Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++14 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparision between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparision I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

Benchmark extractOne

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-2.3.0.tar.gz (1.1 MB view details)

Uploaded Source

Built Distributions

rapidfuzz-2.3.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.3.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.3.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.3.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.3.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.3.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.3.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.3.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.3.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.3.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.3.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.3.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.3.0-cp310-cp310-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-2.3.0-cp310-cp310-win32.whl (1.1 MB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-2.3.0-cp310-cp310-musllinux_1_1_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

rapidfuzz-2.3.0-cp310-cp310-musllinux_1_1_s390x.whl (2.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

rapidfuzz-2.3.0-cp310-cp310-musllinux_1_1_ppc64le.whl (2.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.3.0-cp310-cp310-musllinux_1_1_i686.whl (3.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

rapidfuzz-2.3.0-cp310-cp310-musllinux_1_1_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

rapidfuzz-2.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.3.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-2.3.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.3.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-2.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.3.0-cp310-cp310-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-2.3.0-cp310-cp310-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-2.3.0-cp310-cp310-macosx_10_9_universal2.whl (3.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.3.0-cp39-cp39-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-2.3.0-cp39-cp39-win32.whl (1.1 MB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-2.3.0-cp39-cp39-musllinux_1_1_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

rapidfuzz-2.3.0-cp39-cp39-musllinux_1_1_s390x.whl (2.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

rapidfuzz-2.3.0-cp39-cp39-musllinux_1_1_ppc64le.whl (2.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.3.0-cp39-cp39-musllinux_1_1_i686.whl (3.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

rapidfuzz-2.3.0-cp39-cp39-musllinux_1_1_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

rapidfuzz-2.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.3.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-2.3.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.3.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-2.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.3.0-cp39-cp39-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-2.3.0-cp39-cp39-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-2.3.0-cp39-cp39-macosx_10_9_universal2.whl (3.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.3.0-cp38-cp38-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-2.3.0-cp38-cp38-win32.whl (1.1 MB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-2.3.0-cp38-cp38-musllinux_1_1_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

rapidfuzz-2.3.0-cp38-cp38-musllinux_1_1_s390x.whl (2.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

rapidfuzz-2.3.0-cp38-cp38-musllinux_1_1_ppc64le.whl (2.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.3.0-cp38-cp38-musllinux_1_1_i686.whl (3.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

rapidfuzz-2.3.0-cp38-cp38-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

rapidfuzz-2.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.3.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-2.3.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.3.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-2.3.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.3.0-cp38-cp38-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-2.3.0-cp38-cp38-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-2.3.0-cp38-cp38-macosx_10_9_universal2.whl (3.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.3.0-cp37-cp37m-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-2.3.0-cp37-cp37m-win32.whl (1.1 MB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-2.3.0-cp37-cp37m-musllinux_1_1_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

rapidfuzz-2.3.0-cp37-cp37m-musllinux_1_1_s390x.whl (2.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ s390x

rapidfuzz-2.3.0-cp37-cp37m-musllinux_1_1_ppc64le.whl (2.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ppc64le

rapidfuzz-2.3.0-cp37-cp37m-musllinux_1_1_i686.whl (3.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

rapidfuzz-2.3.0-cp37-cp37m-musllinux_1_1_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

rapidfuzz-2.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.3.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

rapidfuzz-2.3.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.3.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-2.3.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.3.0-cp37-cp37m-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-2.3.0-cp36-cp36m-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

rapidfuzz-2.3.0-cp36-cp36m-win32.whl (1.1 MB view details)

Uploaded CPython 3.6m Windows x86

rapidfuzz-2.3.0-cp36-cp36m-musllinux_1_1_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

rapidfuzz-2.3.0-cp36-cp36m-musllinux_1_1_s390x.whl (2.4 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ s390x

rapidfuzz-2.3.0-cp36-cp36m-musllinux_1_1_ppc64le.whl (2.3 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ ppc64le

rapidfuzz-2.3.0-cp36-cp36m-musllinux_1_1_i686.whl (3.2 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

rapidfuzz-2.3.0-cp36-cp36m-musllinux_1_1_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ ARM64

rapidfuzz-2.3.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.3.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ s390x

rapidfuzz-2.3.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.3.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

rapidfuzz-2.3.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.3.0-cp36-cp36m-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-2.3.0.tar.gz.

