Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continuous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparison between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparison I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
    "".join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
    for _ in range(10_000)
]
samples = words[:: len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with cdist in the following way:

cdist(samples, words, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like cdist is a lot faster than directly using it. That's why they should be used whenever possible.

Benchmark cdist

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. That's why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-2.15.0.tar.gz (998.4 kB view details)

Uploaded Source

Built Distributions

rapidfuzz-2.15.0-pp39-pypy39_pp73-win_amd64.whl (991.0 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.15.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.15.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.15.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.15.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.15.0-pp38-pypy38_pp73-win_amd64.whl (992.6 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.15.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.15.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.15.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.15.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.15.0-pp37-pypy37_pp73-win_amd64.whl (992.5 kB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.15.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.15.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.15.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.15.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.15.0-cp311-cp311-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-2.15.0-cp311-cp311-win32.whl (933.5 kB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-2.15.0-cp311-cp311-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

rapidfuzz-2.15.0-cp311-cp311-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ s390x

rapidfuzz-2.15.0-cp311-cp311-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.15.0-cp311-cp311-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

rapidfuzz-2.15.0-cp311-cp311-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

rapidfuzz-2.15.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.15.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-2.15.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.15.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-2.15.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.15.0-cp311-cp311-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-2.15.0-cp311-cp311-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-2.15.0-cp311-cp311-macosx_10_9_universal2.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.15.0-cp310-cp310-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-2.15.0-cp310-cp310-win32.whl (930.3 kB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-2.15.0-cp310-cp310-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

rapidfuzz-2.15.0-cp310-cp310-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

rapidfuzz-2.15.0-cp310-cp310-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.15.0-cp310-cp310-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

rapidfuzz-2.15.0-cp310-cp310-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

rapidfuzz-2.15.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.15.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-2.15.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.15.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-2.15.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.15.0-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-2.15.0-cp310-cp310-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-2.15.0-cp310-cp310-macosx_10_9_universal2.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.15.0-cp39-cp39-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-2.15.0-cp39-cp39-win32.whl (932.3 kB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-2.15.0-cp39-cp39-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

rapidfuzz-2.15.0-cp39-cp39-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

rapidfuzz-2.15.0-cp39-cp39-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.15.0-cp39-cp39-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

rapidfuzz-2.15.0-cp39-cp39-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

rapidfuzz-2.15.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.15.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-2.15.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.15.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-2.15.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.15.0-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-2.15.0-cp39-cp39-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-2.15.0-cp39-cp39-macosx_10_9_universal2.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.15.0-cp38-cp38-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-2.15.0-cp38-cp38-win32.whl (933.7 kB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-2.15.0-cp38-cp38-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

rapidfuzz-2.15.0-cp38-cp38-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

rapidfuzz-2.15.0-cp38-cp38-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.15.0-cp38-cp38-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

rapidfuzz-2.15.0-cp38-cp38-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

rapidfuzz-2.15.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.15.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-2.15.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.15.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-2.15.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.15.0-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-2.15.0-cp38-cp38-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-2.15.0-cp38-cp38-macosx_10_9_universal2.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.15.0-cp37-cp37m-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-2.15.0-cp37-cp37m-win32.whl (929.2 kB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-2.15.0-cp37-cp37m-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

rapidfuzz-2.15.0-cp37-cp37m-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ s390x

rapidfuzz-2.15.0-cp37-cp37m-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ppc64le

rapidfuzz-2.15.0-cp37-cp37m-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

rapidfuzz-2.15.0-cp37-cp37m-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

rapidfuzz-2.15.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.15.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

rapidfuzz-2.15.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.15.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-2.15.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.15.0-cp37-cp37m-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-2.15.0.tar.gz.

