Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continuous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparison between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparison I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
    "".join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
    for _ in range(10_000)
]
samples = words[:: len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with cdist in the following way:

cdist(samples, words, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like cdist is a lot faster than directly using it. That's why they should be used whenever possible.

Benchmark cdist

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. That's why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-2.15.1.tar.gz (1.2 MB view details)

Uploaded Source

Built Distributions

rapidfuzz-2.15.1-pp39-pypy39_pp73-win_amd64.whl (1.7 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.15.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.15.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.15.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.15.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (2.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.15.1-pp38-pypy38_pp73-win_amd64.whl (1.7 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.15.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.15.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.15.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.15.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (2.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.15.1-pp37-pypy37_pp73-win_amd64.whl (1.7 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-2.15.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.15.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.15.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.15.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (2.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.15.1-cp311-cp311-win_arm64.whl (864.7 kB view details)

Uploaded CPython 3.11 Windows ARM64

rapidfuzz-2.15.1-cp311-cp311-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-2.15.1-cp311-cp311-win32.whl (935.0 kB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-2.15.1-cp311-cp311-musllinux_1_1_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

rapidfuzz-2.15.1-cp311-cp311-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ s390x

rapidfuzz-2.15.1-cp311-cp311-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.15.1-cp311-cp311-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

rapidfuzz-2.15.1-cp311-cp311-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

rapidfuzz-2.15.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.15.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-2.15.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.15.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-2.15.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.15.1-cp311-cp311-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-2.15.1-cp311-cp311-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-2.15.1-cp311-cp311-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.15.1-cp310-cp310-win_arm64.whl (861.8 kB view details)

Uploaded CPython 3.10 Windows ARM64

rapidfuzz-2.15.1-cp310-cp310-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-2.15.1-cp310-cp310-win32.whl (931.8 kB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-2.15.1-cp310-cp310-musllinux_1_1_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

rapidfuzz-2.15.1-cp310-cp310-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

rapidfuzz-2.15.1-cp310-cp310-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.15.1-cp310-cp310-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

rapidfuzz-2.15.1-cp310-cp310-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

rapidfuzz-2.15.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.15.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-2.15.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.15.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-2.15.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.15.1-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-2.15.1-cp310-cp310-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-2.15.1-cp310-cp310-macosx_10_9_universal2.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.15.1-cp39-cp39-win_arm64.whl (863.2 kB view details)

Uploaded CPython 3.9 Windows ARM64

rapidfuzz-2.15.1-cp39-cp39-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-2.15.1-cp39-cp39-win32.whl (933.8 kB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-2.15.1-cp39-cp39-musllinux_1_1_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

rapidfuzz-2.15.1-cp39-cp39-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

rapidfuzz-2.15.1-cp39-cp39-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.15.1-cp39-cp39-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

rapidfuzz-2.15.1-cp39-cp39-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

rapidfuzz-2.15.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.15.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-2.15.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.15.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-2.15.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.15.1-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-2.15.1-cp39-cp39-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-2.15.1-cp39-cp39-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.15.1-cp38-cp38-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-2.15.1-cp38-cp38-win32.whl (935.2 kB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-2.15.1-cp38-cp38-musllinux_1_1_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

rapidfuzz-2.15.1-cp38-cp38-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

rapidfuzz-2.15.1-cp38-cp38-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.15.1-cp38-cp38-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

rapidfuzz-2.15.1-cp38-cp38-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

rapidfuzz-2.15.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.15.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-2.15.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.15.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-2.15.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.15.1-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-2.15.1-cp38-cp38-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-2.15.1-cp38-cp38-macosx_10_9_universal2.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.15.1-cp37-cp37m-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-2.15.1-cp37-cp37m-win32.whl (930.7 kB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-2.15.1-cp37-cp37m-musllinux_1_1_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

rapidfuzz-2.15.1-cp37-cp37m-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ s390x

rapidfuzz-2.15.1-cp37-cp37m-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ppc64le

rapidfuzz-2.15.1-cp37-cp37m-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

rapidfuzz-2.15.1-cp37-cp37m-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

rapidfuzz-2.15.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.15.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

rapidfuzz-2.15.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.15.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-2.15.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.15.1-cp37-cp37m-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-2.15.1.tar.gz.