File metadata

  • Download URL: rapidfuzz-2.3.0.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.3.0.tar.gz
Algorithm Hash digest
SHA256 426d176c7d17f3ae0954d2bb30a3352cc9fa9f819daf458b5af7980e8e4dcd93
MD5 265c4e0dcf3ec56954652fcf85a9698c
BLAKE2b-256 aa4072aa8a19b6cfa9f1663e2abdd380caf5e0429a957b2d41ceaa2229ff3628

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 10b9f5c1681ec4bfcfcf2975453892346ec1ddf00a70d489c0cc67dfd8cc8e23
MD5 14e3204b4f62d01c6b6a979e07266b68
BLAKE2b-256 e9683a63cbd272006e818bc0eacd57bd7c43abde82b1254fd2c173b12b805565

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 fb670143463cca6fb3346e7d61eebd53041547d91729df08f6f4827bab83e8d7
MD5 11c688522438f1c16c4321cfb946c797
BLAKE2b-256 16740bd424966521d8c0e5f1e9045d19c98f1c46c48b0077fa8a38aa14a719bc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7d339bb04dbb1f07fc07b8ed51211cee579a2cc72127095a04b2b4f1693efc0c
MD5 c65ba559ff51e9f518226cd94f8aa6b9
BLAKE2b-256 30d28a99ae7ef8abf3c01aff6ff168272191813168c41902ce1b6ba28c943591

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 96c16c807803bbebf59e6bf54a7b970791040d5728f05c5022dcdcab3af8c885
MD5 5def3d9603ea1941b6d4e05203d4ea4b
BLAKE2b-256 bb972b6cf907d123831ef19b7e890977153621220d2fea23bdbb088e0d3a221d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ca9e9472957d8bd84f1cda25b1da6b815220c7a0127f7a1c4b34ecce6875f858
MD5 72c2868304ebd471656d4d109650ac8f
BLAKE2b-256 649cdfacd9d3050ea521cb8efd07b9a71d561dc0c900f0d38aa06ab65a1016fe

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2d95b5550dcd195b10fee90686d853b5b86fc408e441b5d5e2f0f0d62ee6c7c9
MD5 8ff001ea81f8eb435f8a62a3316b4930
BLAKE2b-256 a8b59148690377d6a7cc9779baaf4a4178c17a4d9970bbbf97b716a70d2a8189

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 137f0711db4908b68cbedadf1e1a60fa112e7f5c3b90bba561aad32d740cb84d
MD5 eaef576d92fd560ea9dbbd8d4976f8ab
BLAKE2b-256 f4ce0c992dc1afe2fc4ec76fc5cb58a2e7542060c25a35085f8ccf1a341e63df

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 612ef2909fa89b01eff9a549b814390a28a1a293eae78ccd9d1d1353ae6f5c41
MD5 1be1b0c63cd97e8fa83595ef4ec50692
BLAKE2b-256 40b2564c89ca436a1a3c71c94c445fb2a2f0db7083fe7c27e134daae5c691e2d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4b4fa5ddb212baa5b73cf9cc124532d9fd641812afb301d04b16472844330ee9
MD5 d0594b87d171ba42651613b76255a6b2
BLAKE2b-256 39442998309333f4d159e2a035394f95499bbac9daa22ba7654784240e97a5e9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9fd10265f4c8ff480529e615b4ad115a63ee8c346c0752118f25381ece22a253
MD5 d2429e6cdb582ecc65bda98a34a419da
BLAKE2b-256 6451106bf2ab7c2c04b4bcf300e0ced7bc5d699b795e3fba818755e98fe84d2a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 36ecb511f6521f892fd69833765422d708a09a8f486b4d1cdf4921095a2c1ca3
MD5 666a16d5834246dff7ff96ce1e2fafec
BLAKE2b-256 c27a14eaaffbaab9c2012790bb7c783dfc317024156fe77b382de1450f774d22

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 605a8f1a29500cd37ba80e9152565424dfc8d9a5c4de2cefca6317535464839a
MD5 ecdf853f21a517e201dbc7cfd1ba1d34
BLAKE2b-256 aaec8de27651ad0e24caf7c1a7ba6f790957eb27d244e0d5612bfb4085cadb98

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3f8f70e19a25afe921551d27ab732237a7e824eaa7987610d766f0d810036b63
MD5 cf68b2e937efdf014cde05aaaf885e35
BLAKE2b-256 8c80c54e7307239067574f4ad72ef4a786be9190bcf10bfcfb656b9b0fea2b71