File metadata

  • Download URL: rapidfuzz-2.15.0.tar.gz
  • Upload date:
  • Size: 998.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for rapidfuzz-2.15.0.tar.gz
Algorithm Hash digest
SHA256 1c7e439d1428882d297bdd0db5626fc4626cdebe50d3fbbf4ed898f775ca56d5
MD5 31c1184d6b701bfa6091436b5fc2ef91
BLAKE2b-256 018ccad170708243488e2b2a2e727eb40f30018231efa7fa1a9a3a3dc82d9f42

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 684ac35c6480561b4a0067319112907e2405a93cb6a228de8214b6a3e86556fd
MD5 4599774281ff91d81264a2d2c677efa4
BLAKE2b-256 2be5eb8f7e2af300994345220e6687891f73d5ab6843ede29b544d72e4fc0aa6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5fee1e39cdf8361aed89bdcf9bcdcdd47bd3714f16611fcfca46f408d983a661
MD5 9c8c094b95b02ce709b94197ed35cc6f
BLAKE2b-256 cece8eb78b36150c9ad95cd07f4d8eec911c8689ef3b356158379b58c044bb38

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 766846a4df99c473d4426e51934421f767db07fa3a4e4d921bb5258a9f8b9a75
MD5 d2a0c0f3f3b520896c64d110a04a5b2e
BLAKE2b-256 e03fb3c24735344581b5e19d92dbc1f3b5d07bd1c2d94bc896fc11c29408e8f6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 462852ef50dced87e1e83ad92520b993afba4e7a4e6e93dbdfcdda449124df9e
MD5 c1e5bc9a1979a8ac8bf081e8269c77f2
BLAKE2b-256 72b0399721cd5544bf36cc8b2685cc32977ce81a0ab5a555b25d8ea94b7edbdb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 62d7fa522c56908cbc9e9ead2a52f19ac818cd525474639ec8ee5eb2adab90df
MD5 20422def7d44da3059cec06fbf86dc22
BLAKE2b-256 0652618bc61c2fd722a31310ffde2cda481434e8e1ebe7ca3ed18affc34861a1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 0f570d61288b35bf2ff94f6d60c364fe3a78fc7ae71e7b149daeb2bc38dad1c7
MD5 46c5be9da484e5660f761baa92eb264e
BLAKE2b-256 59e4fd0d2bbc4fb7b59625efc458e6874ed69fe7e9054b9d00af9c142c6d7472

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c412ede384f3f305a202de4ef5f5b57394b41e213e77df97a33fd45f5837d854
MD5 e3b3855243e03d7137c4d6596550922b
BLAKE2b-256 3c1c8136e63a9908e4d1881f724bb20fba25714dae556fff253db378d110210f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9b6822b7be49785664cb72ce9ae8df67578154f6a8cf69e5be5ce7c25580a157
MD5 8e3d632ded27c8f367f3be32b3a236bc
BLAKE2b-256 1e7188130b4c9aaf847c4de64816bee748bf8e9502c6582ec778b68e60f2fda3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2f01d4c96824721e8292182d3270178021ff3d6065598e74fec5cf4b1e794fb2
MD5 2b33c9e413859e1262f4f3a412fc47aa
BLAKE2b-256 b3bd5c6c3d6b65eb14e76d5ae817acdadc23fdab88be3dbc7c0192c86c98d56f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f04ac54dba649d3238295c2ff3a01cb9b5bfeb856d375253fd4f6ae2c0152a39
MD5 60f5e216bba06b01e8e873bb3ff030fe
BLAKE2b-256 17e5d90f0de068f5bc29b5489f419c36cc58b1d9fabd3dafec7f71b5134752a1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 d6ca92a5dfd9c97e8d2652ab56ab041d118e0ddf3009f7ae2cb9de7a19688b5d
MD5 ac01bba91ce4f3b70aadc4fcd6860e51
BLAKE2b-256 d88e126ed908abdfc3461d6341c1f9f9f126cf64d15ed65bdbb7b3bd17ab3690

