Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++14 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparision between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparision I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

Benchmark extractOne

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-2.4.1.tar.gz (1.1 MB view details)

Uploaded Source

Built Distributions

rapidfuzz-2.4.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.4.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.4.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.4.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.4.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.4.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.4.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.4.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.4.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.4.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.4.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.4.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.4.1-cp310-cp310-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-2.4.1-cp310-cp310-win32.whl (1.1 MB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-2.4.1-cp310-cp310-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

rapidfuzz-2.4.1-cp310-cp310-musllinux_1_1_s390x.whl (2.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

rapidfuzz-2.4.1-cp310-cp310-musllinux_1_1_ppc64le.whl (2.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.4.1-cp310-cp310-musllinux_1_1_i686.whl (3.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

rapidfuzz-2.4.1-cp310-cp310-musllinux_1_1_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

rapidfuzz-2.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.4.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-2.4.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.4.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-2.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.4.1-cp310-cp310-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-2.4.1-cp310-cp310-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-2.4.1-cp310-cp310-macosx_10_9_universal2.whl (3.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.4.1-cp39-cp39-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-2.4.1-cp39-cp39-win32.whl (1.1 MB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-2.4.1-cp39-cp39-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

rapidfuzz-2.4.1-cp39-cp39-musllinux_1_1_s390x.whl (2.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

rapidfuzz-2.4.1-cp39-cp39-musllinux_1_1_ppc64le.whl (2.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.4.1-cp39-cp39-musllinux_1_1_i686.whl (3.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

rapidfuzz-2.4.1-cp39-cp39-musllinux_1_1_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

rapidfuzz-2.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.4.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-2.4.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.4.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-2.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.4.1-cp39-cp39-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-2.4.1-cp39-cp39-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-2.4.1-cp39-cp39-macosx_10_9_universal2.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.4.1-cp38-cp38-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-2.4.1-cp38-cp38-win32.whl (1.1 MB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-2.4.1-cp38-cp38-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

rapidfuzz-2.4.1-cp38-cp38-musllinux_1_1_s390x.whl (2.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

rapidfuzz-2.4.1-cp38-cp38-musllinux_1_1_ppc64le.whl (2.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.4.1-cp38-cp38-musllinux_1_1_i686.whl (3.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

rapidfuzz-2.4.1-cp38-cp38-musllinux_1_1_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

rapidfuzz-2.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.4.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-2.4.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.4.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-2.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.4.1-cp38-cp38-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-2.4.1-cp38-cp38-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-2.4.1-cp38-cp38-macosx_10_9_universal2.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.4.1-cp37-cp37m-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-2.4.1-cp37-cp37m-win32.whl (1.1 MB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-2.4.1-cp37-cp37m-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

rapidfuzz-2.4.1-cp37-cp37m-musllinux_1_1_s390x.whl (2.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ s390x

rapidfuzz-2.4.1-cp37-cp37m-musllinux_1_1_ppc64le.whl (2.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ppc64le

rapidfuzz-2.4.1-cp37-cp37m-musllinux_1_1_i686.whl (3.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

rapidfuzz-2.4.1-cp37-cp37m-musllinux_1_1_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

rapidfuzz-2.4.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.4.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

rapidfuzz-2.4.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.4.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-2.4.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.4.1-cp37-cp37m-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-2.4.1-cp36-cp36m-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

rapidfuzz-2.4.1-cp36-cp36m-win32.whl (1.1 MB view details)

Uploaded CPython 3.6m Windows x86

rapidfuzz-2.4.1-cp36-cp36m-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

rapidfuzz-2.4.1-cp36-cp36m-musllinux_1_1_s390x.whl (2.4 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ s390x

rapidfuzz-2.4.1-cp36-cp36m-musllinux_1_1_ppc64le.whl (2.4 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ ppc64le

rapidfuzz-2.4.1-cp36-cp36m-musllinux_1_1_i686.whl (3.3 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

rapidfuzz-2.4.1-cp36-cp36m-musllinux_1_1_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ ARM64

rapidfuzz-2.4.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.4.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ s390x

rapidfuzz-2.4.1-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.4.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

rapidfuzz-2.4.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.4.1-cp36-cp36m-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-2.4.1.tar.gz.