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.3.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.3.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 e925443a16e8c4481be9f7394e0e6894937462c193ebfc922669358dad26041d
MD5 5f9a59b62df6c1c4787b6c6389dda1df
BLAKE2b-256 3c94195d34de75d7dd75fbdd283118728759e133425383484aaeb320834471b6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 df947d7a09efd33528a05acfb9676c039b28c964a083018a8004569564daa8ba
MD5 5676268195f033c85a40d553c4d41f82
BLAKE2b-256 cd2e60c6059b046d8d525440d2dea0883c6d8298543899fbedb6f2b4ebce5b34

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 1ea250cd8417ccc7b8de62fdd12428ef2ec70f61a5233643e49f8a9b89fa1ed9
MD5 9ea11e18e941019ee7fb7ecc48648278
BLAKE2b-256 7f95e0880d273daa5581b2fa8863dbd142a2b1bee9b8b3e502560c2ceb905bd8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 260c230ce47cbed24bf222e05ec0a5f9a28293c2b566a97f142a6465a53d3350
MD5 b140c272203a447e9a466955376ccbfd
BLAKE2b-256 9ba7d06066a501dd1c7b9fb63fd1de8c2a209dd20408f326caf2a2beb2cb176f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 9e5a6c2366d732aab1d820c1f373a05460c94242f62c3eec8d69885d9c81bf3e
MD5 d23445d7a502c9806556894f0be76c4f
BLAKE2b-256 bf8e62acb1bd9697b9350f946aea4e3efc1d313d93a5b0c223029e7319b86e56

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 11808afdfd60b7549d31da6320f812eb8b9e7ea6785878486dfd182a53833b6e
MD5 705ddffad45134744c57658f57913ddf
BLAKE2b-256 69f5d6357d13183c3153f3da7a65c1ac5372febe97813f6a6a9eed4b141e01b6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 81a1f64e599eb3c42371d6d0d5dd5d057991739ca510b8bd6a5c0aafce4ac0c7
MD5 75f4daeb5cbda5dca2831c8de8675560
BLAKE2b-256 ae61a724ddccacf207606460d9bdf34e8c858236a73d684eba583c33014daccf

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 c268c6cf8fadb50bc710da7d8194f49c221d2e1cf4da229639dd0ba7cc75bddb
MD5 32c567e6039b1387d899a0aac3df7e99
BLAKE2b-256 ea88125ec3d1e2ad24669667888c1bf14ebc686fedd63d95e562e3a4d836afcb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 a88097cb0c15f48548a38263d8ef4878ebc7581209cd5e7f34e98208fdc7fc3d
MD5 c6c9930c26a9a32274ec23bff16fb488
BLAKE2b-256 7d9bb603c96ea671c4cb53dc391f079c91855817afa25ec4be5ab3d5b531a5ca

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9a061cab4f8ed57644deeaaebeddf4da8ba4a3fcd77d6106e0e91d77b8ef09c4
MD5 7fb0fcf4dab53d57ce7b01feac49b8c4
BLAKE2b-256 e47ac76daee52b4fd65103fbe581681c0af1c4c901dc3ef758db39abd1bafbf4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3c265ba6648f20cbb03f146bf75426b162814ac55bd466db3d87aba16a275c5b
MD5 cdc0203388a51ef3cf5c7ae3438dd770
BLAKE2b-256 eb26ed3f6c1fa2cfff21b20b937b6f83ba2d944ab901443076b8350abe1f2165

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 06121384ceca291c1b5215d44cdbbf3d87db8880c3eab2297f933ca1ce5128ad
MD5 d2ee18491f32c29b0bb6efbee81d554d
BLAKE2b-256 3cc67f5297b5bc9b3194c7614e3853a6980f4823e601746da02ee1be6c702c55

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dd956594eedcc8ee9d10c6907f89b22e09cdd1b707a66ed77ecfdb31c707addb
MD5 c838441c8f684eb4b6438eeefb8880f4
BLAKE2b-256 a885810e97823035b1a4cf8a464869232f13bbd2e594ce7400b47a284acdea60

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 40b70a4277c73401bf06cfe833317c4c6616943e74497689412634721601a3c6
MD5 5e0e3b4b958da0b931e56c69dbe88899
BLAKE2b-256 e54e510180b1fcc27acf68e9a634617630da4925a271a0ae7b087794b3ec7c96