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6f4fd9e5d7a09a60cb8cd0af2ff4abcbd5d8e9ea17304344a03f06cfbe4909b0
MD5 979095b2c22f692f9771ecf7a5b13674
BLAKE2b-256 1d36651d5f069482001378932e591a9f086eff19d540e75ff425a347eab3408b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a4f618620253849bb9542a10d23f4c2fc8ac0e06fb485be14312fd494cf48751
MD5 5ffabbe4530b46bfc3d2f46cae471c9c
BLAKE2b-256 c53034fb470fd4921aa60938f21033b9305352d259c42ad2189881b1b5acabf7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e1f0cb2352b8e64e1804db4c0d91963161d54ce174b1b5575d15da1faf4aace9
MD5 07d27998e3b70fe278d7a8dded5ddaf2
BLAKE2b-256 1365822b6737d960e05e4c8f590fe30e8e5e9ed3b91d58123ea9fe60403561da

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 76f0248da712ea4abed9e6962873d41cc5fb13777455b4c811b3f9a853fd7e28
MD5 d24cb15bb8101ecebe603d665ccfd677
BLAKE2b-256 3197c53495c37602ce3600989a64ac88de49ba837594f3435475f6a8822e3a79

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 06b65e724cdca4eda6a639d491339445f140d88a598bc0eb98be80147003dc26
MD5 fcf54180b88da10731116fa6cda5c8c7
BLAKE2b-256 ed2094833d822dd2e26ab403b7d97067b393fa06ec7cee1d5f7d44ff658dcddf

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.15.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 933.5 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for rapidfuzz-2.15.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 4cd63b1debe72535d7b72de98c50571859954ffb3e5ffc5b0869feb29c407013
MD5 46cf275b1ed5148a6a93034f8deb8b57
BLAKE2b-256 c489635b386e0c548881792200ac879551329abcaa7403e241016db52f52d4bf

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 fb4b8e3a52f2f28944499ab6b95817419e482b48cd11d776034ea4c98ea9e33f
MD5 86a6a8e1e79f81f3fc0b75a80a3b7ec3
BLAKE2b-256 67847b3f3d3950908428681894b3b0205b7f973f57c8c39e46a22fa26320d95d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp311-cp311-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp311-cp311-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 c32d41dce29d0d14a393de443a1980001bf341b2dc977fab73cbb46be3beb10f
MD5 3fdab3b0538a458cefb4a75c247b9441
BLAKE2b-256 230068dcf99432e9e3e91b94ffcae119057cca8f374a978378313aac34ff89c4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp311-cp311-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp311-cp311-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 b3a125e32831a4370096903f0c2cc1314cf2ceae3af4431ac4885e53984201a5
MD5 5855a0d91995e6d2ac1cf8b8e14e3b5d
BLAKE2b-256 f91bc34e423685e6fefef9255c4b23fdd38283492f5043f992b9c8f192e560e2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 8d7e73e36fac74877b8a4700e60c9d699eabd48f7fd37419eb5f8124ed023273
MD5 e30dffcce6314c69dcfa626c1e2654b9
BLAKE2b-256 f530195c4cd016fed7dae4c183bed90c44ff79921e964054771843479d695c83

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 4f393b18d411b590309693e4106fab09dc692f564e6fea4a744a33754f7b6a37
MD5 45884157857a08b8d6e3bbd3073b7ca5
BLAKE2b-256 5c0543760f2a5d4570d09fd1198731cea034909d2e4623d213e3f4ddc67a400e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7c5029ddb65ae980bcb87b9790df226105266f7c794b20cb32793b4865564e01
MD5 27f2cffa2dbfcd77b94afa1bb56fe55a
BLAKE2b-256 12eac42188c2c16455fa74fecf5834354dc6fdadd4eee03939f475d200d68b9b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 5bc26a506c758bed4bf5b43b90a8c79460e76e28db97330cb6640287468d575d
MD5 048334773a40d56a07141249cbcaa5ea
BLAKE2b-256 243c0ff6315e236d3e5dc2f236c49b23719d9c939bc1986116f1fb9f0e53766c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 2fb5bac25bb5b0d6833f7b740292651759dab870f0487911def46214526f5dc9
MD5 8c5084373c4e48a97b2928abcd42959b
BLAKE2b-256 d2d1c94eb530545372e43e4171968afb43ab1849d5b6b97da2f28baf71119788

