Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continuous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparison between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparison I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
    "".join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
    for _ in range(10_000)
]
samples = words[:: len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with cdist in the following way:

cdist(samples, words, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like cdist is a lot faster than directly using it. That's why they should be used whenever possible.

Benchmark cdist

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. That's why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-2.13.7.tar.gz (1000.0 kB view details)

Uploaded Source

Built Distributions

rapidfuzz-2.13.7-pp39-pypy39_pp73-win_amd64.whl (971.5 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.13.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.7-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.13.7-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.7-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.13.7-pp38-pypy38_pp73-win_amd64.whl (972.3 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.13.7-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.7-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.13.7-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.7-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.13.7-pp37-pypy37_pp73-win_amd64.whl (972.0 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.13.7-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.7-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.13.7-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.7-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.13.7-cp311-cp311-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-2.13.7-cp311-cp311-win32.whl (917.1 kB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-2.13.7-cp311-cp311-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

rapidfuzz-2.13.7-cp311-cp311-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ s390x

rapidfuzz-2.13.7-cp311-cp311-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.13.7-cp311-cp311-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

rapidfuzz-2.13.7-cp311-cp311-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

rapidfuzz-2.13.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-2.13.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.13.7-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-2.13.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.7-cp311-cp311-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-2.13.7-cp311-cp311-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-2.13.7-cp311-cp311-macosx_10_9_universal2.whl (2.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.13.7-cp310-cp310-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-2.13.7-cp310-cp310-win32.whl (914.4 kB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-2.13.7-cp310-cp310-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

rapidfuzz-2.13.7-cp310-cp310-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

rapidfuzz-2.13.7-cp310-cp310-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.13.7-cp310-cp310-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

rapidfuzz-2.13.7-cp310-cp310-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

rapidfuzz-2.13.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-2.13.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.13.7-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-2.13.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.7-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-2.13.7-cp310-cp310-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-2.13.7-cp310-cp310-macosx_10_9_universal2.whl (2.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.13.7-cp39-cp39-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-2.13.7-cp39-cp39-win32.whl (915.8 kB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-2.13.7-cp39-cp39-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

rapidfuzz-2.13.7-cp39-cp39-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

rapidfuzz-2.13.7-cp39-cp39-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.13.7-cp39-cp39-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

rapidfuzz-2.13.7-cp39-cp39-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

rapidfuzz-2.13.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-2.13.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.13.7-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-2.13.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.7-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-2.13.7-cp39-cp39-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-2.13.7-cp39-cp39-macosx_10_9_universal2.whl (2.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.13.7-cp38-cp38-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-2.13.7-cp38-cp38-win32.whl (917.1 kB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-2.13.7-cp38-cp38-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

rapidfuzz-2.13.7-cp38-cp38-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

rapidfuzz-2.13.7-cp38-cp38-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.13.7-cp38-cp38-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

rapidfuzz-2.13.7-cp38-cp38-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

rapidfuzz-2.13.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-2.13.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.13.7-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-2.13.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.7-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-2.13.7-cp38-cp38-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-2.13.7-cp38-cp38-macosx_10_9_universal2.whl (2.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.13.7-cp37-cp37m-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-2.13.7-cp37-cp37m-win32.whl (913.2 kB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-2.13.7-cp37-cp37m-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

rapidfuzz-2.13.7-cp37-cp37m-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ s390x

rapidfuzz-2.13.7-cp37-cp37m-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ppc64le

rapidfuzz-2.13.7-cp37-cp37m-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

rapidfuzz-2.13.7-cp37-cp37m-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

rapidfuzz-2.13.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.13.7-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

rapidfuzz-2.13.7-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.13.7-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-2.13.7-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.13.7-cp37-cp37m-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-2.13.7.tar.gz.