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.3.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.3.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 abc22ee309d4c41c014b1c3f697072a5c1dff2ec72b2fa32dcdfb6adc224ce14
MD5 094ab5ec5dba8f1b05fb364232f0a68c
BLAKE2b-256 90d300002f6173a99e418e09037fb686b9e6cb401506167b255f4b0d2e6ce549

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.3.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.3.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 70339dbb6b2111d3f2f570c172ba53664b3775218ea59183e4c7f9246c2aa06d
MD5 2f1c5867b93a5163e5e773de390eb06f
BLAKE2b-256 a3a354e60d390c46891eb7b634bf3db51485938e470e703bfdb2cb1193fd7030

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1d40f779edfe9abf56bd10e6cbfddb156b471e63a9853802a897ec54762383a3
MD5 2bbc2ab435a764a0a0f1c3fce9863a6c
BLAKE2b-256 08286ec671938dd3d27b8755de9b358bd48afe969554c8e98ca55e6920d8b955

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 1f7a90ac59dda626f981f958b42158956b57e8c61c2577c91d2459a0595c9a79
MD5 7abf20c2f43b364ea6b7b539f7c46d03
BLAKE2b-256 8aa5fc27040a59d198c7f94b2a4f99b1e4b97c9052d4e18f8c843b074822a5cc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 c5bba51120e00320e7e2f6866a0cd6757848b73eb11795cc4247a3cea8555f29
MD5 40dcf9bc696358a76c95e975150a0448
BLAKE2b-256 9491c15802113e2e34bf3098e57ba01a35a56bf516e14851975f7a8f7bc132e6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 34dc7096e76ffa0eab7d4071d0020c3c7e2588ba70287156d3694a5e4a202451
MD5 596f23528f8e8d778e3b63edabe9fd42
BLAKE2b-256 7ed0c798667490bb3025b0b21f908bef97a6ad878d3fb3921a0db124bbb02a58

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 58ef0edebb11c8f076759b0b54c34ae9a05209e2a4725bd5308db08606526f65
MD5 0f6f69701c92b61c98cfe1d19f002279
BLAKE2b-256 83c583400f1d3a9b2fe8d1c7dd5de6100c83037a07cd0a644e57d99baa84d241

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3c00cfa91551c58aa3f6646ae0f06d4a28391f3b0fc78975999c2275272872b8
MD5 fc94ce1421c0790a97e517468624cfc7
BLAKE2b-256 e4a6131c9b7f2e510567434ae884e47267d8a6739267c6e8e98b5ba1f9503711

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 11c40d1094aa638b18968ede4661e2562753c04ab2d8a04c6184f845c0ea8d1b
MD5 8aca16bba42e1fc120dc91e323b79297
BLAKE2b-256 fe32204dcbdaf202f97dd4dda30fce9c3968ca1d9838670e5f7bba5d8bee8042

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 7f51eb2effe7c3061840821f8c9102aab58a2d46a3a4dd6a2df99e08067e6e3f
MD5 b8283acb37f6ad4f2489d7289bdc8aa1
BLAKE2b-256 3ae6bab613d7d96660fc003a252a6d15beba795bdd22a6b4adaf88c4034801fc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9e985a889e23770061b7c221170a41d65a3df53a3488bfd422f2a315ae1299fb
MD5 0d2be7210b5dc59ba17ba2ac4a016520
BLAKE2b-256 e76380cfaaf31b8c78197f45694e058b3cbfa4601ee41a8f93668e69b15328de

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e44809e3200d9cd78bf5093fd149857de61be5ab7aeb633ba1bea9e84719a0e2
MD5 98e6a223406ea555e4358a3c1c39e50f
BLAKE2b-256 5db8e5244a978122b996e10b3768ee9ab288f4de1b5508e1a784c8e0fbf1c669