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 313f3609fe37153d50436884d852aee3a56ac41734c807718d8453bd3c243565
MD5 ee5bae736170882a2150a6f6afdb4431
BLAKE2b-256 5a18974cf1d3d42614bafbc4a4f2579e61aad4e44f50ab6d7b79ed80785b3500

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f22a9f8d97766e18179ddc3251027ef346177335518826592d6e2862c811a4c7
MD5 d78825bd4ba2ba032a18ddfc66e2d7dd
BLAKE2b-256 eca44e932e55070139c69aa8c4390c662b7c9a8e7819af332d313b50b3b0de89

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 03aa67c2eaf33391317598ea688a6cb522a9823c8d8a8eee9c85dc60b6fcbbc8
MD5 d6c9d28501d511c5cde1c751e31414a2
BLAKE2b-256 9e34d6f11666c1b84d2f3c547ff9c7132a4ef928fe6cbeb5ce2be7eae5d54dd7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 666bad2454b2fabd14e397fd467edc95e57f6324eb8bfc8c13f962732a4cba4e
MD5 7cc2e76d8bef6e0c94e957ad0e252a34
BLAKE2b-256 435eb9471ca45306c8af1fd942ff255dab4413720c24c58aced9e424e50bf492

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f4107e92744bd1fd83fd38058aee3858893a4ab5b4eab76a758eb13804c38692
MD5 e57d42967b204f15678e3d8ccbf5166d
BLAKE2b-256 f4d47448afc07431c8cc5e53b4bf9bf72b79aabd6eb5a13934ccf6a5e8f703d5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ae44dc7a350deaf92d313369b46280b787e52b99103437c46002ce29b3ba85eb
MD5 8f3481309a1bf19ffa0b2c95054110ea
BLAKE2b-256 ec187c9c7b0f99f070a8b9fc81f0b760c52b284fc4020f9d2f1ba794b63cbaec

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.15.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 930.3 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for rapidfuzz-2.15.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 632d5473ba52da7fa71573c460d5fef470b3ec6d560348a07f97f2860b16f791
MD5 342f987c44ca21ec21ab4e0e15f17af2
BLAKE2b-256 9ea9df7c3134edb1e817eb00d668bb8d5bbc732c79f449a90b552e61d0c541b6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 550515f4a2e7051bbae343851a9ec3adc7edb1656b181b2a8ee571ae7fe8a21e
MD5 90c1ab2a721fc4fb32112cdf37bd1616
BLAKE2b-256 dfd1ef12ea73d4de347c377198fde8bd8678f460553f5b1d4810c7f5c308f35e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 420f4544bf230835e39786f55542d75108015a27dfd94779440cffb08d3762c8
MD5 387a41bd6590e1f08195caa7c987fe05
BLAKE2b-256 5a462b222066967581ca87d278d78eed26f99e4c496e91b3d44b53d6bf61ef43

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 e23cec8f517f8dcd3fc7f13d2793616b92b1b2fd36c3759c92758f8166ecd154
MD5 cb23c5b9b8f99f8ab247ae77bced23e6
BLAKE2b-256 f594d2ece37b2330a3f64f94d5ac1276de5ca5cbd235dba6530f50aec9831ea2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 ec5324f6fda41e72f49830cb0b8d124b9431c2e3d4928fb0bd28d461dd6657d4
MD5 e9c45189df301cf85142e016db7e38b2
BLAKE2b-256 41fa8451a5faa00504e33fa3300907dc8349bf83cdf1117003eb94e25180247d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 1b49947c5f0c7543fdab825e9375edcd407f85250d077e0a404844961d888c9b
MD5 9086b223fab4f9653bc612d1b78bada2
BLAKE2b-256 91c3bb0d7f4581fc44bde61fd8c7793e12d95f86b0f70a6bcb6c906acefd5848