File metadata

  • Download URL: rapidfuzz-2.13.7.tar.gz
  • Upload date:
  • Size: 1000.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for rapidfuzz-2.13.7.tar.gz
Algorithm Hash digest
SHA256 8d3e252d4127c79b4d7c2ae47271636cbaca905c8bb46d80c7930ab906cf4b5c
MD5 d1bc07da1c8dfe4f5416b036f2e6b8c5
BLAKE2b-256 15e52ab8375be6955aff1925b69c41429cbe54e32a67461c0b59f94c9b8b1cc5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 b6389c50d8d214c9cd11a77f6d501529cb23279a9c9cafe519a3a4b503b5f72a
MD5 aea439c3f8c467cfcc744b3c3c32ff85
BLAKE2b-256 a6d55207d8024ac57fe066c379bedf63a86d4ee873278af547bb6434b2b73b1b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cda1e2f66bb4ba7261a0f4c2d052d5d909798fca557cbff68f8a79a87d66a18f
MD5 82078a13ef692b37d016128c394b2615
BLAKE2b-256 d45889592ca8429bb6adf0acc5457ba424a8befc260f2ec62e6f4f8ebbb3be6a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 020858dd89b60ce38811cd6e37875c4c3c8d7fcd8bc20a0ad2ed1f464b34dc4e
MD5 454c9891546d755f07d1acf8d54529f6
BLAKE2b-256 f0524c1e65b7fd9bdbcc836b41838ba89e733f1ed3a9dc0137db3d01ff38c999

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 16ffad751f43ab61001187b3fb4a9447ec2d1aedeff7c5bac86d3b95f9980cc3
MD5 3e9074be487aff6564515139c0569506
BLAKE2b-256 30752f5470cd32a6ddd2eb7d07fd4319549ced245bf8c63ba33285866533fbf6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3d8b081988d0a49c486e4e845a547565fee7c6e7ad8be57ff29c3d7c14c6894c
MD5 ce954d44d41035a16219e1a4a6fcb27d
BLAKE2b-256 f30b42d78b7c3419c9f14f23209bfe294b804e0ea0758665431c11dc07c32563

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 75c45dcd595f8178412367e302fd022860ea025dc4a78b197b35428081ed33d5
MD5 36913f062bdee089ab33e9e115740988
BLAKE2b-256 bfd09b665afc48b7329e13d1acb769d31cbf304ec4838d61a016816006ada9b2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 042644133244bfa7b20de635d500eb9f46af7097f3d90b1724f94866f17cb55e
MD5 9599e7d50e983c168c628b74bb5029f8
BLAKE2b-256 345f68015626fd53f19ac2ad1a9fa64ff705b06e73ff8f77e4b3b5b4af68fee8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d82f20c0060ffdaadaf642b88ab0aa52365b56dffae812e188e5bdb998043588
MD5 c9e5d30c928d2ac6dc7455ee083c70e7
BLAKE2b-256 1594eab1b6c7a90149083202eecd82064d6bc85884841804de6ee49439115c62

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f799d1d6c33d81e983d3682571cc7d993ae7ff772c19b3aabb767039c33f6d1e
MD5 33c29d6f8e131a4a84694468d18b5c12
BLAKE2b-256 4e087512326d1b62209ea2c8b9a515f95639f1cb5d93ad5ffe08d3aea8ea2a79

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c66546e30addb04a16cd864f10f5821272a1bfe6462ee5605613b4f1cb6f7b48
MD5 1824df8dab4c25dd241f010658564b7f
BLAKE2b-256 4ebe0716be6e2268f94a3fc3bafefdeab25546281325eea6a5ff9c391f7da778

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 d63def9bbc6b35aef4d76dc740301a4185867e8870cbb8719ec9de672212fca8
MD5 bb96f3eadf6bd1b6ee58047d781d67d8
BLAKE2b-256 efcb37f063a1de2c6b14fb3122ec720ba53fa649d9a5fde40f0c8f9400c7b9db

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8b477b43ced896301665183a5e0faec0f5aea2373005648da8bdcb3c4b73f280
MD5 f76dde00b8d4d30861c5f4dc2b413f40
BLAKE2b-256 cfb67607f0c499207ff92df45b8d689439976475c86167d8e3b1cc1dd29b8384

