Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continuous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparison between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparison I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
    "".join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
    for _ in range(10_000)
]
samples = words[:: len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with cdist in the following way:

cdist(samples, words, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like cdist is a lot faster than directly using it. That's why they should be used whenever possible.

Benchmark cdist

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. That's why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-2.14.0.tar.gz (997.0 kB view details)

Uploaded Source

Built Distributions

rapidfuzz-2.14.0-pp39-pypy39_pp73-win_amd64.whl (990.8 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.14.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.14.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.14.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.14.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.14.0-pp38-pypy38_pp73-win_amd64.whl (992.2 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.14.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.14.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.14.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.14.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.14.0-pp37-pypy37_pp73-win_amd64.whl (992.1 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.14.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.14.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.14.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.14.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.14.0-cp311-cp311-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-2.14.0-cp311-cp311-win32.whl (932.8 kB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-2.14.0-cp311-cp311-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

rapidfuzz-2.14.0-cp311-cp311-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ s390x

rapidfuzz-2.14.0-cp311-cp311-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.14.0-cp311-cp311-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

rapidfuzz-2.14.0-cp311-cp311-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

rapidfuzz-2.14.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.14.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-2.14.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.14.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-2.14.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.14.0-cp311-cp311-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-2.14.0-cp311-cp311-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-2.14.0-cp311-cp311-macosx_10_9_universal2.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.14.0-cp310-cp310-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-2.14.0-cp310-cp310-win32.whl (929.7 kB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-2.14.0-cp310-cp310-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

rapidfuzz-2.14.0-cp310-cp310-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

rapidfuzz-2.14.0-cp310-cp310-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.14.0-cp310-cp310-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

rapidfuzz-2.14.0-cp310-cp310-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

rapidfuzz-2.14.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.14.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-2.14.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.14.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-2.14.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.14.0-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-2.14.0-cp310-cp310-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-2.14.0-cp310-cp310-macosx_10_9_universal2.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.14.0-cp39-cp39-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-2.14.0-cp39-cp39-win32.whl (931.6 kB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-2.14.0-cp39-cp39-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

rapidfuzz-2.14.0-cp39-cp39-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

rapidfuzz-2.14.0-cp39-cp39-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.14.0-cp39-cp39-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

rapidfuzz-2.14.0-cp39-cp39-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

rapidfuzz-2.14.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.14.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-2.14.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.14.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-2.14.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.14.0-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-2.14.0-cp39-cp39-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-2.14.0-cp39-cp39-macosx_10_9_universal2.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.14.0-cp38-cp38-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-2.14.0-cp38-cp38-win32.whl (933.0 kB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-2.14.0-cp38-cp38-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

rapidfuzz-2.14.0-cp38-cp38-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

rapidfuzz-2.14.0-cp38-cp38-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.14.0-cp38-cp38-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

rapidfuzz-2.14.0-cp38-cp38-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

rapidfuzz-2.14.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.14.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-2.14.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.14.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-2.14.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.14.0-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-2.14.0-cp38-cp38-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-2.14.0-cp38-cp38-macosx_10_9_universal2.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.14.0-cp37-cp37m-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-2.14.0-cp37-cp37m-win32.whl (928.4 kB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-2.14.0-cp37-cp37m-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

rapidfuzz-2.14.0-cp37-cp37m-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ s390x

rapidfuzz-2.14.0-cp37-cp37m-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ppc64le

rapidfuzz-2.14.0-cp37-cp37m-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

rapidfuzz-2.14.0-cp37-cp37m-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

rapidfuzz-2.14.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.14.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

rapidfuzz-2.14.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.14.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-2.14.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.14.0-cp37-cp37m-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-2.14.0.tar.gz.