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2892b50be613d1458a85106e0c1a21a9e8fd317e24028e8fae61be022870c9cd
MD5 13d05cfd9db7346e7a38478fccb33805
BLAKE2b-256 fec5c2b216a5d199473b2dad0a57c0c8b6ed66ed41e5a9e63c3b21f302fd72a2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 b9681f9e4d19307666a84f6c0f3706b22d35eeaeeab07ac356b1393b00f97cac
MD5 33dc3936f8657b7b3d01448af98c4e8d
BLAKE2b-256 b3e48a779b0435fcd9e1ea33c164a9c14d363a2b6817618f1a9de4d1ae912e96

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 2f24708f6906b0883669c9eb4e67d0f65519f03530bae82b2b277ef62ec46ac7
MD5 e86f5dbd492775a5b83f9d779f077d87
BLAKE2b-256 c36b56d8d04be0f5cfd33463ffe4df7fe108bb94c2b56d466d907b3c8b64c8b0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1b8dcf09453b0b0f4dc64efb35148cab8a0fb6c466d34e5cefd96ca6ab7fdb4e
MD5 8695c8dd530a9708c42f48ca5f76cfca
BLAKE2b-256 637d61baa20abc9f5daeabea70a64f974303fd4ad38198dab69b026b5c9b44d1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bb7a110b439ba3ee4986d19234e6ef00b36a5f8e9747896c24498fa23e684514
MD5 166a27e634b38a3f9702886d9e4148db
BLAKE2b-256 a7362cf1ab4b3ea5208f32d47ca1e34626bab542fc93bd016c359105aa3c056c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 824cf194bb50863f1ff6de6f1aa04693bbb9743981dcdc35a98549c6bf829d01
MD5 3efc2cd2a2a3d6e018a1cf1ca51838ad
BLAKE2b-256 427d1bbe84369160c322503959d17af2ca7c6e467a6da9906d1f9f07c4ecc904

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e51d41689f551b4d1f678be2b6dd6e1cf87c961b8899bdb96a048491234354dc
MD5 d70ec259b9864e9f2ea393f5642f09a8
BLAKE2b-256 4a8fd6d79322cef7b6ac38717ac986825a2a8189714f06a55d30b1fdce8414d4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 3a610c7c1711a382b330c0e0910c981dd1cd398b135bc2e29219e685685d7afd
MD5 77745c703afe3f633f0734e571997bfe
BLAKE2b-256 0aaa6da5b7eb3b216e607715053cc90774fd9dbd499ed250b6e98f7e7d55826c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c5cacf2f1d1b5e79b091717393a50c9b24b703bca9c84d35c942c188ced67910
MD5 223561dff692ce0ef04ba4a10c06c682
BLAKE2b-256 50362a3ec37ce66dcad8f2c9945ec887e5d9c7bfeeae08ed4f2743e8dac0f961

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.15.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 932.3 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for rapidfuzz-2.15.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 a5c6b502600a3e33b536971989e336d1e1ec19c9acbcdc7ea606ea20061134a4
MD5 1691a890e7c7eae00db05ab4d251d60e
BLAKE2b-256 3e16e98d7b0f9972dfa220670890328f96aa06cb9237d4f509aef29d3519a39f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 50817a5ce7c8e05434d4a40ff23dfb208a91f622af7fb41325a6dfeffcc0b3a8
MD5 c06d9a7c2e0c6ba9590dec67e31cdabf
BLAKE2b-256 211e8f8391f1621cb93a95b3324a86e839ee0d045136a9c3b716393c9b6bcf58

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 830138acb8f57005f37ceec6dc74cd05482c5989c8ca4dba77883dd213039828
MD5 033eadfe6021ae00ee9b31c0cc3ca49a
BLAKE2b-256 fd8a69d8049fefe31701b214867aff52a5f8f79dbffacf5764126c2c0cb43478