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f42b82f268689f429def9ecfb86fa65ceea0eaf3fed408b570fe113311bf5ce7
MD5 12244bd4911fd14a7604cae51cd972f7
BLAKE2b-256 e6ecf24ed3f5a4f633539a0b665edd000365961c4493050ae654682981f85ffd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c31022d9970177f6affc6d5dd757ed22e44a10890212032fabab903fdee3bfe7
MD5 faaa9ec8793c7e4cb1d97a783c5a2ec8
BLAKE2b-256 ded0c610e095ca59b6520714270931fb4fe2920c9f052c95c5b394df2df3a101

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7f7930adf84301797c3f09c94b9c5a9ed90a9e8b8ed19b41d2384937e0f9f5bd
MD5 3d4a77dd08291489b2884e172605eb65
BLAKE2b-256 def308584fde6819c3499974520fa6054d5d5180946421adbe7a306b82b2bc5a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ec55a81ac2b0f41b8d6fb29aad16e55417036c7563bad5568686931aa4ff08f7
MD5 f5482ea5a2d673ef10da774b4b8b11e1
BLAKE2b-256 6c62643f0cf5430b601f17ea3671ad2d0e0a285b6ff82f2d83eab196091ef8bc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.13.7-cp311-cp311-win32.whl
  • Upload date:
  • Size: 917.1 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for rapidfuzz-2.13.7-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 b20141fa6cee041917801de0bab503447196d372d4c7ee9a03721b0a8edf5337
MD5 e9caa78f6f218aafdb8e3865fb819612
BLAKE2b-256 903d8507db522fbdeb9a802fe92fa980aa5e0bdb10d047d09db3ffc924d564a7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6120f2995f5154057454c5de99d86b4ef3b38397899b5da1265467e8980b2f60
MD5 f306a458f4ba009ad0f35c29e13181ac
BLAKE2b-256 edcc4730f99586753877eed251bd276f1d95056b9431a14f53735a1bd47336f9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp311-cp311-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp311-cp311-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 f6fe570e20e293eb50491ae14ddeef71a6a7e5f59d7e791393ffa99b13f1f8c2
MD5 2f3c05fa0c39cf6738d113d341d31d34
BLAKE2b-256 31c7ff7b2d3fc6a32c4e0b914f11dde85b0e5875faa49fef57c1a09810d595d1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp311-cp311-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp311-cp311-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 b3210869161a864f3831635bb13d24f4708c0aa7208ef5baac1ac4d46e9b4208
MD5 8e573977ac9af89e6c961105ee3f476d
BLAKE2b-256 37416405ce463e70ed8dfc28a762af19df560ea513555a3f0546d4e244b36b9b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 988f8f6abfba7ee79449f8b50687c174733b079521c3cc121d65ad2d38831846
MD5 9c3770c85e96f52748efa7bc25372064
BLAKE2b-256 82806995b618baab256652ec449e3d0a2b10972da5677d7adf78b2c7dae8237f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 b5dd713a1734574c2850c566ac4286594bacbc2d60b9170b795bee4b68656625
MD5 91a3d0daa7e015a8e5f8ed1ccd610a1c
BLAKE2b-256 c965e9d9484ebe787ce91b19235155493bb6b985db12fefee817b82c73d18d7d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 08590905a95ccfa43f4df353dcc5d28c15d70664299c64abcad8721d89adce4f
MD5 7e4cd0b7a46dcd4fedbf3a068978bce3
BLAKE2b-256 c0f161d389cd067cf1c9494c232e19223f0ba3fa6c5fef9f0496f67b277c8f43