File metadata

  • Download URL: rapidfuzz-2.14.0.tar.gz
  • Upload date:
  • Size: 997.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for rapidfuzz-2.14.0.tar.gz
Algorithm Hash digest
SHA256 a819146779f51494b8c6972652f12eb5288581f280e4bd62e45a239b61ee4d32
MD5 e2080a61b15fdbf405f2d3a73444272f
BLAKE2b-256 5e5a8a3c70e6e354978d0b1a4f03a62e8893cf0ddb86ee28cf30dc2d03539ea0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 7b6175bb2492dde6aac149eec10b7c36480cb961ffbaaabf775f7e9bacc97834
MD5 b283d4ec8b0f99b2cab632d3202040b4
BLAKE2b-256 cea3e6684761e9d4374fb18cdeb8a613e0f9f41ec23c05c6e538cf2327feed92

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2182a2ae6a40f521a3fa813aa5619f1c99684d97b7d31a945c5e29af4a5157e4
MD5 5fc591db4e25adc3a427f1bcb74b8099
BLAKE2b-256 d55fcb686ec773091ad1522509ace3d665c2efe82fbb5fdc9553d7a6c7f4d7e6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a2ab3a2eeee5a0cc47d218dacd7eab13c74a9af86c14c92b5e0b616aed7d1a7d
MD5 60c891ffc1e48655f562dd742a36be49
BLAKE2b-256 d48e9212c9bd5604b22bbaf7ea9146f3e1f2f2bd4bb94b052755c9a96548a514

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5979682d6c5859c87abb16e7488f05055fc9aff92c04518846fc0d325bf2b345
MD5 e15fb74173deca6ac22f57554e139595
BLAKE2b-256 e360a8c6d0e76e7fb9873c05bd12d2e04ad4b5d508327920e4230f01e8d6cff5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a66d65e30e26d5f5248b97dda0d8480bb5cd175ad8333e0fe1982555b6526b51
MD5 0cbfe611045069b03e66a2f2fb3b082a
BLAKE2b-256 9b50555852885b0032cea09d0ef19f6e30e5dc35ebfe82e3f01a066854f6deeb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 f158a6bdef1dba9c2e9714b3b474679e3a752d83e9e97c3dfd00a701f9b5ca0f
MD5 2ae68e1933cb381dc7dc423202f26593
BLAKE2b-256 e3c1a1f7646fbcdfa4b5387cec54cba9faae19fcf499fadbee9186033011b83b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ef582acceb4ce281b3a414fa4c4d7032bbce7f77c6cf41582a5ec7dbed276f07
MD5 957474921b900de55a506e30bd423f0f
BLAKE2b-256 8cb270142885553db64420f158c2ee0b1d513044bcfc1a037c0e049235cc7551

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4e79d8ff1b8ee51ea2e59747ab4088125b1c447939acca5ce69a17109c5579aa
MD5 a8f5745fdd47cfc321531650090b4c37
BLAKE2b-256 f96a6a2f4eafc7f3fa6a4dd0d034d9fb88ab884bab9790413951f03543882486

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 966178aa272676b4699938aa4bdc58e363e41885e615a8d95f81821e500721f3
MD5 1d98c39749adb01150be02ac15dd3f0b
BLAKE2b-256 b6b2b0776ea32fbecff8d1d9d2f89c5e87250578557433672791dabd8903c7b3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 29b131aca239c5127d771384c2f38e9deeb2dd6bd187f2a7bb140ebc98b789c9
MD5 462e8f831c29c2318bfdcbaedd8fb0e2
BLAKE2b-256 faaa40a53e3bdaa024b2c14e2893e3dce2868b820653a3782c39ef23998be855