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a3dcc7744a3b5f488b48c39d9e7a7e4e059a5c419bf2fdcc373af873fb565eb3
MD5 e9f4fd56fe963c23bc7d9a373358b046
BLAKE2b-256 08267277fd8b3363531685f3a04bf3e1c42d48a69150808d3b628496059984d2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 af2aec580734e04933533d94ba76f7c6d7b590aff7246d960e30049ef412bc0e
MD5 b7a408d69426e0ae7598004a39a31458
BLAKE2b-256 88901dcecaa4196821478719d118d7d909767e39fe49839cd739080db7758ea0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 44aa685ff81fea37487e2255205b5db5d448e7f07cb483ca0896350aa38f920a
MD5 04e6958c1cb3bfdc521ee4ceea05845b
BLAKE2b-256 6ab138143d9a0682aacc10ca28eae71a4f9d2e103386117077b72a59e589c5a0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.3.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.3.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 699be4042f420c9469be7297c2f465aac1ece48d8ab5efcb1b071d54224b946e
MD5 81066f050ce2dab3a03970fbb8f01069
BLAKE2b-256 5ecddbae329d98db24d98efd71a2c882b426aa489029efee421ad31df5dfdce7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.3.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.3.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 6c67598d1d074d5f81d36ca651558d252b0cc7fbd5302389a9c1206e021dcf55
MD5 1f2a26328fa0617b8ad7377e279008e1
BLAKE2b-256 f1c7b00738589361068ba2610967bf01ffad28004c0f4cdb2fdd8987687cb626

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e55fc8ade3768ea4738ee89b725a290f689cd2c3ee57f61383be04782f2bbe18
MD5 0d9b470a8307dc39f348a7510430defa
BLAKE2b-256 a34651f24f2f5ce8fd7b9e728c9b2ed0f0d6d12b92bf37b6224f4e7d2824ff64

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 287a0e70ffe26275325fae08739a5034e013434e3af163e8ccadb6131b292d64
MD5 d0c8d632fe1e6a7683c8ee8d777ff657
BLAKE2b-256 114b90c57fce92cf8455c789bfa628ba3fb2db5b0493e3bcb44f5eb8cbd93bcb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 3b96fbf1c1ff5fc8c07a77bb2ed20dcb95608963cb08cb8fe3f6265c90f7cba2
MD5 54b0f63f39c180953ff860ab45be9030
BLAKE2b-256 2e4fcde8c3f21825e56ef33b02408ff616339facef16c6852740fcba6cc7cf93

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a7aa7ab003f4ec26389521d280ce8d43c471db7ca30eda0c22a9279bed58c839
MD5 5e67424dd8d562ef442eb93631a79594
BLAKE2b-256 e19a50cc131430cecd3408ca8d9429612a5aecb3ebda295d26a6f8af456db72e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 cb086c659a913fc8a1fb0746557abaeb1d0c2ac4dc60905c46478d80898e3448
MD5 22cc24093e2e123e142a91893e84156b
BLAKE2b-256 a31f01eb7940124b035d96106842c92033b4cf8c249e732a5787e10d983a1e82

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eee7a3745a0e76565de1036af4591a64489319834e3abd8d61565e1c86ae35e8
MD5 da9c8c9a7b65e0e140f4271bb9e3a5d4
BLAKE2b-256 afd95649a796b9a653b3181ef3096bb5b471c9dc6f17250a2c00ce5a1b9311e9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 975ed43da9f3f4e98c47fbc503859438c734ff283fa485a532c81f5b844d7781
MD5 66ae70ddbb183b1e2bc869c9cc754a68
BLAKE2b-256 bcc5c15ad9b649e6243eb97dc75ef1b5734bfedce0db67cb29d675b0be74d671

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 10e67a6c2131661ef5633c6e36d77dc65e3436088f77a44e802f6410bc292af6
MD5 2d7e42ccde910b4d9de8d72000e42aa7
BLAKE2b-256 accc7a8a27dfa6dd0aec7e721e0d1b9de80a540855c95363411d480811d8e3b8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 54ce466224791171ef0ece47bdfe5fdbda459a644c0090af804a7384bba9fc96
MD5 6b2ab2cd459e319b5c888d499f172bad
BLAKE2b-256 25b6542fe87bfaf7dfc51c3be7d74c7491427370d0f317651148371dacc970aa

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 81f01fce0a5fad68c6108143911abae0d765acb85b1c1379341b26590154056f
MD5 dfb6bb2b4f26329198ca5a5b1d37806d
BLAKE2b-256 7977f79c98599071b7d3fce9b21b1060e6d08bbb808f8da771449a98b3d5387b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2cf4ab0bd45892e9a9ed2e6d7d41d1cf571e479ff0f3358deac029086fd8c920
MD5 0322e213e8825f141ef0f4655f0ee995
BLAKE2b-256 287a6962e95e881cb6754723f20b863f6f6d3cf0a89e34b1cbf195a70fd4f02b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 08093590a70d8bd2a66fc26b29635017779a5c6380e795f6050e79d6edc78911
MD5 25c5a74164f1eca7f2ee0b1c3b79812c
BLAKE2b-256 ba18dd5545e9e75b1edd1f349c7d074da355ce2e2b36c054da86942c14b2e8ff