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 f891b98f8bc6c9d521785816085e9657212621e93f223917fb8e32f318b2957e
MD5 621462076e0efc4f9afd82d779a3f1db
BLAKE2b-256 c99f27ed8be4fc73ff0c229a6b859f8365e293a2302ed3053facee4878c1639d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 585206112c294e335d84de5d5f179c0f932837752d7420e3de21db7fdc476278
MD5 9e5405222269ca16365dfa0c87c4bf28
BLAKE2b-256 2a908407b7ff902e660c98406bf9cec4adbbd873aa6ccbf2b14228fc7093535d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 42085d4b154a8232767de8296ac39c8af5bccee6b823b0507de35f51c9cbc2d7
MD5 58e63d89303b108c4a54e0dc96e9df68
BLAKE2b-256 09fa0b5ec7ab4f4641822e2df585bafb2579327b95822c0b26bc5bf8d8ce25cb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a5585189b3d90d81ccd62d4f18530d5ac8972021f0aaaa1ffc6af387ff1dce75
MD5 298c26e60fcff299f2e7ff2c16aa818e
BLAKE2b-256 58dd29d1790a6c7c7034593dfda7b67a4d6b6a20cfe9e7def8e0cf325d8abc2c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ae33a72336059213996fe4baca4e0e4860913905c2efb7c991eab33b95a98a0a
MD5 41a620e6915d81acb21cbb6b0f27a582
BLAKE2b-256 38c394522653c741b716ca5e1380ff5b43bbb738f795d624fa67d70ba3e3f64c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 875d51b3497439a72e2d76183e1cb5468f3f979ab2ddfc1d1f7dde3b1ecfb42f
MD5 7413f3b37b4b0bfe53f9640673d77344
BLAKE2b-256 6f5bba0a8497a2e154d963c60bac2e2ada81c35899e8c1fe732e3de720a5154e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 b34e8c0e492949ecdd5da46a1cfc856a342e2f0389b379b1a45a3cdcd3176a6e
MD5 1b7a002cab5cc767faec8ef626d452ec
BLAKE2b-256 d896a6795d11e94af1563730b9363ca44a410a3e187fd42b93a27a8cbd6881dc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c36fd260084bb636b9400bb92016c6bd81fd80e59ed47f2466f85eda1fc9f782
MD5 3e9fe229725023c814a28852425b13d9
BLAKE2b-256 1b51f72ea40bfec4d2363827374b93dfcfe04c7db8471c80e20470f18a229cb1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.13.7-cp310-cp310-win32.whl
  • Upload date:
  • Size: 914.4 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for rapidfuzz-2.13.7-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 2c836f0f2d33d4614c3fbaf9a1eb5407c0fe23f8876f47fd15b90f78daa64c34
MD5 320f04483dd1dc56393459b30905f5d9
BLAKE2b-256 b687306a2422990fa5fffc3725b93e03a7cb679b32e492a34d595921781cfe54

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d00df2e4a81ffa56a6b1ec4d2bc29afdcb7f565e0b8cd3092fece2290c4c7a79
MD5 b67b05a6ea5ad44ed32ac58364003039
BLAKE2b-256 56b513dc3231e9c541a1e3beb4be991462d2565ba8da0dd212ced0c43f1f7a98

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 b6bad92de071cbffa2acd4239c1779f66851b60ffbbda0e4f4e8a2e9b17e7eef
MD5 e9537ba8387151d5eaed5b1d37df1765
BLAKE2b-256 4187a51a9f5f292fbbb24482cd4a33f3c01f93ab205d33d23ed4b698af3537c1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 43fb8cb030f888c3f076d40d428ed5eb4331f5dd6cf1796cfa39c67bf0f0fc1e
MD5 a5de3aa9528abba8d148b249c78d942e
BLAKE2b-256 3732cb26ac6bb01b2568fedf4e4886512d775e21850fcad0d8cc04a386e5ed07

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 1fbad8fb28d98980f5bff33c7842efef0315d42f0cd59082108482a7e6b61410
MD5 d8e3fbe30f63590861af8ba4d3fea3de
BLAKE2b-256 82b93b2ff22f2150b29d82ea5264dc33cfb6a84d26581e4edf9dc186503a978b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 46b9b8aa09998bc48dd800854e8d9b74bc534d7922c1d6e1bbf783e7fa6ac29c
MD5 76b973692b74683c55ed24dcf32e71b9
BLAKE2b-256 c4b2e06a61b38cfe2419b033605198a28482d30dbed6a0afdcc1d4eeb5dd6f23