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 e17bbe3403e4c8a4931bbed10b6eae62568ead1018381e10578ff44e1cf17395
MD5 39aed0e14997f1c0226d6a5f180e677a
BLAKE2b-256 0666a63ac3e5f3f78737c8741f2ee645dd62a31f0b8c9e6248c3ca29353e828a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e2df1cae63f3ab0dd5eebd516c105eceb8c6e5e9a6ff688a3c99d1f4b823552c
MD5 4acf07df79f16e3b6f370f1ba90a9ca0
BLAKE2b-256 23538bcaa9e14e2ae0a8349b9ee92e9b63e5708b83456641c1d1c20bf92c3be4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4123f98e233504d32e62a2a6cd7238702dfde098db43a1d50f17d9ce89921597
MD5 d9ea263ee99b2ed70ce2fe91b4ff7c54
BLAKE2b-256 2185ff3db1c353be176c30e63667904c2900774e43f857dec9830d628e75ac3b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 af0c5d9139c6dd1b45fa0bba1effea42c42f5d5c24872659a4d53960d6f12493
MD5 669bab037c43e62074fb161c257f281e
BLAKE2b-256 66f11afa6434fdad3bcc199c03a32f208646e39e67dae346017b9c01cb53107a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 782750753d4e25cf7b6ae9aac2f777a0c4ca641d7b7951d3e750f3106ba67519
MD5 35c281aef14a3a94360af4f033d63f79
BLAKE2b-256 95ea3167431c0994ba0f13e2d3c45588c3c3cadb531f67c48d1921b32627331c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 9e7e332f000e84b095bf07f30d1171edb1fd0ae3dbd2afa0e48433f5ef59efe6
MD5 ce1ad0a1bd5660330415aa94e8d1d0dc
BLAKE2b-256 64c3770e499c28cd5ad8eb166efecf46a28fa3359218b3af2a8d091194deeb65

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.14.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 932.8 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for rapidfuzz-2.14.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 cd3af96e3c5ebda349980bc8b57ebd4ce9339468e4daa5bebfe182c71d77dbd6
MD5 332138c9863f05e05be3e678a7643a93
BLAKE2b-256 26ea11bb61b86f9a6a2fcd544733b460934f4133a69b06a21216950dc8213c4e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7146c252ea0996bc69849a929cb7d871979341f363bb773cfb5b7280c429db71
MD5 14fcd9aeac1e59a1d50b4997c749bf2f
BLAKE2b-256 110a296952421940321c10983d752ac1b57504932fa97b6daa9a26e1bec968cc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp311-cp311-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp311-cp311-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 c126d2ccc849b33a1b4915718292807fabbdf2f6d565fdefc87ccb1c321112e6
MD5 0c12077e64df2a44a1ed62ebb11e9492
BLAKE2b-256 59d73990f4417fd4ab6db5dd7df615c88dd34798eaaa59c118bd22119dca84a7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp311-cp311-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp311-cp311-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 5766733938282f73d02c94dd3076bfa2ad312df910213c85bc332262ef93fc3d
MD5 afa2c6b754622c6d74202e45a9ce3ce1
BLAKE2b-256 14b86758e5e505ff27249f19ae37b1f4785a45964f6069ff34047de56895c0d1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a1b33a4aa567530c9bb7d8d761d06c690c1d955981d04e327a14bc92f231fe3f
MD5 b8a1c9f9990dac7e11cc4f3b062a0c29
BLAKE2b-256 5fdc747f3bd2c35e950f9a526ee3080b01cee48a9be0a77ad8726431177ae62d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 48f6d5a57a669763f396986f64aeeeb9a21a12b0e1ab24a2819a5305e3a1cfc3
MD5 2594d92be25eda7fb9496e2ecc67e3d5
BLAKE2b-256 014d89799ebb632553e3889c1662ce1c58b98a3a54cf96f13134732f935a234c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 47e3b1318fe5b82d11fa9c9f9ac60f79b84b63aa5518d4b5d13fa4166b508c5b
MD5 9973b49c957054860f4c7cec05f3ec90
BLAKE2b-256 b3f699bd1988f68b6178b9340cabe1c95f25069bf95d5402b747109eed0f10ad

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 1d29982b81ce1ea53cefdd0840108c2f7d5639b700288f53ed2d6535cc16c529
MD5 e9395bffb10d937b8d5269b47a00ff81
BLAKE2b-256 7c2c39d5a9bd982627f446477eecbf443fa5a38ad1ddc06d859c110d2704c0cb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 d1375f82ef6013339c76517e54b58fbc1276b20b484768ffcd7c63c1e138b89c
MD5 f4cd8638f7e41dd5d11a7fdec4fc631a
BLAKE2b-256 ce402f535b0ccc94c8cfab33cb4299ed4802b9fba4730539a9c6fe4778ea5e69