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 b48fb352b5d4436878a9b7062a648fc7fde77948ccd6fba454fe16c4ee367feb
MD5 7553bf0de99926ccf43cf38cd03e1b2c
BLAKE2b-256 cf92a340a5d0861924722e8582d807df6de1e39b8dc76a3427b0481157cc1b0c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 2f6b79bff288d9eb59c6289bd0c92f876e241badfcd205b8087e6140b30a2b36
MD5 6f7c3a80dbb6382815cd68355cfba04d
BLAKE2b-256 0c098a82fb39770d4ca78f7807e93deca6b2efdf72afd1c637b533c1234e185e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 2a9daf38dd701ce778cf9f5da7c1abc3a2d327d1106bc0d73fe2a33dbfa846f4
MD5 7166215df278e6278cf4164501b4948a
BLAKE2b-256 ebcc20cc42fa30f144b99f8a69152e1683b7cdbcd0a810eb190dbab8b889d098

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 85d9ddb396914fa807179073d9f8c576376bbda34d52d699c5a41327938d4e1f
MD5 0b1877242681ffa1d61ca323fcb33b8d
BLAKE2b-256 20751cf3c448decd0f3e4e4ee52ac879e99631f09208498b8a69e5fc4fb7ed85

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 00a960016fd801956f619f9c926bf72b8b8010e9b12dee2220357d59d9e4116e
MD5 4e2db4b402bac19543bce7e027aad29f
BLAKE2b-256 fe3ccba9454b2593ee6cb1e8244b4bd652e9877a305d20cfeccb63f0d181f36b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 9790024ef1bde76f62989b59131f17fa6c4bea0f16850aa79774225a079c243f
MD5 e83edbb59a5d0ae1183f03b0a819f560
BLAKE2b-256 fc8f505733ee912b8c39644e41ed183bea35032a3f8d9398c994f0dce9dfcd85

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2e8ef7ec8f3b9bdcf4b436b2bcd11fff5d1157404bc7bb501f51d7bfc85b7171
MD5 d6ec0e07e23a9e75dd2f614318f241cd
BLAKE2b-256 a3e14ab8cc6f7c13803b12a0a2ca2c3f9ae2373b3f2fd41c409aee2b8a841dc4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9cdafc456bd327fef05922a73b16ab9ccfdd7108456886456a119517d7c34292
MD5 398b9cee80081022bd807aa5cf0ad095
BLAKE2b-256 116b54f289544380c3bc59058d74aa91dd1d1756135a684359eb44dc50f0a604

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6580b5e837cd7776b454608caa62e9745be20c2c5f38e3d25aeca1f4ba7f125e
MD5 0f8a41cf1971b340711c13b2cefc11ee
BLAKE2b-256 4c5788e368995c1e5352bcdd296798995b9e3b7c3b87bc6778af4e83473bae12

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c2d014e8ca0b7a1e67ca9ee68ab04aa3524134dda33454a33b94404a0f67cfc2
MD5 454c2ac5386a0385db1f996fa324f94b
BLAKE2b-256 50eb3ce3c01ff6e7df960a819f110ef6b468f81b2412331102341dc4ccf593ba

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e411ed96be9c4dacfbec3b8bd6873b18fa012da11ab544df32b8855b163a3317
MD5 c827e89b76a13a3b97d43c449fc7ac6e
BLAKE2b-256 9e1878fbc3807dd49dea61930488119f5a986b0a2351a07639da782f1d5fd9cf

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 bcfcf5ea72fe3bbdc7b7e716a1eca37dd610ab95fb1d8095ec274c9ebe2ebc5a
MD5 1a6e456a46cbbc0aafdf2124b312ad0b
BLAKE2b-256 ae5f7be9e94d9f4b3439191947b231474f19283063d873e2a5854c4b8e40528b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.15.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 933.7 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for rapidfuzz-2.15.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 520865826b038ebf8e099bc7e58e424be14173c8ec72f41944f35c5190761a0c
MD5 6019d87ae416a9eacc74301e8fc74991
BLAKE2b-256 0f1e74792171e669d2101aaa9693b397b9a85d4e02ef57928f8e9dea238c8426