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 53dcae85956853b787c27c1cb06f18bb450e22cf57a4ad3444cf03b8ff31724a
MD5 da913a95195ec6f9541d1a730c855046
BLAKE2b-256 c035810a00f4f722f62b763bfdad3f592075bfa2348ed49ced381d20e75ae4e7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 467c1505362823a5af12b10234cb1c4771ccf124c00e3fc9a43696512bd52293
MD5 75566e513f6adfb374668f62a074bfe6
BLAKE2b-256 8e84a17a3ebd09780984a71fdf5d83b1ef794b7794d3e877218d45ee9a61f880

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 24eb6b843492bdc63c79ee4b2f104059b7a2201fef17f25177f585d3be03405a
MD5 334b5105a496030da79caf8073480fd3
BLAKE2b-256 1c0317cad829a461db485421c23f414bf771ff810a49fd863ddc3a82ad37558b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7496e8779905b02abc0ab4ba2a848e802ab99a6e20756ffc967a0de4900bd3da
MD5 d3386438014b888f20d15a8bc0dcdb82
BLAKE2b-256 1b261cc882d4dd0c2b799c06f034a7cd9203c59bae380c8c18f70ba4827c88d2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b5f705652360d520c2de52bee11100c92f59b3e3daca308ebb150cbc58aecdad
MD5 25b2c48bc6a406cded4bc49ab4846b5c
BLAKE2b-256 f7e42585f0c6ddbe7d70c24a46c43b75818f5e0fb12723462031fd583e7be4cd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8109e0324d21993d5b2d111742bf5958f3516bf8c59f297c5d1cc25a2342eb66
MD5 9a1c7382b763ec199de5e702df137614
BLAKE2b-256 0d8da750f1b137540fe39c19bcb0b876d7fe1b416c8289a7e5826e89f5d27af4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 24d3fea10680d085fd0a4d76e581bfb2b1074e66e78fd5964d4559e1fcd2a2d4
MD5 d7d59fff9b36ce275b794c6bcb7a8e8b
BLAKE2b-256 87c3d33a9b6951ada3aadcc3885ce1d2f16fb03c41961cb6a6b4bbbc31b9dc56

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 b75dd0928ce8e216f88660ab3d5c5ffe990f4dd682fd1709dba29d5dafdde6de
MD5 1e1a3613609cbfbbac78c237cf514a8c
BLAKE2b-256 c5d8e5280b55dac55f916ca01560facf7e24f295244f3ff6a7cf5da1e4703b28

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e8914dad106dacb0775718e54bf15e528055c4e92fb2677842996f2d52da5069
MD5 0e1b4a671ab4ec753aee2d2a812e4bda
BLAKE2b-256 b3f85a41d4fb1d803e2cefb54623839190259aaaa84ca60310e15b7e3a1daa6e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.13.7-cp39-cp39-win32.whl
  • Upload date:
  • Size: 915.8 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for rapidfuzz-2.13.7-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 3f11a7eff7bc6301cd6a5d43f309e22a815af07e1f08eeb2182892fca04c86cb
MD5 84168110f2e4898315b38f1b22936159
BLAKE2b-256 0649c7d86d7ffb3b3f07955062e54e841f8b38a6de16179d007249d2bd6838ee

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 fe56659ccadbee97908132135de4b875543353351e0c92e736b7c57aee298b5a
MD5 db5200357d7ce2bd17398f3c5d8e7176
BLAKE2b-256 ef18dc8d00c353d3dd11fc6155cb94335032abea0323a02981bb0832eac67598

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 ebe303cd9839af69dd1f7942acaa80b1ba90bacef2e7ded9347fbed4f1654672
MD5 63a5a12054bbb7cab6083f8c90b66dec
BLAKE2b-256 6b05553423b42344d43b71e92f89e0254540f909e3386aac15345ad9f22cbea6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 23524635840500ce6f4d25005c9529a97621689c85d2f727c52eed1782839a6a
MD5 c38f9dac74e5fdbb2b01bbf9a5fe43fb
BLAKE2b-256 417b8f470ea8025f5c0cbaeb3987e8c21866e2e252987b40025e2bb465c5c019