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 779460d12e4619b55c19be3fb28e57020d62dca6a8e5fa8f339b2e8a3f198092
MD5 d6d7cacad26ec90c854edfcfa49a928d
BLAKE2b-256 2e09e8cfbc8a5d432687d1bfae9ee607d29aa80b6c6cc1bf48eb42c2f4f636d5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fb07682f0050d3fd97defa1b470c9267cb8a5864aec5ad1c782bc081abd1d444
MD5 2acdb16a68dd59da221b3c126e2cb44f
BLAKE2b-256 22354b91ad8564b6b7f5a927a9d6c11f7f6245f6a63353ca214efdb87a531127

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6f2646f585b027e486cf8bd73e51931d33308f11cd49397670052cac6e38bcbc
MD5 e654c81268b6d70f94b3e98fd54e85dd
BLAKE2b-256 bb1ea268c599a64992bfd6adb31c1d51ec8212b2a36c09059413fe2f31610062

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e74e38dd84d958f1da9e64498ff48919166cbe5a5fbb13f72cdaff65fdeb8033
MD5 dc15f23e9991efe19e37d6378c3b2d95
BLAKE2b-256 79f35e133a1f558d33c6364789ee3ec7adf08fcaa1f31f777c75ba21dfba536d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 465930e4ed954e367047a67ac52b5a2d54621727fe8a069144cce5a71e14f4e9
MD5 0f2766dbfc28dc01733dba808557d82a
BLAKE2b-256 52b6c1d037bc10a7b6aa6aa64864c55a44f97f05f135ce4ba3ea59785da360fa

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a029b30b1092ec759103a6a68e9f07a110ca606df718ece7e984f62c6b5746ac
MD5 6cd80340384f73301fd4ae3efabb1449
BLAKE2b-256 432108ef26ef6d7480242390392e5f643449baa707b03b7d2c18ea02041d5474

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.14.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 929.7 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for rapidfuzz-2.14.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 92dfbb14d84702292958f3ea49277b114561551f798088cd9284a77c01e1fc8c
MD5 acbf808d81e2b0e4b8b4320fc6bc5231
BLAKE2b-256 ed363be4088e152e80b18f48e9f060bbbda70c41f3fd53913bce5e48bc0f12d9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b4d761498040430d0e00ae3efabb0499d7f9b5150316537956f9897b7c750299
MD5 9acaf0bf8aa8dc0779ade08b07cbb386
BLAKE2b-256 4793ed2824b8a16b6363600828438efa96fcd2659a84eb9aed40c8b894da7760

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 84f462706ab8f43553fae6901ac2791c868dcd82957c5620e3a54c0d0057008b
MD5 14497167bac3de1e61c082f71731c97b
BLAKE2b-256 8ba6706dc103815eb7a59733f6cf7b228fe22b831f830696ff69c331ff911b8c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 24801ade5c023932b1bf8bb0b022c893e5cf159e704d59d52bca1ef9ba9de3d2
MD5 9ccc40a95cf484d7e63e5474d0fbd016
BLAKE2b-256 7fa097f1e23f610abac81b81943e42c169c1d99c11cf8ba1576bd8417dec3089

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 021a2af92d38364eabaf8f945ae3e73b1edfa1de3b19354179d73b6bc17e62ed
MD5 5ebb32e049a54e0282b56966808e8af9
BLAKE2b-256 b11a742a56bf5cc346b094f043f51338f3100ae7d803d11a95d5f1f8d0053439

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 1a5d483e1f96418ca95432b1f7604315e862d5df15d380fcdb65f8cde199f7f8
MD5 b853e4c00fece8c7fdf085fa7a681fbd
BLAKE2b-256 af41dbf70936ba4082e05819b8a5715de1be9e2c1c809897ea13e4a92ab001f6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 91e2544def457f6c3cdaaf604629227acea1f087d576aa6437d9f6106ef241be
MD5 f80f98e2765ddde4ad90ab278e76b94c
BLAKE2b-256 8ec57402d3d8894b90a98467ca759dd4a9908c83f10e9837250bfd407140a873

