Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++14 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparision between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparision I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

Benchmark extractOne

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-2.2.0.tar.gz (1.1 MB view details)

Uploaded Source

Built Distributions

rapidfuzz-2.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.2.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.2.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.2.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.2.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.2.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.2.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.2.0-cp310-cp310-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-2.2.0-cp310-cp310-win32.whl (1.1 MB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-2.2.0-cp310-cp310-musllinux_1_1_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

rapidfuzz-2.2.0-cp310-cp310-musllinux_1_1_s390x.whl (2.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

rapidfuzz-2.2.0-cp310-cp310-musllinux_1_1_ppc64le.whl (2.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.2.0-cp310-cp310-musllinux_1_1_i686.whl (3.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

rapidfuzz-2.2.0-cp310-cp310-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

rapidfuzz-2.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.2.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-2.2.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.2.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-2.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.2.0-cp310-cp310-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-2.2.0-cp310-cp310-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-2.2.0-cp310-cp310-macosx_10_9_universal2.whl (3.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.2.0-cp39-cp39-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-2.2.0-cp39-cp39-win32.whl (1.1 MB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-2.2.0-cp39-cp39-musllinux_1_1_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

rapidfuzz-2.2.0-cp39-cp39-musllinux_1_1_s390x.whl (2.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

rapidfuzz-2.2.0-cp39-cp39-musllinux_1_1_ppc64le.whl (2.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.2.0-cp39-cp39-musllinux_1_1_i686.whl (3.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

rapidfuzz-2.2.0-cp39-cp39-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

rapidfuzz-2.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.2.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-2.2.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.2.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-2.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.2.0-cp39-cp39-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-2.2.0-cp39-cp39-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-2.2.0-cp39-cp39-macosx_10_9_universal2.whl (3.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.2.0-cp38-cp38-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-2.2.0-cp38-cp38-win32.whl (1.1 MB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-2.2.0-cp38-cp38-musllinux_1_1_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

rapidfuzz-2.2.0-cp38-cp38-musllinux_1_1_s390x.whl (2.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

rapidfuzz-2.2.0-cp38-cp38-musllinux_1_1_ppc64le.whl (2.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.2.0-cp38-cp38-musllinux_1_1_i686.whl (3.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

rapidfuzz-2.2.0-cp38-cp38-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

rapidfuzz-2.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.2.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-2.2.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.2.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-2.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.2.0-cp38-cp38-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-2.2.0-cp38-cp38-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-2.2.0-cp38-cp38-macosx_10_9_universal2.whl (3.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.2.0-cp37-cp37m-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-2.2.0-cp37-cp37m-win32.whl (1.1 MB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-2.2.0-cp37-cp37m-musllinux_1_1_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

rapidfuzz-2.2.0-cp37-cp37m-musllinux_1_1_s390x.whl (2.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ s390x

rapidfuzz-2.2.0-cp37-cp37m-musllinux_1_1_ppc64le.whl (2.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ppc64le

rapidfuzz-2.2.0-cp37-cp37m-musllinux_1_1_i686.whl (3.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

rapidfuzz-2.2.0-cp37-cp37m-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

rapidfuzz-2.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.2.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

rapidfuzz-2.2.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.2.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-2.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.2.0-cp37-cp37m-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-2.2.0-cp36-cp36m-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

rapidfuzz-2.2.0-cp36-cp36m-win32.whl (1.1 MB view details)

Uploaded CPython 3.6m Windows x86

rapidfuzz-2.2.0-cp36-cp36m-musllinux_1_1_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

rapidfuzz-2.2.0-cp36-cp36m-musllinux_1_1_s390x.whl (2.3 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ s390x

rapidfuzz-2.2.0-cp36-cp36m-musllinux_1_1_ppc64le.whl (2.3 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ ppc64le

rapidfuzz-2.2.0-cp36-cp36m-musllinux_1_1_i686.whl (3.2 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

rapidfuzz-2.2.0-cp36-cp36m-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ ARM64

rapidfuzz-2.2.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.2.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ s390x

rapidfuzz-2.2.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.2.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

rapidfuzz-2.2.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.2.0-cp36-cp36m-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-2.2.0.tar.gz.