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 4307eeea7e37097ab4d9e22a6553a753cd6beaf7727422a92d18b156d48f7145
MD5 4782541cacb9f0a347e58cfcf4877691
BLAKE2b-256 a2d34cb9b78941269e2808cd99424dade9e6ac8f05414b154035dba060fc112d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d649358105683c0bb4422b934a2fa9aedd25854648ba5041826a99607e274f40
MD5 36f4707b7d7e449441002ee36643a1cc
BLAKE2b-256 7dc2db54bf1dbdf13def1cf50bf3af6bebfa288cc0a94bb3286553d2776a03f7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.3.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.3.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 480eba6f533e53d516f0e3477a67324b2b9a2f67f57a169784b8e4a62ad788c8
MD5 2c8a1e49db7d4a649f1a3ee1b5cc1847
BLAKE2b-256 667ec5dc00539534a9c730077df60deb5c32de2b2afb22f5142ebf68156c9208

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 31fc180736bc871718d9d992c36241818e1d280091bb57059f90275cdf398fdd
MD5 c10c512dabbefd363313f2f22707634b
BLAKE2b-256 f8533d8035934735fdc7b8bfee0c84b2fe01d3999ffc5bce65eefa6eb522fe6d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp37-cp37m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp37-cp37m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 b933103b3264927fc9c561709277aa6de199371560a09b5db4177bca7bc1ac82
MD5 6877cb20ee6829a537b317f5062be3fc
BLAKE2b-256 58ba1db2a7308a4bee82de5dcbbef8b231298c11df39489ac8a6dbb24bc5b38b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp37-cp37m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp37-cp37m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 8b4618e4879924726c9dcde0da82ca20b6115dfd65fadc959732fe65019a4ffd
MD5 89f8ba6196db8cfc97cc294344fa33a9
BLAKE2b-256 f7efe0e6cc43ae3ddafaeecb81f4592dc381b2d2c164a446648f2d97ff4c6776

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 66e70f89e80640f1351d116806e4ce57b3581725b47ca4a7ebca193fab6033a5
MD5 d5a48583e2def100f76a45924772dcf3
BLAKE2b-256 4cdc330f9c68bf1b7223dbfe2afc0609ea44a192b27c432e78ef5cd9f7455417

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 3fe0a4d0f545efab85232a2a67628fd371fd4430cf832f5617f7cbf09b2f0ea2
MD5 cb9c7219d62f47fafd25b311b54806dc
BLAKE2b-256 4fea1c22b1b49aa95a8d914a6768fb1fc610abd29ebf03725231278cbe7662d5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 95b28d765d53111f932f5a57925b8191783015156e386533b51fc3a4c442d828
MD5 c8dcfb0459950a5c1efc71ef334fdb26
BLAKE2b-256 20c1274073d466b3697c5c8ffbb5711e54b6d03b0167d752f362b92082a9a6ce

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 229daf8051cac2f60c380e8385fd91d8c461201957b547867b5f9d50c0099c17
MD5 d5f88faa394169a7858c95880d2c1d39
BLAKE2b-256 7d21b781609dca4a086cccf364605dc718a6c597b0c8d2e4255deb338f2aaf98

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 76cb19a9454dd1773a81f0c65cc33eadc8dceea892f5be86646150dbbc4fef70
MD5 026beceb18645d8df0859fae8b6cd8c3
BLAKE2b-256 3fb8c3ff4abd29d821525f5c96dd725ffb0e1fc87b0bc2b620b9f23d4ca0cb8a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3d830db60d293ff0602ba7798e792bcbc0ec9eda6bb80bac6df2850056dc0705
MD5 27432f2cda23266207531c8a77468fd9
BLAKE2b-256 708a086c58ed23e12e2b64f9dec667a533e0f557ea625fbe8b568175c1214fee

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 99657acaeeace8add81da35b8625783e06f251685ff2b582fc748f501a82826c
MD5 f37fd941bd6045211dfb01e2c773f4a1
BLAKE2b-256 23fab33442cda9e6b00dd4c1ab39b981815a983043af933658ea11fd506a0f5a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9f57ab7f66b5e8f8ad66b7115b2f04316fce6b6beb19b89f151b590a53c7c7a6
MD5 d568b3a94b93d66b9e4612a085f44d96
BLAKE2b-256 69fc5dbf4dc69312609eb3bd4ed9ad7e5ed3ec3a55cb4ee3c434c05c3655aa40