File metadata

  • Download URL: rapidfuzz-2.15.1.tar.gz
  • Upload date:
  • Size: 1.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for rapidfuzz-2.15.1.tar.gz
Algorithm Hash digest
SHA256 d62137c2ca37aea90a11003ad7dc109c8f1739bfbe5a9a217f3cdb07d7ac00f6
MD5 c9481713854441b6c2f6ed930f427e7c
BLAKE2b-256 4419a20bd17379cca3e0a63590a6473ecf6cdaa8351688de775afefffc701a79

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 785744f1270828cc632c5a3660409dee9bcaac6931a081bae57542c93e4d46c4
MD5 03177fcff84581ba71ec830b7fef6913
BLAKE2b-256 82e9e0ac42ec7e953c5e105b75c285d0ffdd5b27801d34f919e5f5e4d4d989a8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 60368e1add6e550faae65614844c43f8a96e37bf99404643b648bf2dba92c0fb
MD5 f981afba69ab550c1323cdbbb6c045c7
BLAKE2b-256 a21c23589194ad453abf7503653036169a14d686f7d64c012c736f947a67b41d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f01fa757f0fb332a1f045168d29b0d005de6c39ee5ce5d6c51f2563bb53c601b
MD5 5da777b554ff573d51160ae8d8898147
BLAKE2b-256 0c71c1fc5d71672461f7137729259d6fb2d319870ff85195476a1eeac1dbaa26

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8c99d53138a2dfe8ada67cb2855719f934af2733d726fbf73247844ce4dd6dd5
MD5 5c14943b37c8df2230b9c6eb887198fd
BLAKE2b-256 74bfce721d6d8753d1670c7172796446d6b0adf020d26896d4d6519c7d93acc5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0f73a04135a03a6e40393ecd5d46a7a1049d353fc5c24b82849830d09817991f
MD5 2523b0cc1abecdb587321dd4059835e1
BLAKE2b-256 48f697956c659be7c35856191ce78eaa5b8e68f86d40d913714e290691cb8bc1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 509c5b631cd64df69f0f011893983eb15b8be087a55bad72f3d616b6ae6a0f96
MD5 0c27cd17d5e470107e674d82dbc6db9b
BLAKE2b-256 5ecbc23f2adfdb20bf55d16686f9574dcd0e6a9112ad12f1e76a7f83f052ebe4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3c89cfa88dc16fd8c9bcc0c7f0b0073f7ef1e27cceb246c9f5a3f7004fa97c4d
MD5 b9522f99d6aac5a31d234ca5a5645724
BLAKE2b-256 c9cc21658a36117e64afdb9050e565dad6934d199b35bb0bafbf65aabd4da772

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 558224b6fc6124d13fa32d57876f626a7d6188ba2a97cbaea33a6ee38a867e31
MD5 65c65ac79fd5f4c79135c4394a6232ed
BLAKE2b-256 555ac189896eff671ee3a33f7629df1ec8185ae97411df7db95f880c36b505f1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d14752c9dd2036c5f36ebe8db5f027275fa7d6b3ec6484158f83efb674bab84e
MD5 a3361fac909679050743f3c10d08b802
BLAKE2b-256 169095a31fae4fb36e2c2310ea9242ba4aef833478ec8625a247f54fbf84bcfe

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2e597b9dfd6dd180982684840975c458c50d447e46928efe3e0120e4ec6f6686
MD5 51879942274573f9ffd8d8082488f4c0
BLAKE2b-256 67b98de305f3ffe12ff80168b1c10a6395381b783b22391f759efbb66dd43478

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 6e2a3b23e1e9aa13474b3c710bba770d0dcc34d517d3dd6f97435a32873e3f28
MD5 443b26f6487d2e4aaaedc727992f3750
BLAKE2b-256 e94f5412c9e70b477aa637cfc96880bfecaccd3cf18d74ba89e0e4948fbfb081

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 040faca2e26d9dab5541b45ce72b3f6c0e36786234703fc2ac8c6f53bb576743
MD5 8447da943997b78bdcff253ff30db933
BLAKE2b-256 b8764e8cf4d85b8301cc3a77a70a1ee745150eff9618c9b082eb542b9435b564