File metadata

  • Download URL: rapidfuzz-2.2.0.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.2.0.tar.gz
Algorithm Hash digest
SHA256 acb8839aac452ec61a419fdc8799e8a6e6cd21bed53d04678cdda6fba1247e2f
MD5 9bb4bb61f49871b2d7a291fd5b74233a
BLAKE2b-256 802a0841832a010c57b69a1d515fb9725ada03367a0d028acc960e65e6c31f5f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d836b7797f9c9053668b8faeeded5fd72d0ab2da6b6a3b8b1e31b6d6cc83ab4b
MD5 b6f5bfccf4e2ef32d16fe77166688fd1
BLAKE2b-256 22cb17ea6c027227443fd2cea4260f6e490a73b7e156936c7b3e4cf72f4e52be

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ba56057d87a78923e889532a3027c00fc0fd1ddb0a623ac94548600cb34a758a
MD5 2e7bc796c46de9e6a77d2ba3da06a1a7
BLAKE2b-256 17aacf9fd5a7ac4bd34044bfc3e2830b4088510d61628bf410311e2ea83dd300

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e6f83f7eb08d59e4ca5666ebcfd3ba9abbc4dfbb98819b8b751a88d81b1ad809
MD5 1c50b33ec1ee0d2968dfcf4810674f58
BLAKE2b-256 793edac074b5f52e7ada6af7bdaa79d2f0d3b8e1cdb157a03ceb4111131c0876

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cc24d9f60f0eb471acad355cb25d47d79f1cb53f77e49a07ed18ff6148ff0787
MD5 3cf377e3e19dd01f8319ee1a8749d653
BLAKE2b-256 accad9e876f75d53743b9a9b63b6ea703830002f587e073336ce520632dd2cd9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cddc29b63bfaaed223b0b02e0d46b81551b8a49cd203f142e2a44e23bb326f3a
MD5 5f3f36de7cd0db18ba39de3658cf4893
BLAKE2b-256 9c0899f17109b1b7a65e251177698ee2677600da82580e5f29b650bf07504bcc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 05744927db4ce4dcaf94b3eb55ee0e0ec715da3c8cf5f315a520a60b39968b7a
MD5 5db0a2ab1a164d608fbe85650c5cd0e1
BLAKE2b-256 bcffe283eb3883c1cdfc774406a6fde69e3274f58cd62189945ec1521d58b9c1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bc459265bb02301f7a79e28d10f67d08d2b80d10d1c229f907c3377832323962
MD5 05c2e28393d60279dbd8343406523663
BLAKE2b-256 bda5dc9d6c9d09137c62df768fbe07ee43d3471d826b97c85bf8b444835b7fe8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 08648c656155a67e69d16b1593c3ec5691d80282944fbe67f1d8b1aae733c370
MD5 12da4287e08b198aa01429d615b0a0df
BLAKE2b-256 df547f30304d814cf1f5a5f5d08da38a253967a0848ec2034965019df2585804

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0625c9d785a746a131750933e42737ae1b8c0e322ebbdb16e42d0fc766916e92
MD5 0612231ceb5dbb1f2ab2bb46c98dbe43
BLAKE2b-256 cd3f6a731d26b12faab8a3d9c014d1ad6e5f38b1f6323dd2823b44e506de0b78

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2221b931e8de1182235d6bb288ce4a2299fb7dbd1da19b4b1942ff060da480ce
MD5 ea1b5819cfeebcd13a4d579760719508
BLAKE2b-256 869c08ec3675405046b4e11ba09a3e56b5a82238af84647d227c589779a69d94

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fcf42b84798c20bf509821195cb479f72b10c842a2da89bee9bee553dbca292b
MD5 0d322367a9c8645eb59beaa2bbf45909
BLAKE2b-256 17c287812e34bf30501c324349aa242ab0bb0aad5e92595949bab0ed68e2c193

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1c08e8774252a7d6e0e2c5884338c0be95e4ef4b8ceedf067b858ac49996ce8a
MD5 5384547f282b60e5cc3000be5be74ca6
BLAKE2b-256 cda2b7d0893986c844e22ffb422dd4126e4bcfdd3b5c36e21080d5461ec00922

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3f975ad9e67fdfd3088f6eaeb3b93aabb0d16f98350ca2eee2012b34c1c255d8
MD5 0368b94a26d2c7df561aa3fb4ef65dfb
BLAKE2b-256 eeec680134796ec50be1bfccf0e141f9e134aafa7876bc7d382aee375b5d8d5f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.2.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.2.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 5f874c48b5f11174e98b7e2e15e0645b23ab729e5aec1bbaa8eb0d3d958f3e3e
MD5 33da0020bed4b1f80d0fccbe25302b00
BLAKE2b-256 fcce2881d422dac7eb697aa4e12420e2a8a6577e49ec7e9d62626ae6d4939d49