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 916bc2e6cf492c77ad6deb7bcd088f0ce9c607aaeabc543edeb703e1fbc43e31
MD5 0d96551d0ea7de352345a575ebdfb504
BLAKE2b-256 38caf1a691a8b8f35b73aae124adfe23541910ab64687382200a1a9057dbc98f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 1333fb3d603d6b1040e365dca4892ba72c7e896df77a54eae27dc07db90906e3
MD5 bd2927fb5350a0c1cd5391c86d53481c
BLAKE2b-256 28c1dc8fd06db0114d9f28870464a596b7498f1e2a5facedd690786a207f355f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 759a3361711586a29bc753d3d1bdb862983bd9b9f37fbd7f6216c24f7c972554
MD5 84708f657aedc7ab425c68e2e77cd547
BLAKE2b-256 02cf32605d0f77a5405dd3a128ac8b8ba2e14a96db18df86e3099d0204cf7c81

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 c3741cb0bf9794783028e8b0cf23dab917fa5e37a6093b94c4c2f805f8e36b9f
MD5 db9c4a60210a7925ad30ade8e2c73ec0
BLAKE2b-256 760c4cfdbf6761753d4571b3884df35f595f28e2aedcd8d3f6fa80213494de7e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 81642a24798851b118f82884205fc1bd9ff70b655c04018c467824b6ecc1fabc
MD5 e5df77133ff64d0e875f8a18eafd759e
BLAKE2b-256 16a1b8ec69388b1c902185adc6e7e7cf709fc7c5efcee4b853ac47d5c216772f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 99a84ab9ac9a823e7e93b4414f86344052a5f3e23b23aa365cda01393ad895bd
MD5 9a6f5de25fa7bb08abedc705a1e31549
BLAKE2b-256 94b5bd4d5ff2b1ab126e4fe2b384882811c3e675ec90f070c6171429b3beb0e4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 114810491efb25464016fd554fdf1e20d390309cecef62587494fc474d4b926f
MD5 ad0a3e509bc400104bf890aea917fce9
BLAKE2b-256 ca45ba03bd9ea59f1f9ac039832b128e52e9e8349094b64e52491643a9a25689

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dbcf5371ea704759fcce772c66a07647751d1f5dbdec7818331c9b31ae996c77
MD5 ee387e5ac009e91ae8162ededc4bbb22
BLAKE2b-256 53e4a7eae06362d8d223d8266baa84655dc3f82bf0e34f10f9c68cef20fd42cf

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 16080c05a63d6042643ae9b6cfec1aefd3e61cef53d0abe0df3069b9d4b72077
MD5 4bd2bb0bf20cf15de5efd2e3680c93c7
BLAKE2b-256 0a92a57cb60eb1d877ffbd8b9a3a8b62f6811b8b4cb39625d9ed15050a8ecf2a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 c3fbe449d869ea4d0909fc9d862007fb39a584fb0b73349a6aab336f0d90eaed
MD5 9288020fde2cb48b1ce781092e8adbd2
BLAKE2b-256 b106f5c301715988ccfeb705606d7a4065632304f3b36720bfe5cec3ed292557

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 424f82c35dbe4f83bdc3b490d7d696a1dc6423b3d911460f5493b7ffae999fd2
MD5 a62e70adc0621dca0d3e350fae9776d3
BLAKE2b-256 c22fabc0149df472df11a31de0b8e9920b1fb0bb81e8c6db67ae076744490380

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.13.7-cp38-cp38-win32.whl
  • Upload date:
  • Size: 917.1 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for rapidfuzz-2.13.7-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 460853983ab88f873173e27cc601c5276d469388e6ad6e08c4fd57b2a86f1064
MD5 f49361decd52282684e018180bd8fab3
BLAKE2b-256 c417c0b8224e89e9fe2fdb2d7770eaa96e3a7c15c9c225558540b6158a586c95