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 93c33c03e7092642c38f8a15ca2d8fc38da366f2526ec3b46adf19d5c7aa48ba
MD5 a7873302c1a65751ab1a2f4da918b355
BLAKE2b-256 b3e784a8555e263a7b50097e024885af46da9dbcf52d7bc03225428083a4d5b5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 19b7460e91168229768be882ea365ba0ac7da43e57f9416e2cfadc396a7df3c2
MD5 f1a544b079ff6950d9f382cd4eb8bd6d
BLAKE2b-256 441824ab500d7d0804dc2743c35ad12e69d983d0d8452683a847cb734ed04bd8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b89d1126be65c85763d56e3b47d75f1a9b7c5529857b4d572079b9a636eaa8a7
MD5 b3dd52146fcd6e4a82cdaa42a3072c31
BLAKE2b-256 cc065f99e8c0980f852aec3e63297f45f168c4050302747ec149a86f981a127b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp311-cp311-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 dc3cafa68cfa54638632bdcadf9aab89a3d182b4a3f04d2cad7585ed58ea8731
MD5 586397e352fe313ca0b49fac60e3a154
BLAKE2b-256 c39f475a53f36d910406d3b9628bf30885d424e6a55c309ecb1fae9760ce6f73

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 5a738fcd24e34bce4b19126b92fdae15482d6d3a90bd687fd3d24ce9d28ce82d
MD5 e7d01ecde38c6b6f1f9e01dccb474e36
BLAKE2b-256 abafe8059acbcdb499332e2241b42808f6753fd2fdaeb587f0e3614d6f75fdb1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.15.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 935.0 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for rapidfuzz-2.15.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 2084d36b95139413cef25e9487257a1cc892b93bd1481acd2a9656f7a1d9930c
MD5 60cb88ef1213b77d2b7dda96b508ca39
BLAKE2b-256 69f281037350580c0f8dff7c4767ab97b4fc5fe622813e74e4d540752c67c914

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7025fb105a11f503943f17718cdb8241ea3bb4d812c710c609e69bead40e2ff0
MD5 bb25082a9653b09a317769850f2eccd6
BLAKE2b-256 35d2473ffec02986360efe6e7ecc503096b647e483ef8f4cf0cf30b4bff8a2fb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp311-cp311-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp311-cp311-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 074ee9e17912e025c72a5780ee4c7c413ea35cd26449719cc399b852d4e42533
MD5 532205e645c99c36c7a80a9a723017a1
BLAKE2b-256 0b379d8ee5d7052693e744a749c6be5c2fb8ec4fb2cd1f87e8961b90380a523d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp311-cp311-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp311-cp311-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 b7461b0a7651d68bc23f0896bffceea40f62887e5ab8397bf7caa883592ef5cb
MD5 e42d69f0355c7c0e0e0e738610ccb16c
BLAKE2b-256 f1a9120a657a7c98a843723cccf0309656000199fff75de2edd6f9df2e765b02

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 d50622efefdb03a640a51a6123748cd151d305c1f0431af762e833d6ffef71f0
MD5 0a3762f5eae059d11be0641a20428492
BLAKE2b-256 7d846d58bc4180fbde83824ad9a64638ca2cf3287dd2f55cf7e34598f0d0ac01