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 be759731026ce1801b214eca95759cb6505adbe2f1c4dac8fa14104feb8abd02
MD5 a1d9ce31925a3696c2b52f698e75e022
BLAKE2b-256 b4e31e271a3b3a275b04c182b6b5f07a149c859d599c70e2a7a2e949ed95262c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 811144f9e9f51b36ec364e2aca44d87e9160ea3c1f5f9934ed465c3b4bfb6e41
MD5 798739591e43eebd07efd31f4fb3f0c2
BLAKE2b-256 f861f2c79bbcdfb92ea0629ad3233d8cdb890b1e3ef29a2715c260a6947a8f9e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 e972ad7313cfc0841a53e2b536c463c33adbadccbafcd58bde20ee7747b868e5
MD5 e19f50f7dc923668c800d749c6d1a603
BLAKE2b-256 2a815884dcc57692bf5c6360a0cd8d6831404c57818d949bc95dcc8fd81c0a4e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 cc0885f2f04c50bc20f475a49b9f81508a475aa633e936412028824e94a7d91f
MD5 c10e9a407c239a2f1161392cfa1c4ab4
BLAKE2b-256 9360e11e6aa246fe70d63b6ba6be314f8179dc89a174b878440e77d01395a362

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 511d03bc10bbba4c1eddfff8bf834ba2cc5eddd348f0ee084aeba9816787552d
MD5 84da96e5ab433110e5d60ba980055d81
BLAKE2b-256 e91ecb6aded21d009e4bba7e1a4a8e905b61031640efb0df74b6d79505b35b87

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fe01f8c20cac86d403053c0308184dfb4f815015fdb3826a07454957838d0d85
MD5 8f876e90c970f1f9179dc91b6c4462a2
BLAKE2b-256 32e2dd81b17be1c5f2b6e9b90d377240393b3c3c80a37dd64e5d653d198dc71e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 2ef16464e06cc62c40426c755c12a5f714567c8046ca3c328120a1b9a857d371
MD5 d9c71f5c323c251c7115946a775eb6e0
BLAKE2b-256 01927b8a9b0bc760e82f7c94813be8cc9598f96b3afb738860747f99a6d93753

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 e91551f8aa73d32fcc446fb1c48d51268fd7d80429b1bec1ee8c086646925296
MD5 c59651d95a87b15559cc909d89437695
BLAKE2b-256 680852d2a95e64d1f9e3431361a5e2465705c46cc5c3d9321fc46716f637346b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4e4b319b4b5f5b63fac71f67b3f405c00eb8c61e5847a497642ec1c86a3ae6be
MD5 d574ad86a49eec5a09da8e9c66de2c17
BLAKE2b-256 24dfa882f3822b3079a7c7cc3d1418480ac9dbd2ad2bfe0b2084c4c0c42b4f1c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7f65842093abfc75fa2e7b7785ea14b84675cb8089f1ba67bf74f2729b9c077f
MD5 632afd9a551fd08a81954ac328b632f4
BLAKE2b-256 801d6e938636f673e4f21d84020502a73ef998c8149322538ea6b4e2a014e51b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bf2641dc13d133692659d7bf6d11e9b3ad41441667b54159db0b2cb3c71bb10e
MD5 9a5d5dd96affc6d47c23271692edebf6
BLAKE2b-256 58b8e6fad8b21a6a5f65aa5280f23d8d8fb1194447f3b4170e6197b84b7ec0d4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ef9e99625b3784fd4c1ff958b94818e130f01d19fd5b2a533b4551bbe2570290
MD5 dd1eae50fd2e8efd803ec69fa5fd61ac
BLAKE2b-256 f3aee1b018f93d05f436f5e8f3eae6d3a001708b25e5fcf7522d225b8181e5ca

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 33e9a67458eaf13f4baa2a99a8f57e9a646bbebee349d26787d8618fc728afd5
MD5 e8b5219226fc5e654c20ad8818e55060
BLAKE2b-256 527215b5b31798f7665fedcc9eeb634c2d9ee5364c0295498b9d0de57d4edeb2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.2.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.2.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8e72a37b2a871710e7f1866a958a9b86f8341bf221631c6cecbdf10bf95f8b8a
MD5 d6e7b20b7f6de3e1e96287898c6968df
BLAKE2b-256 953d849dd090a5c19e3215771ac72ac7ecf2dccfcfbfb33eb4295469e3f07eab