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 2fc9bf751408396260fe2b6cd0e2ba5361229e22f26e3b59b08c08815830968b
MD5 6c56603024d7aab76c974f1f68264445
BLAKE2b-256 56b661d6e941cfd32f72c73118e802fd2fcf4fca6c064166064caa04aa634cba

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.3.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.3.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 23c1a16e0930b74d9766b80fb6fea3d78536cccf127c7e0d693f5c9a8655460a
MD5 4481370d445cfcf54e1f0df0dda6705c
BLAKE2b-256 ae04871a8535bf1ee0f92bab13c59cc604c51e01a10d2b8de1f5161d2a24fd3d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5302ab15055150e232bf9506ad4d33170fb81337943c49e5ad1f98907ab0e015
MD5 41085960f764f8e70611eee7465be79e
BLAKE2b-256 341043179c837a998dcdbd79fd86a1098af003693106952ab49f27a10ba8fcb6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp36-cp36m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp36-cp36m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 35ff00448a75649ab181e03c264bdf0c3fc46eae29382f6ec7a635fdcb49346c
MD5 cbd82b42a97ba0eae0558fdefd16d5fb
BLAKE2b-256 379906cec1ad752763eb61632740a6fb019487135571bac24933d7ab761e190a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp36-cp36m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp36-cp36m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 2d40f26f9782403335574d07062e0ebf64937f829b29992a2df2dc9d7aff626d
MD5 8387447ab2cea6ac96ed795d26a5b1ba
BLAKE2b-256 d44ddc706783affad46bfb387bc3e887f33d70d1ba018c9a085cf5881cbd1e18

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 62204b908ebadb8056851f3ea2ba8eace16b84a8e9d65350ce7087b95ba45dbe
MD5 c8292b412d8e18806f112e65c819eb1d
BLAKE2b-256 e565896f62c0ace5a782c9f54bce44189f318c2da44b865a8ee66d1343baa031

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp36-cp36m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp36-cp36m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 bdae4684f90cbe97a04c06fea2809842dd443ddad822da3d4b1c1ceaf8e023ec
MD5 f54a848eabe454127f05fffe9810203b
BLAKE2b-256 4e20427fe667b891e90e298c7d22e5cdeea6a72a195411cb1624cf216efd65b3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 51606a7dd226cece687730566bcbab69db215739c0bfdc0ebf3c1f61841862bc
MD5 206d42c6e843b33fcc79576d221e46db
BLAKE2b-256 cfc729d2f6bd5e7a2661095650afdcf96e48f6afa9d31f2446d57f4e2bac2d53

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 dc10f600b7cf15ff5158509287b0095b954a1f5498c5ea23f102ef06c1b0cd3a
MD5 9de71a392fa726c0f69a6bbd5a6aec9a
BLAKE2b-256 7c4167079cda20f55ffce4c87ca2a9d493c841870c2540cbec34ab865c978998

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 30169918f58d4695efed40d0cf4752f9a8700fbc78c370f019de228d4aa2cd13
MD5 b8ebfb3c8e3b5e8a93ce3c656cf7dee6
BLAKE2b-256 d971f9a9452d29235d5e20e0f1ef5197e2284093347c2099c124172a83d90950

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8221952fa345e9a4e3716e73d7ea773a96b4b22d7e86a0cfc659d5597ce7025d
MD5 a9fb9b00616fde85b4b09332d419912b
BLAKE2b-256 5fa1c5f32d1c58a66631590a11a44ee651a5b3584cc5992a791e617396b3ef49

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 26ed50072d9c2fc85b75d06dfd5da939c9b19b1240560d0860aa2f4f2d689e56
MD5 6cf55a203923ba30162ce8d9abc6e79f
BLAKE2b-256 18d77e23979a1e4655655c17e402837f3cf408df3212ebfd4afa05c7da3210b0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.3.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.3.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dbe2352103bd2e860f40b5b62830b93663889260c65349bae52e493835af9d20
MD5 2bc554d7039b1e259d05e14ecf773c39
BLAKE2b-256 30c35dcd44aecdd3f1545df2f6a0a3b4bd61da91dac27e366cd90c5c6553d7f3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page