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 a3a769ca7580686a66046b77df33851b3c2d796dc1eb60c269b68f690f3e1b65
MD5 5270dacfd4f81892bacd84bbc40ecc1a
BLAKE2b-256 531a0661c06d159fd106cc16f51df3d10b1db975b5c28628e32537732cb7f05b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c35da09ab9797b020d0d4f07a66871dfc70ea6566363811090353ea971748b5a
MD5 c3ed19cc92d20ddfb87627a903992c81
BLAKE2b-256 94c27707fd4cecfb026d3cbc7fadebfd9203828c0c2bfedd5c476ca633f7b8cb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 ca8f1747007a3ce919739a60fa95c5325f7667cccf6f1c1ef18ae799af119f5e
MD5 821ba1da495737cc072850740557b268
BLAKE2b-256 f2a55414f2e612cd83f45095c1de60a5586f6e94637c03133ffe8e01875eded2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 abde47e1595902a490ed14d4338d21c3509156abb2042a99e6da51f928e0c117
MD5 d5567d8431b22e0f5e58fb85426eefbf
BLAKE2b-256 ea7766aa3b63e2c2843b0a7e507ab39e9043e48cd4eece3d0151480c501209b4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f976e76ac72f650790b3a5402431612175b2ac0363179446285cb3c901136ca9
MD5 4855ec621d7582732b8265594e3e0db7
BLAKE2b-256 5900da50bebc2643a46709630f5e1a28f755f001749f6c9684642ec72b51dec5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 da7fac7c3da39f93e6b2ebe386ed0ffe1cefec91509b91857f6e1204509e931f
MD5 2826599ed8a4082b39ad9a6574861a0c
BLAKE2b-256 d4f61a2c0d7511adcc2621667793855a38bc926709e312d850435862f3726088

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b5cd54c98a387cca111b3b784fc97a4f141244bbc28a92d4bde53f164464112e
MD5 86927a3160997e116fed4ef4aafe88b9
BLAKE2b-256 b07a2e951f3f62e1b3f3fde7ba3b83c50854e51078ecb72635a7f286441cd1df

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a72f26e010d4774b676f36e43c0fc8a2c26659efef4b3be3fd7714d3491e9957
MD5 c689dde4bf8790c9155d30c9407ada7d
BLAKE2b-256 2a6e2de49cab65dbd61ccc389d2c6b2c1307c3afe866808fa6037243c9943526

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 6986413cb37035eb796e32f049cbc8c13d8630a4ac1e0484e3e268bb3662bd1b
MD5 0ab67d094d4a773f3555375a72f38e67
BLAKE2b-256 b865521fc2a7372ca45e9de4cce4ce052a21925ee2a2da167cea927a86491914

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp310-cp310-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 87c30e9184998ff6eb0fa9221f94282ce7c908fd0da96a1ef66ecadfaaa4cdb7
MD5 81922398fe1a9b38e8277b6777a211ab
BLAKE2b-256 7f369c5958650663523d46854fc3391108685b91dbb6e93ca0fd3d9d0b337d4a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7d150d90a7c6caae7962f29f857a4e61d42038cfd82c9df38508daf30c648ae7
MD5 9733b74bd89ca3045630efd5cfbfae1d
BLAKE2b-256 dc6e94ff624e2d25fee9133219654fb565f443886417ac6f676c8568477acd4e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.15.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 931.8 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for rapidfuzz-2.15.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 dffdf03499e0a5b3442951bb82b556333b069e0661e80568752786c79c5b32de
MD5 74e56e46a4cb47a80fc4bde229f2ba85
BLAKE2b-256 5463121978e3fdaf27b1b85e0f5e554948aeb2545982a620319f700d27fbe46f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7e24a1b802cea04160b3fccd75d2d0905065783ebc9de157d83c14fb9e1c6ce2
MD5 adb085aeaf3e2d9e4b497db65953b294
BLAKE2b-256 75cf518c1669371168c8d4cf42ec38012c1afccf22beb1f3569c6350f623e17f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 4d9f7d10065f657f960b48699e7dddfce14ab91af4bab37a215f0722daf0d716
MD5 2201ca4fa76f254d85a628962adb11be
BLAKE2b-256 813aab938c16bac5f5e98b31021929dc6ce593d9189801ab1ab7e54861796e41

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 8ba013500a2b68c64b2aecc5fb56a2dad6c2872cf545a0308fd044827b6e5f6a
MD5 d72a5e2ff7d1c2835d102e2ef1381763
BLAKE2b-256 f3f1a9c6ff1d5bdb5dd013f34f79ddb7929a65155b1346611771dace1b0271b9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 be7ccc45c4d1a7dfb595f260e8022a90c6cb380c2a346ee5aae93f85c96d362b
MD5 016472f377064e646012caa53af1247a
BLAKE2b-256 36603c874c2ec343a87c1e2f302d0c79b1b7ef4d191e97ecbe922ad265574fa6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 d0ae6ec79a1931929bb9dd57bc173eb5ba4c7197461bf69e3a34b6dd314feed2
MD5 1f4337362eb8384bcb6b986ed7e46858
BLAKE2b-256 46ee34f8b810e96cd3954e0fc584543defd1f0d0bf112dc45270f596017c8583