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.2.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.2.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 a3b2fcf2a0b95d38546d3da61b06d49087f32b89582e2622c01803321f43c81b
MD5 b9b44b0f7286824bfcc7097ea6e78c14
BLAKE2b-256 77d1985569f6bc18049fc1892f742d3f147ceda89a84d6485205d91318a38da1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a948de32436d3d025ae2e573f84c4e953a6bd2e356aaf985389f9192f78af1a6
MD5 2c75a48160df5f4de7376ac5e22417ef
BLAKE2b-256 a5969ad87b3106de3b98f3403be70502c913957339429d7d2de4e9fc1a05b203

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 5307c1b4c3ac7c4e12db21f99bb7cef681aa0bd43c8e5b4ee55d35519e154c8a
MD5 372877c999bb40ea309ac5fdffa7801e
BLAKE2b-256 39e4c9b3863873e6064b6fe78a133c95814ca83096c00af8166355dfe6eea1e3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 b2a6a62301a3917338132a4bf5d3a7ace83586c5e2190799f88f6d8e0a91769d
MD5 232bbf08fe70f45664455435da254cd4
BLAKE2b-256 12dc512bfdb052189fe7b3d1dc2848c4727a7bc5cc9a95f632415d91624805c2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 d3548efc0ff34fb081561e597041461908fe125f2ddd906716e1438fccabb36c
MD5 06cf90c4f0699561c1c8fbbe3335faae
BLAKE2b-256 f98d5cda9c4fa4f54d1927268891e5514b0b90829301308a0de9337e27a867f7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 8506f2860fc0550a187e3e9e32dbbac837a7ac5474b893654635e8711d1d2a55
MD5 0182409bdb5e7ebdf06665e474faf216
BLAKE2b-256 c8b44033bdb907e88b75b1abbe62f0265e926c8c609f01073a93f5044b1a6b97

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a7026ce80b2db06923e5382b3c34a92c5dc60f9e7f967597c2c176230ed04d69
MD5 2138d1af55c9e4faf6659aad9f71cd47
BLAKE2b-256 44958f87ccbd88e50b9a3e72e47867b7c6a6a5c999ff4c08b51e58861eb451f1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 702153562ec5b929730453476b128c30ac814c09bce8b6eae2df11886b702452
MD5 b4c70feb2dffaf552a301c379c652372
BLAKE2b-256 63c802c9b95b12d1e90bfd5d9d316a708a335be934ed40520e788269fbbf741c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 d59159a616960802db86cd80a2e9535014c64c98b0d554aaaeffce0a268178c7
MD5 b6d6d7b6cd4f8a8c9ae2217a1f45a0aa
BLAKE2b-256 06152da219106e5d136d52a5cedd4aa8afa645b5f2f5ddced0280732295ddda8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 79b7d6d03774f34af14a7ed1f8f60cc4a3cd566b398e923aa225ed51e6a319f7
MD5 68cf9bd10bf262c825b268ef5b88df43
BLAKE2b-256 19bc57c03be64d7c2535ba6233c73ae86db70d527a4c45cf67932b097ad4c07f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 95c79727cdea3ddd96780c562048b0185d3df08cea811db7a664ea5eeba2ae4c
MD5 770bcfd675c3b5c0ad1d6d3bdc93972f
BLAKE2b-256 9e1abb8b19e4ed0957d41ad6480909e9a4344408090e32084e8b2597034fb4f6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3622d97a3deecd12a40a87c505767705168bca35b3a47f34eef5f6d56ddd0700
MD5 84824e74c64aa3e533da1818c31e8e0f
BLAKE2b-256 79b6afe002a8638373285dde257f0f095e6b6a8d614f781c24ea81b0f33a2e04

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c8a7bc417e3e345e4e5b0611960c1992da961c36bd070fc4835f7059d2317873
MD5 6048f8bba3e0ab54078f1a92a6e86c14
BLAKE2b-256 5d4de3eea137f49e463679514402c3ab339a9c99b44134f7f27fa81dfcd28571

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 4494a6ca98d8ac5c715e1b81150eda11124ee55ebaa5c71429befeb2b1d6597c
MD5 e6e85885c0afaa8a8e66de6df8772efb
BLAKE2b-256 370238d035fe80a6ddbaa075722f080b929d4a90ae9c6594e739fe01054da488