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8450d15f7765482e86ef9be2ad1a05683cd826f59ad236ef7b9fb606464a56aa
MD5 de827ffa864878a17abbb028677243ab
BLAKE2b-256 beac81bfbc073d055f704a99bad6a8727f78d628c5210a7d3474cae744b1b452

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 3dcffe1f3cbda0dc32133a2ae2255526561ca594f15f9644384549037b355245
MD5 910a2a1420ee8258c900d26391e361a3
BLAKE2b-256 f93f7c6525024b59bc0c6064ae0d753381d2d24764da1afddcec049f5c2dfe85

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 27be9c63215d302ede7d654142a2e21f0d34ea6acba512a4ae4cfd52bbaa5b59
MD5 ea2a800522caeb3bb91a3df166b35a58
BLAKE2b-256 9f0f9b24a5944ee6ea94705c7175a9ce40338ec813524efd469f63bd388152cf

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 c8601a66fbfc0052bb7860d2eacd303fcde3c14e87fdde409eceff516d659e77
MD5 37b0330e8484235232d74afd0f45a9f1
BLAKE2b-256 1af87057d8410d0b2e48a9f3da3bbdd3aafbd146a313c199b2e0f671530c4240

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 c88adbcb933f6b8612f6c593384bf824e562bb35fc8a0f55fac690ab5b3486e5
MD5 63b612d87449be97e376aab4f57eb752
BLAKE2b-256 b93bf66ff718fdfe9484a6495d842e7d7b8a245f1bc6b4d74328d7a88e36f83a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d248a109699ce9992304e79c1f8735c82cc4c1386cd8e27027329c0549f248a2
MD5 4a25a592fcb710dd31f51913a1455324
BLAKE2b-256 2aced885dc6b186120118c7d5fa981051a38b1a3345af96c48feaa5b6137e191

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 ca00fafd2756bc9649bf80f1cf72c647dce38635f0695d7ce804bc0f759aa756
MD5 78b6d06890041f13a4581e8a7b28833e
BLAKE2b-256 29acc782516cba1abb376023dda01af30dacc771dbcfcd8063e3affe7ea3f1d9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 b52ac2626945cd21a2487aeefed794c14ee31514c8ae69b7599170418211e6f6
MD5 ddca0baa0fb22b7050915b21a8f9d7be
BLAKE2b-256 0538bbd5561676fcd0d711f2d853d14a87ff3a39b1470830d3cdd36b984e69d2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c71d9d512b76f05fa00282227c2ae884abb60e09f08b5ca3132b7e7431ac7f0d
MD5 28c1a45dccf5ec2b873649d716625cae
BLAKE2b-256 313cdd00a55a9d6389ca44fb553280148c8125f6362e647d60e5798b7841bb69

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1f50d1227e6e2a0e3ae1fb1c9a2e1c59577d3051af72c7cab2bcc430cb5e18da
MD5 72067cf5ea6059f8259a1ca0c152f863
BLAKE2b-256 4e9a7eac9e9992aa13dad6cefda1f754eb7c3d385dbf299f0b32dda3529d98fd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 af4f7c3c904ca709493eb66ca9080b44190c38e9ecb3b48b96d38825d5672559
MD5 4360c5be316ea3832cebff6016610c04
BLAKE2b-256 2055f7bced12f949fdb7a40da84c2825df379037b6b54b170e9e75e23a08edf9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9be02162af0376d64b840f2fc8ee3366794fc149f1e06d095a6a1d42447d97c5
MD5 cc9380591419e6cb386713b3fd2776dc
BLAKE2b-256 508486fb7b8cb7a7bf8e11d95579eaed3e9097a1a44c19f566ec750b6ca7e471

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 ca8a23097c1f50e0fdb4de9e427537ca122a18df2eead06ed39c3a0bef6d9d3a
MD5 4ceb6fd46511e0925dbd1c423e78602b
BLAKE2b-256 a3b37bc375315d8e7938f014e550844ee0acd21dccf3c5eec806f7b118f5225c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 5ada0a14c67452358c1ee52ad14b80517a87b944897aaec3e875279371a9cb96
MD5 ec8f206133e9436312f5a7c8637948de
BLAKE2b-256 d1a53550e09681b9f1c898fcf31ee0e8acd33eecf3133ddfa82f477107f6f673