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6534afc787e32c4104f65cdeb55f6abe4d803a2d0553221d00ef9ce12788dcde
MD5 fc0a29f829a80963bfd3393e440ea6f3
BLAKE2b-256 fa44da3085398b75432f0b08a3ee1dd1152a67f87efaccef49157b3ef2da3ee1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 d7927722ff43690e52b3145b5bd3089151d841d350c6f8378c3cfac91f67573a
MD5 f1d82601c855fbd47ef4d9fb94c086c4
BLAKE2b-256 d1bd19b2a2dd4884b21ea2f54326038dd2f9a8ee13a003891b764b4628b7b1e9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 f67d5f56aa48c0da9de4ab81bffb310683cf7815f05ea38e5aa64f3ba4368339
MD5 e1ccad509b245f1ae90bde436bd0a8b8
BLAKE2b-256 c66b3f13d348b5e6ba77a4100de309ad131c63e757c476bdd019484225aeeab1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2577463d10811386e704a3ab58b903eb4e2a31b24dfd9886d789b0084d614b01
MD5 5c50bdc1b7e83070c2374f2fabba8c47
BLAKE2b-256 edf57e962fc99bf95478c1b7865a8e85e3b22197d0667ee777879365a45773ab

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d4deae6a918ecc260d0c4612257be8ba321d8e913ccb43155403842758c46fbe
MD5 ca6d43f5fb3ef977dfe20ea4aea099a5
BLAKE2b-256 8e59e0dda2bd9511b08bee145a687503a002d983539a916308b3cf81c91c701b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c525a3da17b6d79d61613096c8683da86e3573e807dfaecf422eea09e82b5ba6
MD5 93bd9cdae5782c9e5abd12bfac6072ff
BLAKE2b-256 07b55b66aed952bbdb7b9733aeb18ff3d72dd6a423bd307e004dcd6c45f836a6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d59fb3a410d253f50099d7063855c2b95df1ef20ad93ea3a6b84115590899f25
MD5 3db630db7a04a900b98f4416cdc97139
BLAKE2b-256 9c59ab0921d570035cebc7a6020f355b1d51aedf4ba124a352e90926aa44ac40

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 fc0bc259ebe3b93e7ce9df50b3d00e7345335d35acbd735163b7c4b1957074d3
MD5 efbf147bc0bbaafdb8fb0bb9a4186fd2
BLAKE2b-256 585b57c8014b7ac8d6857ac21f6d3d9429ba281d81ef34189c993e316d1b2c7a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp39-cp39-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 cac095cbdf44bc286339a77214bbca6d4d228c9ebae3da5ff6a80aaeb7c35634
MD5 79b4558d305eb0be82da219bee0e6c31
BLAKE2b-256 cab1849db828f50a55e47ef2dc5e64d5f0f9ee670f8620d5b75ee497ae3c1a0c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f3dd4bcef2d600e0aa121e19e6e62f6f06f22a89f82ef62755e205ce14727874
MD5 3ef2782b1266d3b87c94aff1c5a97606
BLAKE2b-256 e452dd268346d5c52b636c8430bb15a7ac3a9583866cadc070ca1590769400d2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.15.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 933.8 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for rapidfuzz-2.15.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 79fc574aaf2d7c27ec1022e29c9c18f83cdaf790c71c05779528901e0caad89b
MD5 fa92eb932015f1206836d7bc00af4199
BLAKE2b-256 ee3752a6909a195c3495133c366de437e5487223ab3770a23474a6beeea58ece

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 47e81767a962e41477a85ad7ac937e34d19a7d2a80be65614f008a5ead671c56
MD5 5685e78a9a027835a41cb747b2574e44
BLAKE2b-256 5f1c620decaee044e87f2182f8820ae3e16bbe6d47c450a44fd9f44e2f2b4f88