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.2.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.2.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9aea6a42bcfb718981e07299b8ca22e3d946e6d8769ac48ac0eca899cbc5f16b
MD5 2b2e3b661b8762ed279d98c3356d243a
BLAKE2b-256 ea28e799df2997df10c0f9be4939b26e987b295f36a4b7629db28da9affa16e7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.2.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.2.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 f68b03084c29aee8741705f6a92e7e0125d432535eaa3a97ef7cd7967fd8e64f
MD5 53edca39caccb4242c25f4185a37e34b
BLAKE2b-256 86d0322450ea37ab2c77da745c4d4136910390eea33e9dec4721170b53b77a6f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e7fef36c67cda15e80c00a3903a0707250c395f6c2b71e9fd054baf73b6d299a
MD5 9e955fb24e331220664cab0f25f34d9b
BLAKE2b-256 6c90246bb917f14b17a2c620e49af57dd4fd968843da94d668f8c08e86c4cc1c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 4d3acb9b049ddd078bded728f9c408cb36626e09d40f8bd46292dbbfdc52a468
MD5 19cbcee2acc3d5ad3bbc3957ce1fab89
BLAKE2b-256 4601881ad79b2a549f3be588a018a97dc440a7bbd170cbccfb5c374041d1b605

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 f74a08c0a3a3fa8fd72138305d004c452ea8cc49a447155078f0195090052d0b
MD5 e422f2ac62801acbe3f6996e9d94d741
BLAKE2b-256 66b147e15886577ed0d755920400107a997a14a275d6abfc9c5c455327702485

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 cb1e6b2810ea5217d82a411d517080516bac13f3178580af3bc5bb22992e9e60
MD5 9ce9ac46f4be192a855fa53ea8349f92
BLAKE2b-256 62d62323af985d78c3bf7b9af0ec7416018c50cc13fb8703a431f8cff22de38e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 578d033224583ff5966f29f304242075fbbce7d21bd1f9799ebacb5388740ca8
MD5 b6f2697af9b5cb9b1c0cb2054207e4ba
BLAKE2b-256 080abf5d999ecc89d5ae6446e3cadbbe7ac2b0cdf4c35c67a227c41d2d448e11

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bd4c9d1510e54f15beab5e6a8e0c654f2098ec1cbd1845736a3eaf8f0947f712
MD5 1d6693541cf5db4299f919ca7492e8bb
BLAKE2b-256 a558a711c223057e6986784472ed086cc14aaea1170d403df2be158715aed5d4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 eb4d116a5e03014a374256737d52e94f71fec02b1cd3378929fdcc8b99139266
MD5 86a826f5a995f9e49057698086e26ab2
BLAKE2b-256 cfb868dfe6b26d2d9690b1689c8febe1764be3a32aa5b3f69eed94a73f72d991

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 63cfab65bd3c176fb8f5cf9ccafcb3edd2860c9edfe089c66a655c75ab219f63
MD5 c52ef443f153c2f005e86f783479d6d4
BLAKE2b-256 35dfd2f163ec39d34080e2575814dc3a0b71476d89a3acdea2d0865ebf4ff19f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b271bce60bd300423977a6af4863c7b91b57a1b1190aeaabeb78daa1d8b2782e
MD5 f7c43b543ae6207f96b68642ea2b57ca
BLAKE2b-256 a33bb31532e5af088fbce502ddd2479b2c434c45e246bad4bd599051f58580e2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8b832577531dd152a20a54ec776dc44ddda00cc8399ac650c7b001ff783d5741
MD5 ab35538696013e3eebb4bc0cf6d3ce2a
BLAKE2b-256 ed611d68716c44f0e9321929b2d28acb99a30ed40311654e583828e44c3d753e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ef46d1cc4c55d7fbbb2b4cdfecd8af0b9927e55a61c5632d6d0143e1c6bde7c1
MD5 17284adc9cc33868f1d8215faa31a2dc
BLAKE2b-256 aa01020f56968f39b7a21b8c25da789f70f4645a465ace17adc757cb7c87f872