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 b1a877e022fd077229fd89f5c994fd32e46d9e3b5579e34ae26529c3195598d8
MD5 854928f09b0b31b6e3108baa26e460d1
BLAKE2b-256 1dd27a3eb2a3d40cb41b31be7d3e79c3ddf63ba336c493160f6edb029ef8fb91

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 295eca8ae0cbb2517d54fb5fb797d285c908cb89a5f7e2777ca1eb5c7511a530
MD5 1d4540340b16117766744de74f0bbb2d
BLAKE2b-256 4dfa295e696e738ec03ea2cbf2c105825c894218a6b889f601e08f2f86876912

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 39fccf3322debde745ecd69de8ab4b068deea808604049b92fde5a5c50e201c3
MD5 48df75875713fd49f65dd1d97089954d
BLAKE2b-256 1a28552ba9beeb76b58e6e6b1ce4faf98c11d1e26416d392f0c82bd311f47940

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1a45953ba26fa2ba5cc94d963d44ba48a7587ceadef6d3150f6c6ab4e277c1d6
MD5 328c010125ffe88ebcf97235126323c0
BLAKE2b-256 c9193bf1e847d8cd3e3f5db06ab7caa42a705fd9f878361c751d5260c7b2ba0f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f49a57f23f6ddc852c852fcc87ea2db5fe6226a520e16634bc488b4d13d9406e
MD5 9bc4bf27ead3398b3082936cf42c27dc
BLAKE2b-256 b4d22d539a8a924db4012432f2a626bb19ce2ef86705d4ba24af6bb056a9116f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7e1624126cee99dd5c1fe017e475d0bddf08a9cabdc1d5befc4a4f72edc53364
MD5 10dc2b2f1ffae904c254d5944b1ca275
BLAKE2b-256 6090918b51248e37f4520414b682ba3b541aca974ac7de1d8dcf239635ec658e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f70fdffe4e884d29ae0082ed04f8cdd9769295fb52d036c6b8f379c1e6618b37
MD5 f48c24dd0d5fe48da1dcea89466de33d
BLAKE2b-256 4131e2fce36c8375bc9e4cb99af7f9c1267b3188190bf1973911fedbf05ccf02

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b39562134b77f5c81f8e1498b3b7b407dcc1c0122f73634e4a5d9ad222a9b442
MD5 ebebc13687bf257efb24c2f3df20d3f4
BLAKE2b-256 228c32e7eaa953abffe42ab21c3dff9c91e4440f5fd1ecafdb04383aaac88e5a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.14.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 931.6 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for rapidfuzz-2.14.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 006b68f602bb1d6b41a98f4cf14c14a32115e53dfeee0c2b4240d40d67fa2eab
MD5 c476af0338934eaf247659174fffbe14
BLAKE2b-256 3b99b66b82ce6e50039c1c4813948bb4a3baa78cafbb5bb6d903b4ed0ef0ffbb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 03944d88316ef1802e875b217e4a6679893f9da31642b0aa1fe9d9f48a6e7298
MD5 4b52198fc858d051f1eb7b9db6327e16
BLAKE2b-256 0e3c6ac7a5b5db8183f315d147ef28dc7a1679fc13fd98ecf1133cb399a971fc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 43557342f1e9f41419d6ecfe039fffe6b9e6d26efb63c78db539b9903f472d0c
MD5 3f26f72dd8c23fe25b270d9b96587af0
BLAKE2b-256 4d48b502eee6dbcb27f88202375e1c9b125421dd7bac626d4bba8e2ec63b755b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 1bc794623f1cbeb587012c5f75ab26a43444a6e085926fe7338f3794cd62ef77
MD5 d109bb41b10bc2d1ced12a2cca270da1
BLAKE2b-256 4948bbd74c48318b2a49081dc416df71c19a49f0914c3386bb32a8474a1e2ee8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 3ee29341d21b95a70cc5527fb0293b71e0b0d12a0889d2c809a37b9b95d7c087
MD5 db41b9b68f2542a4344597d1e2337e17
BLAKE2b-256 94f110946a15d117221a67db9fbff1010fefcad4c8c072d5f5558a7e35019fc7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 7984f4e53972f3c881b15705c0d789ae773cda7e3bed4072af1c526ba44236a0
MD5 7d52d5bb67362b912d35bd5f4b50496d
BLAKE2b-256 e7e959721699e1985e7c6186e22e746bc9195a8e7d23356019b08639141c0c09

