189682b62f3839b520d6b5f9bf9d2fb199ba2416c669876e7bffce8ed29a4d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 920c332777bac28b82be2a3d9e2c204c2b64783f15ba263c3c2551b4aa389624
MD5 28ec6e5feb86b37c1bbb7550e4d12395
BLAKE2b-256 f070c960045769f62f3624e5ce1b3f4fca315ff3e643b08843e74074507957f4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4414cb19bdaec7ee52bd17cac1b47baf4c1bb3e3e1ad6aead032296fdfa14603
MD5 c76d9737a95fad131d1318cc67f022f7
BLAKE2b-256 79744cb8147f948e541fa94b8fbd7247615c5829ed6d52bd10255320bc91a483

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 845c5394cfc7e7522f66aa68e740115e81e86530010107aabfbd611eee17b7d1
MD5 47d7e33f757232955bc8f7a31b94913d
BLAKE2b-256 1376a7697c9de5b29ee80f08ba52f76719bb802cc0dd77e0fc8e426eeca52594

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 2b9ec944bf3bc916a70845e83063926b91709c399041d564a50d68e62c606e74
MD5 6ebda9202035a85af2e21a7f76a5c810
BLAKE2b-256 92a10034a79dccc529cab5a1e1cdd45d50854e5e3396ee14aa2d1f2d22156bb6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 7e0cd251529781d94703f8448fa8f43a051357c4f75839332b878ed13dccab19
MD5 11c5d3177f9acbd901e93ba0ec74a12c
BLAKE2b-256 969a323ec7c4e3bf9d327696ce73eec68f61ab83a9d971f369b564fd84b8120f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.13.6-cp38-cp38-win32.whl
  • Upload date:
  • Size: 917.2 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for rapidfuzz-2.13.6-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 1ae63571508ea8f8e85616f99ac6c843070d75de4dbefdb87d49fb24b441e2c1
MD5 a6afb0b92bbb818a37d103ff8b29f3ff
BLAKE2b-256 3c6e07e5ebe0c3641c4ffeea517a95f9f435c1be98f8bf8aaad56392a37fe3f6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 09367abf1490bbd7138fb883df9d811b12b2c409b50ae62360e44df84a4d515a
MD5 affac416e373425e63b243c30f6f7562
BLAKE2b-256 bc301724438ff0a70f36e5962d38a6733074e4ad22c86685ab4bf70d0ce57452

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 cdfed7427c459be870ab13b4b17c254598500074079cec32475a46249d57b18b
MD5 324e338f1bcf9642d7617f763b0bf8bb
BLAKE2b-256 882fdb842bd8dc13b1398e92b172e20072c638db96d6b2fa06423d7e28025878

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 f162ab51e912d7615b5352ee79f1c1fd009a7f6a20ecc44238e2d594cab8c4cb
MD5 fc8245fe0bb7b386fc2e7860ced8b23b
BLAKE2b-256 6a1ab4bd1e65f9f4e448d70be722fa2ae1ac497722b0b6183ef2b368cc9cf36a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 88476cfeaa74e63cfdc8de9f1b28b7a76d951ce663c077a0f03076b9865052c6
MD5 7eaaef32ba581065bc675f7985ae190a
BLAKE2b-256 09e2088c26b33e21dd56658b8a4b32ef0a204307c84ec50719e8b68696243e7b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 23284face05d384e2c273da005e6dee9efebbb5c51d5e924b9114bafbb53d3db
MD5 ccbf393b92c795f589525dd46e3ae7d1
BLAKE2b-256 3c2700dbc239d2c09234feba2166af8472b7a5ad0bfda25043155c838cfcf9ba

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fea337f4face310917dbf1e321eb4b1392c02267af6edb0e9bba7fa04cb8711d
MD5 9ea491f2e2a14814afc1ee17b2e48976
BLAKE2b-256 0aae70d71957f2d1f98ce278f04835d54a077c5e944715c47d7103a724f8f130

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 8aee1deaec703a51fdf17d3d349c6b714b43bf56fe8d4c2157ebd985710f0eda
MD5 be92bacdf049b7a3ae96a2016689e47d
BLAKE2b-256 42cad7578936653c9772e1a93eb6d964bbc49b4a01d3e6e88d5b513cf3c32def

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 80f6651db489e9ecd2b3ff9aee966b10cfc8f69591450694b2f362e13a5fe085
MD5 b2866801f6819fd044875857b251d083
BLAKE2b-256 417d356d8eb5f00ae205d17284c02f4981be4fbd6b8739507b20dbd7157020e9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 eae455a63882a95b976180ddb14588d42c78641047bf3f61f445e7be39a85508
MD5 4f76580638e9efc1e58b89a51acbd31b
BLAKE2b-256 3a6b6d4fd8f6c26b47ef5f965b6e715bc659a89f03a5ee647ad8fac177a8c7ff

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 14ffbe50d2f61d6071d696cf9282d2961596885a4c5a27355bf78b296a66230e
MD5 45ac03a9776488e33d9e38e7a480c3e6
BLAKE2b-256 e0f21823e4dcc88d2c41987bd7d7114c543beaa71574789199c84213fe928d8a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 83174ddf6b692ec762ad51afa097fe8fbb3e28ce72a1e1a835f196dbabdf26d5
MD5 217c2a2ab3593447a960d5a654a5f066
BLAKE2b-256 eee1e6b1fe436e67646243306c6ce0e41a62e3dada2efb31147f83f41c20a467