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 48495fa2e49712a79ec03bccdf8245d5ab43e5d433cb3c643f92addba6e645ff
MD5 d810169e2c9dc6df39ddd70894d3f3d8
BLAKE2b-256 7a53aba3d56c4fa5825de8e8951d63f0c9e21d67ba6d6b5effd0f6df442752f6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 a642d2628776e5ed5f9ea948aa68e2d7d6bdf4afccf467ad776b91d16f18a9fd
MD5 a97660df3c6121739333bb778000d828
BLAKE2b-256 f2b2f76bbe96a352ec9bd296ddd1a6b783faca9af4f7b44bc4e0c091aec75ef4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 4c8c9f644307c19e61168bdfc4daf665f4869a3f9a7eae029024d7e75cd5ceea
MD5 828c324a3b4925921b09fa9bbec555aa
BLAKE2b-256 aa01ca42efb56bb2f2335b0849491a45bf2d3211ae08b49281df77bba3be9bb2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.2.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.2.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 ae92a753c72feedabfba2b1d67b9f1c2de872be31f51db96dea44cbe6e3be9db
MD5 8c68d5d56fb53ecae8e3d2ee25d71b5c
BLAKE2b-256 1163641702ddf66b003756b2ff222bce5a6298c65fbb10b82614f260764b8d54

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8d9edbdcb9025b586607ea983114348b20953d538f50cadcb81173f3b14ba03c
MD5 4bf483ec313d5d3d9f1d34b1eb7e0e68
BLAKE2b-256 d2bfc51e39570956d321e32d02ba26861acbdb37fc5230fa6544e6704c528743

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp37-cp37m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp37-cp37m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 ba915da5e4a4b60044e709e67d2026d1c38e4fced989b57e8976cac1f3ae7bde
MD5 c70246865a301b19a932b59aa69e1eae
BLAKE2b-256 5ca600fcfa1ecf28454d64b2bf2842030fcd9bc88a3d690736c68332eee07e6d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp37-cp37m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp37-cp37m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 4929119e76678b002a6672a78947e6704eb08bfc4aeff1f068b3440bb9dd46b8
MD5 07f94dc99f88f7808ec62bcdeeb5ff1c
BLAKE2b-256 0af87a6fffa585a8b5acd0fa030ab5ba31cb39cb498e8e16c769137f7bce1532

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 1b9c2abe6d672376a9bb988121c9499fbb6250fbac67ddc8a6eb009f3c276d3c
MD5 e975d1822f538354b7e11345eeed2708
BLAKE2b-256 c71ea7760e5ec4c8ba3e2dbb5ed1ca54b9d2e0a7fbfe73f81568dc7139a6b3a5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 17c0302632d7a6514ac07192d7683cd0a91b2ebcc06fc3cab5aa03c8742338b1
MD5 35bfa3742eef66200b310efc755218b3
BLAKE2b-256 c252a97610b0d3f425f37cad0019df6f2fef9d12d01318b0dcfc4f9ad8d01472

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 84c1a13dc5121ae790ad37682d9390e3b3767995868c772143e74a151fe72f2a
MD5 2fbe7bd4b92d3477ca13626a99f167a9
BLAKE2b-256 57fed02dce1f4ba28b7d4624b31a2339247e01e5ac4446953b8c1a9c2ac142a0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 593f7a7fcb1f4816073a9916f554dade999556c0920ba8f3a015202b8bfbc191
MD5 00679086a0fda22507f1ae295fde6167
BLAKE2b-256 7a99cd2cd1638233fb6a3ae928387bb127f8f1a0bcd0ad1d45312feb18da3c9a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 2b127361e44cee98eeb5d5c4436261dc80d8b6dcafecb3333d0ddb3bb723a0a3
MD5 846f8f089096c187fac85483bf84faf3
BLAKE2b-256 b5217c272964d9fd7f01d41f8ce1a77f22148615b9525d0029a2366559713a2d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 076998aa32ef71e1f43de57d2a59f941b3f0b794171ab1d32789a27d1a32c5d1
MD5 60a1c9ba590a3164f711f9063cabd951
BLAKE2b-256 a70c1dabba524d2726b4c2f447f8f07fb196fd8004c2b30e57ba8289d2dfa98e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6d2958207ee314781078d4ce0ad88bb4176964cfeef2e57412237088acd193be
MD5 b6dc43f18dd8ba39c83f41a692aa6202
BLAKE2b-256 c1424a40a97932729991c22a809398f1242a63b59436d0aa47593d205eb7edc3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dd10a90c75a32a00db32f2e619d65bf8c6d97063f2c3810a04a9df787d3d54c7
MD5 c88743dc49de007a3b05d5553a9c9d7c
BLAKE2b-256 6049cb36aa44e64bbf0b58cdc17ae204953519d27384d0f02848667999607cba