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f732d47018d7910b2d2fb02113e228ea58dd86b24dc64bfe6e90ffe5f838cb10
MD5 7343eaa8f4140242bd5f15f77290b046
BLAKE2b-256 b759d0a38e86a0c944937e93f9b9732ec3ed84666e4e1efcce6ddf41100bfe61

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 8ee6091c54593b237ce7a1319fbd35106481ffb5358bda8e0f631bc632280908
MD5 ce1c240a27c59b67b85d5f6cbb10ef1b
BLAKE2b-256 d0209fd9923c76a075e224d0d210bf338f06766913eeaaeb7a6f318fd0f67f58

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 9dc59d9c39555540ae061534da35e91c9d8ca976947f38168e39f18d7c8dcffd
MD5 35c95449241dd547fd4a382ef6356602
BLAKE2b-256 30b8389b558b1b4bd7400e730ce8857c437e226db119f04e214e271981ad2486

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f6f964f5c20b5eb34a545e4fe43316885bd7403d03af779994996a0cfd50ba8d
MD5 467f214a4b800dce960cf5206e0e704e
BLAKE2b-256 3d1e2e9451a10813302050adc75c95dfff3e2dcb17a516a5443e596813d51e57

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e9ea908ade1e10f64cc17e546b28ec861c48c75aab83c4d1ddc4e4b470b82e4c
MD5 f1024e86a71eebb9c42411c372abcb98
BLAKE2b-256 871f594ee2639636ddcc0c800cf109d469ecf3b5efb5f5450409b153c1528c73

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 33226d62bcf0dc891a66078c9f86cb507c0d02e977ac0fe3eb9850b835c2ef2b
MD5 754e50b56d94745265038a2f77ad20a0
BLAKE2b-256 3de363f314f303b7605fef4e7235cb46fc486e3a65ced40f6111184f7b3a35e7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0303b433d17677aab638d9c61a0389fcce2e1a2e6b441b47842ea704f134ddaf
MD5 eb5be35a47c10d791cd8453df3485360
BLAKE2b-256 1d1c2c43405b9f8cf1fbf080ef11fcce907e69be65e7eefc4485125de5cd5d3a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 df4a469068a49e300cca3227f86c16852b689f66965c2028f516b6c8ddb5ded5
MD5 156fbe17662e4346b8ec931f260b401a
BLAKE2b-256 329ee81b0c6efbab501a631a6c76a979820663b13ca9f78fd9fb325e741b194f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4a9740202af5a059f6c5cdeccd2d9c526b87aa8eb83a398c0f060a8090f575c7
MD5 13b1ee2841a3859863ea4669cdeadec7
BLAKE2b-256 a1308d9017ee1187760ec99eb7e957b84bdfa1e9f6e82859fa02151160e16d65

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.14.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 933.0 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for rapidfuzz-2.14.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 3f4111b84af2973387ffc15794912f1e71c41c54b0beddab210e649f16fb2942
MD5 eb9bf92a35fafb0f13ee377b9ed00a93
BLAKE2b-256 95e836cdee6e79fbe11440519112b3c65f20c1d4e6cf7765a512e1a2da3ad797