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5ef94ed9e3b371f935643cffb967a8090bd7c08e8a4a62523ffbc108bb57b8df
MD5 b452cfe9b8682208e1703bf8c1216b5a
BLAKE2b-256 eadcab440e126d1eacf90c96045c9bb2fdb5cf01fcec021b355d6dfa14e6096b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 6d0734d368eb6ab131d2644e0119a2d9164be9670de493391694ff647902f4ac
MD5 0db48a8f5fc7c03143962456859e7186
BLAKE2b-256 21dbb1cc215febc663f74106d8077a3f997f53d4e4ba01e8cc91166c060c767f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 d10bb6fbf7e1f4f43a3b5a15e4cae28e52ade397704fa0f4566cf651ac23897e
MD5 626ef1d8ad5bba059474474df2439233
BLAKE2b-256 c153a210f674a4bf54dd723a32071bf1c53be1b476f00b18b366aaafe7f10f92

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 b7717d489b65199a61e32cc87ad2e0a21b93b11de5f0873c91bcb77bfccda1cd
MD5 d8ef76b43da0ffd3c254f5fcba99977b
BLAKE2b-256 a71887961ecb4087eb9f3c650d84b2f86abd9c6c9b442276c3fc7443b796014c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 9662c286e493b7dc8e05363c63284889874097d6a594200702dd5703f76ad310
MD5 61174526c007f78cfb6cac6b05538423
BLAKE2b-256 43090eaab8f02adfe88e2ad439a08532f9373019f46454030ca4e88218124488

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8fecb07d87739912153b532bc1b5edbe3ecdf32a20e219d9bb02ef411d4c7638
MD5 8faadba360b6626f73c9b7b4fea4fab3
BLAKE2b-256 3357ba20b63471d828875ce3d6dafbc0b2f66e3f73f9e801661cd1c6a4503c55

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 6a98614ad176a7ee719e3f30313f910a79ce17adbeea1f06bd4a1c5c997af762
MD5 c807dc5ebf340fc689a2b20c4181c0c8
BLAKE2b-256 3d461b288d26910fc292768bfe3df30f1cc482db690bb28ea04b495251ec558d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 5103b0be98271131ea992c62544b788f9afb90bbc716e5799b660dbca7b2959d
MD5 b513d9f83954a29f3bb39bb6e09b7a3a
BLAKE2b-256 bf0d19c2008609cd9d1356fbc583fd38da4ca2603c81d8c2cb6e9fb8153fac05

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c63637a74e00913c59bad6988cdf247c7ddc07b4f52cb4a3b15f08ebf90c2556
MD5 a86eda0ca91578d4f4ada78a0bf503d8
BLAKE2b-256 4338a2d90819813f69112692a5ba5ed56b17f32ba47e79fa4a2e08f339179f56

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6efe5d6b97366dc0c0ec575212441ccaebec5c7669a0a91f4dca5e751a6cace8
MD5 1ae98897cba7cf16695f1bfa6090cfd7
BLAKE2b-256 65f1fb4017415752ea9eae95d5da3e59ade14f082ab545dd51eba8cdb6ce8ecb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 43e397ba21f6a53c6982c8ad0aae1ed5375d3e12089a9ede6c63c0fbffdb5354
MD5 4cec47b19ead30a9d6052cd23e73ed96
BLAKE2b-256 7566e2e1457cbb23aa607c9e58125028f000c8cb7792ad216ace5f5b605f675d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 577620e28f2b407231f293c58b24b1a7861ddd8092b7e6c6ba34b9945b5aa0a5
MD5 d95eae8704f3bbfd677231ceef77dbe3
BLAKE2b-256 5da94cc95239a50951e93a9aa420fcf7f933bee24cd8a243b60001e42fa9ca53

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 6c446c31468da2a08ec874baaeada06f3af6cede2b3010a2f0fccc5a95c3997d
MD5 7f80d58462ca0e1dbf5a2e4cc17392a5
BLAKE2b-256 16e7c2fd1482546c586f8770f1cdb2d0f8cf98a6a8ccfe9b9c1563faca2c8885

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 be0b533a3909c1db82e7a3c03e533374c71441dded616b71f222c4edd0058a52
MD5 46414c945931168f2ba643bf3163acaf
BLAKE2b-256 2f8bbff2333962a0d46b8e482b0303166772241453aae66c880c9de7fc5503aa