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 94e1c97f0ad45b05003806f8a13efc1fc78983e52fa2ddb00629003acf4676ef
MD5 376639c37f6ef52ac586b5ff66cec18f
BLAKE2b-256 7478f9ee429889b8bbb5c123f5032b2b0d984c67a91b26803ac48e2fded2370e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 e1e0e569108a5760d8f01d0f2148dd08cc9a39ead79fbefefca9e7c7723c7e88
MD5 e44c0c4a5c80c45009f8aa8f4aeff7c3
BLAKE2b-256 4b6d0671e93b00ec661b3d908b27814b744cf2000721adea9d980c07a2b1e746

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 fc4528b7736e5c30bc954022c2cf410889abc19504a023abadbc59cdf9f37cae
MD5 8680682d4241fda9ff04889b9637511b
BLAKE2b-256 c37941ef6df80a8831249b8839ed0be0144b27d3589cf477bde5691c8486223f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 82b86d5b8c1b9bcbc65236d75f81023c78d06a721c3e0229889ff4ed5c858169
MD5 41210a43ad3f22f47e79eb1b004eaacc
BLAKE2b-256 5fb4ca9c48a4fbd6a704d9b8a5d092684eddb95c552f99603afa7e948bb4a10b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c71580052f9dbac443c02f60484e5a2e5f72ad4351b84b2009fbe345b1f38422
MD5 8ef982632b3e4c26246a9a6c979e8500
BLAKE2b-256 2354c8146ddca1d483bb988335d7d4ddbe113e01f8dea8940860eb4b3f904f4c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 a48ee83916401ac73938526d7bd804e01d2a8fe61809df7f1577b0b3b31049a3
MD5 25bd7e5dc5b97b119b0f6491d7bbeba9
BLAKE2b-256 001bfa218677694caa4efe0e4a1dfaca6a75b9f38948ff939b6dcced17b4c64c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 e40a2f60024f9d3c15401e668f732800114a023f3f8d8c40f1521a62081ff054
MD5 5fff064f5704659d316c2b94c23be3bb
BLAKE2b-256 973d9f04cc47a75e33a30f1bf089f6822903edbdd34eb7ae5f21155ba10f65b5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 91abb8bf7610efe326394adc1d45e1baca8f360e74187f3fa0ef3df80cdd3ba6
MD5 c54a9824be397fb3fc4e7bac48bae7c0
BLAKE2b-256 6e20f789edf1d0b6193d12961977c577ebfef2aaa43b1ef7cc244c238e5eba47

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 46754fe404a9a6f5cbf7abe02d74af390038d94c9b8c923b3f362467606bfa28
MD5 0b9bdf73a78c623b81dc161f83687c5d
BLAKE2b-256 7ae481241c9a5c194943b881a557acd497ca948f1e2740e15fe744a7cecdea3c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 22b9d22022b9d09fd4ece15102270ab9b6a5cfea8b6f6d1965c1df7e3783f5ff
MD5 23bddb16953f42f26c6afe6a9c79ff52
BLAKE2b-256 12dc6126b116b040a604351f11b2c0d11ee7371a5700fb04d03be46eaadd5d32

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f0e456cbdc0abf39352800309dab82fd3251179fa0ff6573fa117f51f4e84be8
MD5 f6c76274566691db9c5553b63a9925b2
BLAKE2b-256 f4c99c02bf8c038a08453af55a8217e0ee092b24c5921e4d9e12caef87322b54

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 3fac40972cf7b6c14dded88ae2331eb50dfbc278aa9195473ef6fc6bfe49f686
MD5 71fa4b2a45c689682c86861e8744c75f
BLAKE2b-256 150400b2473d693bc42b8745f8fdcec10e19748843d863ad29dfa9d84f56f541

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c2bb68832b140c551dbed691290bef4ee6719d4e8ce1b7226a3736f61a9d1a83
MD5 c61a38ce76909b54526929bc2ce72c60
BLAKE2b-256 eae6c35ea2f9f6538af7d8844d3c39909e61c98b0a364852e1a5138a4604b1f2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.15.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 935.2 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for rapidfuzz-2.15.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 aa1e5aad325168e29bf8e17006479b97024aa9d2fdbe12062bd2f8f09080acf8
MD5 43d50ad63322834f44a4716dcf486d9c
BLAKE2b-256 ea82a86d0492f7136f2e745709bf4e863d1f2df485caefc585ea23c6f6eabc33