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.13.7-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 913.2 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for rapidfuzz-2.13.7-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 c2523f8180ebd9796c18d809e9a19075a1060b1a170fde3799e83db940c1b6d5
MD5 3f52254c6dfd53e3d44204cc17d46485
BLAKE2b-256 f9f60f9c08dd48ab02ea24e4d15ab05608b40e66037271a29874e7896b18eb1e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 fa4c598ed77f74ec973247ca776341200b0f93ec3883e34c222907ce72cb92a4
MD5 58d4fd3ca0e38adcfe98b3203afb373f
BLAKE2b-256 99286f3e41e966c14a055b213c36927d3ad5511535f2054fa63da9e2b642189e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp37-cp37m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp37-cp37m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 fa263135b892686e11d5b84f6a1892523123a00b7e5882eff4fbdabb38667347
MD5 a3e4f70ac3a9912bc55418dc72bbfb60
BLAKE2b-256 72a97307171544613204adabec91fd6f4229eace2193635249ba8c3e2e671967

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp37-cp37m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp37-cp37m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 cf62dacb3f9234f3fddd74e178e6d25c68f2067fde765f1d95f87b1381248f58
MD5 94129522d83984c679838fbc2c2f113e
BLAKE2b-256 58af573b5445f3e2f32d433f617042e04a0a7fc87a0ed08541678363ee5e3d5e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 5e2b3d020219baa75f82a4e24b7c8adcb598c62f0e54e763c39361a9e5bad510
MD5 6f56fa7827ea2e77dba66ba30cd3ceb2
BLAKE2b-256 6c8fdc886f06bd340a8de233087eaee0c1b977ba2b1ecba924e49c8755ce1767

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 3a9bd02e1679c0fd2ecf69b72d0652dbe2a9844eaf04a36ddf4adfbd70010e95
MD5 5ae611890055dccec69c4314cd6e57f8
BLAKE2b-256 f1a22013768facf29705aad6f000c12655d99c01d0f979b406b2f49730dff266

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 25b4cedf2aa19fb7212894ce5f5219010cce611b60350e9a0a4d492122e7b351
MD5 bd10ee19955b05beebd529312f810c55
BLAKE2b-256 d497dee99d7839f76ede9efc20379d431065eb95eb9e81febe3946e12d6df71d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 effe182767d102cb65dfbbf74192237dbd22d4191928d59415aa7d7c861d8c88
MD5 3bb9d373d539344c7b16c7d53a143f7e
BLAKE2b-256 117492987bb3ebda96fea06aa884afe32c252db78004463b4948d1b640f1ecc5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 68a89bb06d5a331511961f4d3fa7606f8e21237467ba9997cae6f67a1c2c2b9e
MD5 4ec7eb7e1a28faa7dd15bc95529da257
BLAKE2b-256 5c274d09373d4f63cd12ca67f1b93e18b82f4fbaec36346edf025d280e114713

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cdfc04f7647c29fb48da7a04082c34cdb16f878d3c6d098d62d5715c0ad3000c
MD5 f570967b7d80c49dae2993bea3c4b2b0
BLAKE2b-256 c4851972438fcda394acc826b55cae96e655f5fd60e2e78bdf18ac0ac0e5c2a5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fe59a0c21a032024edb0c8e43f5dee5623fef0b65a1e3c1281836d9ce199af3b
MD5 be8cbf7fc2917cbcfa2239debdefda93
BLAKE2b-256 e08ca473ab20b1732bba86e9470ae79f27161d17458892d3e26bb63fc5bdfa79

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.13.7-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.13.7-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7d005e058d86f2a968a8d28ca6f2052fab1f124a39035aa0523261d6baf21e1f
MD5 d430212dbb2c48aa13ff25d149ea34ba
BLAKE2b-256 1f7422f6b0f6a08cc7b6620eb14d514dca79d456dabd05c1b8bee6502f07996c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page