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.15.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 929.2 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for rapidfuzz-2.15.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 d9ec6429508ab1f2b752163970f26f4a179746c34c4862d3b3c2410be09d4fea
MD5 f3fd6c86dd9ee353d575d0ab8176a232
BLAKE2b-256 c095fdcd8757fcc42444d99428b59a0e71af3dcd1908b37c4243ea00b9ea09d7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b97bb1b3e32700e6bce2036c9435532a6dc45a5df8af8a7b842038b2eeaf3f9d
MD5 fecdbdad00b43b2493a05b06646dba3b
BLAKE2b-256 1bd59592b5bd91fc24bb7f5f20756bc245dcd21a5ecc7e3cab455254d353d5e2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp37-cp37m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp37-cp37m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 5461e4cb215989c52872a886a1217e08af5de4c565c8bf356ab0f331dcfb8763
MD5 e793e0adc688465940f77c028a5cb8a5
BLAKE2b-256 52615c77dcc047cfedb0d3ce0697690c11e5f945371eafa4a29aa63bdb3a3a56

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp37-cp37m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp37-cp37m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 367f70a0c8bb19684c38973fe54888bd9179e991253547c4ee116a17f3d44319
MD5 485da08a00415045d6cb611dbe066621
BLAKE2b-256 43de9ecc9b90fe48b646a40768653c2c5e55080806ffbc02a880672134dd9e1b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 9bc3f66189967b1504f617c09b295b6a8ad3a34a63e713c5553068bceb21c351
MD5 0b8f6ac9e7cb70cc1605c1b98f3de387
BLAKE2b-256 9d75a506ffa31a2fca082820a1fe7a6840d2547f63ec462347238502839f70d8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 210af56001533ed1d8c7d5d0e57081877ba35a9391fb36d0a606693b0bd15d49
MD5 77e189530b0bcb270985100939224daa
BLAKE2b-256 42c417df7a14471c0193b44ee3cd8ef4534fc9dbb84cb319b39c72da22c6dfd6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 56d63cc530b49ce0afb1aadf3d11bb0f52220a221e799715f63a8b77dea152cf
MD5 44fcfd3d90d66b98be806ab39f109cf2
BLAKE2b-256 a6c0f8de8642b4cecb18106fcf7b86e236965583bf8f6d667b59c9660d4d1152

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 24113e4afa1a6ca810f969ab996146bdbdcd338b35f115f935ae63d6b8d2aa75
MD5 d1b036723164ac6d935d5c85c3e64f2e
BLAKE2b-256 da4727cdd77df37c85e4394abf9cfd35f32c6e0648e95e4db6bb75afff7eb65b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 d31c7ba453a811bfdcd802f1a4703a21d7301ccdb91d81d92093eaceafb14a30
MD5 f3612d89f8a56db508ad92d907e90de4
BLAKE2b-256 37f8c20697eec09c14daa0fa36c9f535fe9f40d4041b182d6ee7151a8aa1eaf6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2886b2bf740353eace1a942844df2b6bbcfca69717cb4aac033681983e306856
MD5 6d98f8b2e0ab60ef23b524aaf921880c
BLAKE2b-256 2f272565c878c9e2e6494319b0ac029a22cc6b62216b3822dfca0e7d724ed8a7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9ad14814b68719f1e31d03751fa0dae5b30012c56a5155959443030134616eb4
MD5 787e50f7d0b9acdb4f5992ba86e080f1
BLAKE2b-256 402cc8c2dbcc0221b6075a50cad42e306a76579e92e7484c0079cac23e651135

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 12b1d47eeb04b261f686bf29e4443807f8f953a0918aa5cc3ff1f4d3d48c64a5
MD5 123af2eef98f1163f75d1571ad93fbff
BLAKE2b-256 04bffd04b1e3d78fe885c5c9395ab8a6d2dd30adc592a3f2d1a965eb55966e16

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page