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 3b625dffd8232f1ba6ff2670eab73af278591f26bbb818606ab8c4d24cac7701
MD5 439077ca3875223452551c01ff9e3d15
BLAKE2b-256 3748f290ec28e3ca31b09b0c403e191ba1f9b6b244d8aa626de488ec4bd86eb6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.2.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.2.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 69e12d6da25035bb6c3419afb8d9d477ee5fcb55ba0324717f6e0345012703ca
MD5 e7def81fcc22b08b473207aa2874e721
BLAKE2b-256 5d6057d4c619f2cc49b09fd0ddd2d80cf7c14320d1b61e8a9a1c27bffe4ba76d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 680aa786cb49e364b299df1d454bd8fa2f451428408a0fefb8a3ced346df3827
MD5 08f92abfef6f738d8c9c4c3f41f2f19e
BLAKE2b-256 8a7446bdc13d94fd48c6231425a46402c2028c8efebb47e625509e4f61142374

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp36-cp36m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp36-cp36m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 b75f1cd694c049a167458b9ee1c041885dabea79d79ea5f71d1ba164c7cca896
MD5 3ecb6569c523c18bb703ef35bdf7c46f
BLAKE2b-256 e5f83589e1972f62ebb9eaead204c844199391f09f71e5b4aecac46144eaa2aa

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp36-cp36m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp36-cp36m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 21cc3dd3e542eeeb9b8cef4271069dea930f104a8c90d69a28364a5d52538d0a
MD5 46fae1e12d0d89248e948b637774f083
BLAKE2b-256 afc856cbd7455772212c6590bd137f0b74f53b08b7151291c3a1bb2cc425d156

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 63c91f142c96335418d50639e0ec68778bb2a05d0e5042bbbf2d8e2ce894d68e
MD5 56ce6d9eae357d57e9c8401049f2fc94
BLAKE2b-256 0702113644481a1bdf0170ed785a1eedf6587227f2ffd1422bfc57a33c0b9cc8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp36-cp36m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp36-cp36m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 f82b02417455c15d098de815ffc1050530610826cf0083fd2415aba744b2572c
MD5 9ee5044652921c5b2543dacd5867afaa
BLAKE2b-256 16c661f4d7c7657abb99024dbfe341c98eece3b9f521c6b0b93098c8d5dd17be

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1be2e70039ae6a7dbf6ba3c1158e231cdf29c1a8d56371cc40d0f3007ab63da3
MD5 39358ef11edf1f6dd7fa32264d41deaa
BLAKE2b-256 37faf0fc6e2fb4256f5afcfb9f18a31d31543022549ec82b4ed2aa6c4a16b111

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 83bf8bd8384210ca5719c5d21cc4cab4cc08396c942ecf3fa1a08b2c0ae70bc3
MD5 f4accabaabfaf35fc6a13f90e5463153
BLAKE2b-256 d3aea3e941f5498cff59b3c2cc7546e19cbd0ee824c3995a8a3b771cc1f13c8d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 f3c59ff3477ee0e9d93c0487a4babfddba9d03ef5b873f5ba67aa4e7928b140c
MD5 a264e04fd50447eca9327040cfabeedd
BLAKE2b-256 f5225633f85a9fe7d863348eb14c68ab1eb9a44bd63254b2d15f5b76ba8ecdb1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b8bfaf37bfb07e44e71b4f902ea751c8686424b33cc6dd5105f374bbd5972855
MD5 8384ab15a38adea3bd13d6ce3126731b
BLAKE2b-256 f268c338ab6acdd06e88a582e28443d58d59d735fc0ad940ace6ac5cec093c5e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7e8a8e400a52466c2689047dd86671678482770c89f0dd45d3685f554e34d90a
MD5 baef31f4e2df1ab9a5e4048b21bb9db3
BLAKE2b-256 b77532157ee6e42291b52aef23ebae66d67c80ba415c3062ece6f419216b3df0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.2.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.2.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d1ef8c6b62b7739214798f5318f88fa9a9dfeb9e5e9a4561cba95f2a96a3ea7d
MD5 41327b557f309a2ce00393d1b14c7bef
BLAKE2b-256 6c70dde43b44dd70cfdad6375c755f69273ab02f3b9619cb793ffd096599b14c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page