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0d1d22fed68976377a376afa8fdbc0f2353e4b16f3c490574e2ee2b0f90d1d86
MD5 433a58e2a69bc619a742187dd7a1fd97
BLAKE2b-256 91db27642678c1440b77ccbb19a5790e30460dcc3e71c2c0ef29adef32fc2b78

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 35a8a0cde5d46f0e81771ef7723c235993ea2f3da53ab91c35b82101437f4b61
MD5 f5de5f62962f482f25e08bf61a6196ed
BLAKE2b-256 d1f030b0089b13956efe1c36568abad8cf88396cf8dbec3c98ffb95e1e5be336

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b18fcc28123040a867f980f4e41431b0227e1b861b8ea7303c92d3210f2f9561
MD5 85b3dab698a6148a7d49cb50c471900e
BLAKE2b-256 938c98d3c36e5ff5bdbd2120cd8ae576eaff4c03a3bc78ef6f97da93b74aedbc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.13.6-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 913.2 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for rapidfuzz-2.13.6-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 cda615c49e8bc990972b47cb7788fae8230b07449a38ba99192d74ebd525d5e7
MD5 aa7e1a66c8a771108ea2fffdff34b7d7
BLAKE2b-256 05f2669f7c736568b70c436b5c5a71187eb4f87d8aee9b9e9ef2c2951bbf9b0c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 881f1a3ad1bdab5e907ff0b33a8c0c8f8155ff364018fe82c09f6eddebaf9ba8
MD5 87def4610bd5fd64e2669475926e7973
BLAKE2b-256 505c3aa3be069014611c17e76f890126873f4a16d3b92b9d3ac0cf97e9f904c4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp37-cp37m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp37-cp37m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 5823b99277cf51ff7abb668d02bfa1b97a77e77317a06a0bca431a4a85f3bc26
MD5 6a926f83ac7e3aca21ec8fe95a8acaca
BLAKE2b-256 4a0b7468355218ba49177328ec48201b5f6865434a0c5a080260b1cee5d1f5f5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp37-cp37m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp37-cp37m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 8e4b8e1c686737a229a53df21486dc040a5b62453a0f6bf3839d92d5f21a0d25
MD5 95a8c2b9f89ce68ed91852222519d94b
BLAKE2b-256 14ff53dc6bbe5e79e39039461a13b28fb82ddf805cb54f2ee95b0b0893e4857b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 ad87d5accb542d19dc755a73cf1b3d332d639743b18d62c694c566229235d71a
MD5 7d4f16db312333290e9a93c66116096b
BLAKE2b-256 57ebe84ff4a483cd3f38ed5b536708e2bb498dd8183077add3e4dadf7e0b45ab

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 5378b8711ae9ec8ba4eb5476afcc599e4bdfe73374084544abc9b6f984c013d3
MD5 9e5f74fc72933b9af290eae8524da740
BLAKE2b-256 be0822cd7fa371deebc7fefd2d4e7f313b3b6a87331fbf6c935a8a87a21fd710

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5091b4139849971d9b101fe844d4a4306f1ac314371215db3ce652772811ecbe
MD5 7bb48817e1410ff66db8e35aa4cb85c1
BLAKE2b-256 f3c55112c9e7333c41042770cbe9921f483849e06f323826ed765efa98f9d450

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 74b498cac37ba66d72f77425cdadb0dd269495b28543bce8f8090f28086faaf5
MD5 78dd2f5dbe1687ce5fae08b30152be39
BLAKE2b-256 52eb29617affec8fa13d09be0688557e1a01c495426ad9387893284dbdb85035

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 6b101b1eddededbfe31e9eaed63ad64fa099f14ad6bc9850d4a337ffbb0c4566
MD5 6eb05f83bbf5335b3decee6abfbbf655
BLAKE2b-256 013ce05f59a9cfa0b4bf5c1df440e5041667bd42a46d4e97e76dff1ac374a971

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0dfe6bf7b193db6b88c49124c065834a051d3a007da7d752b7cb488473965eb0
MD5 b82bd2301752437f88b68f640c3c9714
BLAKE2b-256 e8f25cef416f0022d635200d9fd9145d72cf8bd6966f406d4d1c08ce6984bf8c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5721bfa91ccd4d2e48787913a64a084ded44a7e488f17f728bb0b1dc2c7f1acd
MD5 233c302a0097901fee2f9ee278a41fbe
BLAKE2b-256 ef90cdaf4fda70ed822d6e6c95fda03611e9a630ac78cff4eb45e03e8bcc7ed5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.6-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.6-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 15bad0c24a08ef7b87138317a1c0c9b54c577ad2c2671a82d89d5f2e35a7b372
MD5 5e6ce5f33cc54e8315ec30565cbefdfd
BLAKE2b-256 70bb588c34d9e4f983bf5825bd4bcc8310d335a1549a04655758d519c72d846c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page