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0eb59f660752a36877199508d44c3bbbaa07de4dfb203721605c03032f9869a2
MD5 969f6ab112024494b58484fc73e43d9c
BLAKE2b-256 90fa6531ac83e98fc0fa6c23452230dbab7a8b3648b650d41f5339ae3e22a0cf

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 f5f80aa3040275a075197925a0eac4ba756c11a42ed22dd49a54650e48e72642
MD5 4fc6132b2cc7a932520b51ccb9fb271f
BLAKE2b-256 1ea508af3bf9404f94e905477d098db621f629c4200e03a37d6a4e77cda5f969

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 bb0f8b6099630101494ace9c59df54f9911522cda0d2c2667d2d87b2df9156f3
MD5 62c9277436a3adb407eabed5e503b7ac
BLAKE2b-256 490bfe8b91a28c2210f2205141e6ece804bf0703a061288b45860289f303ebc2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 9c978fbfd08f7ebfce66826750158691120bce885b8a399fa82ca9a04a6ca940
MD5 5e7f9572e43623b7ef4d818e54e05ee1
BLAKE2b-256 3c17d872e36f96460c137b18f222d69c7f629735df51f169c628853fd349b57d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 ebca0c98f81e57dd2466a28e3be733f217a04ef1bf37794afc85b5a173600184
MD5 ce7f5075a4252262b79965b8d91a02cf
BLAKE2b-256 46bca318fdbda86d8957a86dfe671a12b48816c78a22a9e65b361ce0dc7b6fc6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5e5632c9529084fbf58d024e66f0de0706d58cf979e822af01a995d8ad381ffe
MD5 2036e904e89b6fcc238b2114df65fc0e
BLAKE2b-256 ac6d478f6c599e45a29c0eb81fdafc444186df28b28f661cfd2e189823385c66

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 11fea4c73422151de5e83f05e71df830fe743cb4c1e6aae9d099aa8b6e4628bb
MD5 7680991e3496c15636d8e2b7e000300e
BLAKE2b-256 4a1ed8d6f8a1bacd10135fd0e06c8acb854f2dfb626042e04bd6b09febe7d2b0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 e37aab814a8078b8aafe644a6c6cbeeb690cb1ada52c1171caf01d6eaba98af4
MD5 4f92d189f15f3bc8fbd7dde57504b406
BLAKE2b-256 2f99a34f0598db4a9d1b014851a95a84b96858ecfc522b04c6200fb91f991c1e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1ae8e80dbe701df790c181995ef8c479cd7170ab84c1c9079dca6c2fe54e90ad
MD5 b0996d899dba0161f434a0c18c408885
BLAKE2b-256 df6b02ae4048a524fdbcbd7dc88e6bd38e747ba6e3206a902cdc9e3d2617e7d8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7dabea6254f5ea3cc106d93e38c3adfcfd47fa46de0a5721e253575986d8282e
MD5 822984a1e983e47df2ad84a89a8b8f00
BLAKE2b-256 856d843ae49f665619d05c6c10d87276649d5e8e1aeb7b415d27890182f57e27