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ed17359061840eb249f8d833cb213942e8299ffc4f67251a6ed61833a9f2ea20
MD5 ecf4944410d7448bdf504012445052d3
BLAKE2b-256 ae26955ca42c3bbc729dc50bd5653e5922978bedf71f64222bf8f5c46cb35ba5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 591f19d16758a3c55c9d7a0b786b40d95599a5b244d6eaef79c7a74fcf5104d8
MD5 624314edac98274e851e82c1d5d6999b
BLAKE2b-256 453789f6f95be1b91fa7232484f169b60a54b82fa189bae1b8ea2331ba975704

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 46599b2ad4045dd3f794a24a6db1e753d23304699d4984462cf1ead02a51ddf3
MD5 9562ac68f35ed940a4bfc26fe6936133
BLAKE2b-256 a5075ed2aebc9d4f683fdbeb76781bb50991e0af90a2a116580b181b703e82a4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 099e4c6befaa8957a816bdb67ce664871f10aaec9bebf2f61368cf7e0869a7a1
MD5 acc75906fe6b39bd0662bd5156107643
BLAKE2b-256 cda5952f7c55c3e8cde11b86eac0b9a6c4fefc1787cc22782ed8dde35de4174c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 2492330bc38b76ed967eab7bdaea63a89b6ceb254489e2c65c3824efcbf72993
MD5 d505a765dd05042a7b2f824591098a92
BLAKE2b-256 acf1409019cac1dc590433f9140f468b41fa107638f588fa554c5d33beabed4b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 53de456ef020a77bf9d7c6c54860a48e2e902584d55d3001766140ac45c54bc7
MD5 ff861462c76c33c681361094358437cc
BLAKE2b-256 1ee9c9b9823d6bd60651a4a31f6dcdd2d235d081e8b3e133e3c01c738caaef7b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 b1b393f4a1eaa6867ffac6aef58cfb04bab2b3d7d8e40b9fe2cf40dd1d384601
MD5 6803513f8d841e13234a0fb9637cbbed
BLAKE2b-256 167dd841eead5132372fa4340e7c72e9bc049667d73c00c5749cadee7827e0ae

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 f85bece1ec59bda8b982bd719507d468d4df746dfb1988df11d916b5e9fe19e8
MD5 481d366b339b98afd29e1d656b728814
BLAKE2b-256 0fdeecd7493e8dcafb62cbb4272a96ae1af0816c58c28dba2072b19379b13d5e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cfdcdedfd12a0077193f2cf3626ff6722c5a184adf0d2d51f1ec984bf21c23c3
MD5 ee8cf11d8362304e846223bd9c708ee4
BLAKE2b-256 2040421a62d3065ab2269807027042b42f31d5d8824999c6a86b2af87160f595

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a7381c11cb590bbd4e6f2d8779a0b34fdd2234dfa13d0211f6aee8ca166d9d05
MD5 75d4d46d49280f86d17b824979dd5097
BLAKE2b-256 e34eeaa2eb6538b3356dc17742e37da9948a1ef59ff236bbc5cf59a9d7f96b2b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ebb40a279e134bb3fef099a8b58ed5beefb201033d29bdac005bddcdb004ef71
MD5 1d0daede54651a52d05c38eaae8d578e
BLAKE2b-256 4d6bda032c2778344d14e4b159c368a69cb4fda00796659525f8de452411586a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 49c4bcdb9238f11f8c4eba1b898937f09b92280d6f900023a8216008f299b41a
MD5 4e849472d7f822678f6a754235c2274e
BLAKE2b-256 ebb3d261f005885f2362992fee66329807740426e21f2541ec5c60440f2c9b63

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e9296c530e544f68858c3416ad1d982a1854f71e9d2d3dcedb5b216e6d54f067
MD5 df71635a69f9ddad093fb0a6335e8ef3
BLAKE2b-256 90c669bb3bf68386021f527ddc1cdfc0d6ea2cfad40bfa8411ea74473ba49169

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 bb8318116ecac4dfb84841d8b9b461f9bb0c3be5b616418387d104f72d2a16d1
MD5 82665fa581976da07f214a8f783e4fff
BLAKE2b-256 39caabf0fbae9d376c8b5875d45678694b03e07610c7d293af837192a1af3a73

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.15.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 930.7 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for rapidfuzz-2.15.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 a4a54efe17cc9f53589c748b53f28776dfdfb9bc83619685740cb7c37985ac2f
MD5 3c154f6634d79683a25d840ca538188a
BLAKE2b-256 397d42b09b8ab068873489d56bbfe8ef0fa137b2a763365bb42dcb23720f1fe6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a0e441d4c2025110ec3eba5d54f11f78183269a10152b3a757a739ffd1bb12bf
MD5 c4aa2792a5d457e88b09893c89eb418a
BLAKE2b-256 61443503d25acc5df31c6e8884f39b0f8da9e2c7ac77499809dd35d498690f8d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp37-cp37m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp37-cp37m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 ed2cf7c69102c7a0a06926d747ed855bc836f52e8d59a5d1e3adfd980d1bd165
MD5 59a6952e2fff03a44ae3085a1b9c57aa
BLAKE2b-256 2c37789055d7c59ef095f9cde1090e4dd2c406c34c6a4fc802d751ffbebdbbfb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp37-cp37m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp37-cp37m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 5efe035aa76ff37d1b5fa661de3c4b4944de9ff227a6c0b2e390a95c101814c0
MD5 8d35004d97d570e637ad9c6b707041d3
BLAKE2b-256 2172462dd156846b285eae67894e6617f02ed182da6823845e8cb1115756d56c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 2dd03477feefeccda07b7659dd614f6738cfc4f9b6779dd61b262a73b0a9a178
MD5 33b9946baf3277d53863769f8135aa76
BLAKE2b-256 5d74a8b176b7e2d4d68fc6ad1685f817615567c3a3097049c433edccb11fa466

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 41dfea282844d0628279b4db2929da0dacb8ac317ddc5dcccc30093cf16357c1
MD5 f532a07e48bcb476f5ab148debb120de
BLAKE2b-256 a7638130dbd4f9dad572b2b2f5245205d0ef49127cb6988e70605f14fad7e497

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4f69e6199fec0f58f9a89afbbaea78d637c7ce77f656a03a1d6ea6abdc1d44f8
MD5 866f3b4e5e1bacc89969925b782fd03e
BLAKE2b-256 e17788e4322a6635b95557a50b7d7a6305efe5cb2e785564dbb547e853e7adff

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 6d89c421702474c6361245b6b199e6e9783febacdbfb6b002669e6cb3ef17a09
MD5 c74fa34f22fc56434d6272a7874de76c
BLAKE2b-256 d6a07120223e60f0e0d203e46761666c7dd7b566d9c48a0e83e4f8392f249091

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 7c3ff75e647908ddbe9aa917fbe39a112d5631171f3fcea5809e2363e525a59d
MD5 2a157595af31ebdb98f2730f4ec25331
BLAKE2b-256 6267a1d076323cc95ba2fe45a18b086d7905d9d3813b20aa0c5ee58f4ce30c07

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2d93ba3ae59275e7a3a116dac4ffdb05e9598bf3ee0861fecc5b60fb042d539e
MD5 c6f005bd79cb9a5f6bc13632b3199afb
BLAKE2b-256 117253c614644cf0e01c6aeea5e756144dcd6501a47e4b290815d1727c21ee2a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a6ee758eec4cf2215dc8d8eafafcea0d1f48ad4b0135767db1b0f7c5c40a17dd
MD5 49525383f200797dc5eb01eb5dbfe421
BLAKE2b-256 fe022b4c5d16c02cf23b05929ac06b38f72bc6d2258ddd0e5437baa4b7b662e5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.15.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.15.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3c53d57ba7a88f7bf304d4ea5a14a0ca112db0e0178fff745d9005acf2879f7d
MD5 818c3ba1bd277653ea00fc2e167d20e5
BLAKE2b-256 7f50c6070f24adcf990e6dd30128f6ac1e0daf4872234cadb33c472ad0dd745f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page