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 19527518914857b74990f41ca52ee43b8244559388ef56ae8a7d23cf2da3281d
MD5 d7b32f9103d6f4bc987ff736d2c6e366
BLAKE2b-256 7440811aed225bb18ec5748266c284a08f34e2d87496668e39e6f02173e6c0f3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3742081d136b8fc6e79f209d189f3d13e7814eadf4fb1aa33d590247db10888c
MD5 bd5682ce99c3715594286ba387bc3d94
BLAKE2b-256 d3e134f6ead56027e77024e106890e5e9f70a2e60df6854ddf8352b0a71dec4c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 745653eadb2bb8166c42dc174a413a65d526f81cc26c82b44a3767c1ca6131cf
MD5 282ce887de5245a44a7d332e70a8a656
BLAKE2b-256 1220f029668223518b2e69c2ec3d6646f5d1ccd994f4ffefcac116693fdb613e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 03eac49705bb07ee8a4d4a3a5d1c653acab242edd328cc90a6dd8c3f857ca7e6
MD5 dd44d113f1c26540b34f22e7744d0670
BLAKE2b-256 9c7c16b5d704dbb1199b004f92ceadded2e2c37e9ba01a291cfb9f1c925a640c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.14.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 928.4 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for rapidfuzz-2.14.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 0039b84e43d86f673e313c0007277a8e8b05e3d294e9b2648602e749664cbd5d
MD5 bdcdddcab0c0090bb2723ec920bfede8
BLAKE2b-256 2b522405be1354526580b363ea9547e9125535be211b92d0d9d10de858a03f8b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6a5c4b62be77fbbaa653f30f745a6e1f5251fdc50bc9c4a39833de417c289040
MD5 bf54fceb7465ef54bcc4e8d5cb4cebd5
BLAKE2b-256 8ea34b16d91360c71fc4876263004fe7d22a2bc7ea5b9355465f1d2777a62ba4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp37-cp37m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp37-cp37m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 78856d20851e24f82cb651cb141700f105334f9ffe1a0a90edb83f182775cfe5
MD5 65957d45197717aa0bde402288ac0793
BLAKE2b-256 6f840b425c0e3d95d2e67421301fa6b610896010494b6c656e066e96fe68753a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp37-cp37m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp37-cp37m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 17fdc6cc317465f7cd28b29e6b63436c0b1ce43acd76801c60b096cb54bb52bb
MD5 efaa7245063d4a5eafbb444859e61927
BLAKE2b-256 e22d62c9b4c39d132816c10a4a3b666d68b645911d0149c520d464311be5856f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 8951fb714528cb1edabf4064c869dc41968fb205f2db11b770f8f72f757ff7ca
MD5 9156ca4bc1d39b4bff590987e7a441b9
BLAKE2b-256 606c69a4dcef6b35612065eb0f69155e49203c04f11c2f53147760572ebb95d9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 cb3af06fa6a3c42fa5998bf9b1a264d8832d03f1a15758129467da748785e618
MD5 e68571543e4ef0288dc3d1ac7ff101fd
BLAKE2b-256 8e0dbd779ef774d00bf04646554d07b7b8f9d81f84f0c38ea34c4ab480de0235

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f3477bd4e3533e7f46aff0399f41ddd586f4b1d524eb51b6e793b861a6f6f5ea
MD5 e81a40ae36fa10906cbebe05564e7cb3
BLAKE2b-256 6db8efc1943d62eff8e16eca82fd9e6ad5ec32818649281402446048dfb3a9ea

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 d68e68ed7a127ced59156d9f2091624591e24b6af9df848633aed39aea292e17
MD5 f9d585e595e2b0a34ea9c1133519ae72
BLAKE2b-256 53cee6912780132096d25d3e94f3dd8e0f88b99464aeb948dcfceb367af02da4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 a74439af9f7ef50c35cd7a052776341ea967b7c02c67a3e92c846be26361275d
MD5 8a03b5237f554a8095485e2e70eeb5df
BLAKE2b-256 81e229bc83bf7fc4584f7ac44930a0d32169342a53da7f4946ae223ed3aa7e80

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 fe39522faf814b2983afd64b7e8a0c8bd5022705860807f2fcd14c3920deb4d7
MD5 9df82c0855d988329c69809280ec9b6b
BLAKE2b-256 c1b61fd4f43f234ab09d1232758acf3d223716844b21ff7887d7defb56b04608

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 134597cc3c148086ed6f75fe58f2551c38b2e4c6c41df36ef889915c41967201
MD5 fbf7ac3207311714a4926417eda614cc
BLAKE2b-256 575a7849de71ea81d5385620550b39e52d373702897c02ec2f6a4d9826c59d24

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.14.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.14.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 aec1df68a19c2668ba7639e949dd62d479fed69cdf7d6c90f5ae9ef266278995
MD5 aa84ee0e728323d89178ea38de85151b
BLAKE2b-256 da0366e97fdf197cc3d6acea9fb8639121bfb4eb3242ad7b1e11ea7ce3cdfa14

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page