File metadata

  • Download URL: rapidfuzz-2.4.1.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.4.1.tar.gz
Algorithm Hash digest
SHA256 fe672fa0df6bbbb3d10c88cbbbdf78bd53c8d5aab5df7c6872d7b679aabe9ccc
MD5 741ea32ee85f4d8ce4ae5fee37bc2f01
BLAKE2b-256 a2605db9ed1541bf4632c553da78d92f1df2a253efae479c6a907e14baba324a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d4796ed0c300874ce9b1f46604b72d4432d4d6afce8156084c6e5939eec50ada
MD5 e32bd0dc8c5f89d52b6d729d0f9ca28d
BLAKE2b-256 e07a0386b38c2f7bbe530891075bc65f368130af14f571b91e0b3cf1aa53bb6f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 33448f5a6681124b464fc94886fce6da5d854a77277459ba6fa480f2b9c6b301
MD5 1403863718ee4629e3240cf4d7b4f462
BLAKE2b-256 cc2e0d8908a99ee9ec0cbf35a7451dd5a2e8f130b4f1ecf591d2b93afe8a53ce

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1e528c40c978b1c6e5e95414d73630ba3029dfda25a07ba604ab2e56395714fa
MD5 6c715054165442ff5ff8e554919e4553
BLAKE2b-256 befeec006decb05a1a75f6447189f4a6afdb63e5350f6f205ecb02d6120b1483

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 21df95a0c99d38105713a46428860af9831ec99fc6e4acf02037419f86da1f0a
MD5 053be2c30cee029f275c10b6c78b6e08
BLAKE2b-256 8c217fb3c0521bfa0ada5d0857fa8fd85148bcd00fe52876e5340444ec15540f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 01ef8ad0544315fb4fccef6872c17b7b68df95cac4540cdec94207a734b95a56
MD5 54ca2ee92da30a3563db32695e25017d
BLAKE2b-256 1768a706e3d46d2fab02efebefb917c43cd5a6b7d19573803d6b576b26e64971

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7f3e855efc30e0e0097ee64ecc0feb8c014e6db6404c139dda22318036f5574b
MD5 e590bf21211448fed32223545a3e8c0c
BLAKE2b-256 500b3372222410c1a29f4572bf6f85347fc47bf80b7a31abe34d91de7ef84fac

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 14f7e83631722ebcdd44ab1ac9278b4304500d1c285717d0f08ada62a28506c0
MD5 ef3babe170e704f716b5b76d2d1321de
BLAKE2b-256 12224477ac06a38b9affaa1cc7d0a5dbbaec5f3e901e3f8f69a623428332dadc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 75c381305d4ff57e37427eb13682c59e63ed3724088ec20249d9233c10ee7b15
MD5 bdea634d545a1a3d3b23ca833c951a5b
BLAKE2b-256 13ddebc20875a9b2d394b7097912452bb335f2a7a2a58841935832b80cd1a37d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 694596b991993bddbaf4c47ae31f782c307c18d0e9ab8f170b5771fe3c7fd385
MD5 a1dbc9b6f6931854af8af85b9b0f8deb
BLAKE2b-256 fa700c1d2ac9773e89cd5c54041c4f65ed0dc8c7bc32f9dc792d8f764aed049c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cb1c9cfb31d2ead87b8c3cbbab8ab9f1e6d9e64175ad0b61cd957c3d7b402ef5
MD5 dcdda27fd579365d40f62d5891efa06e
BLAKE2b-256 0b51f14ba86eec14aad271b7866f87a9eb5d14b454aef0cf8f1d22e6e95f1b25

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2eac864218d69c3de7e6667650f74d65c89309cd153186719cd7dddf0b3b873b
MD5 0c60f7bdfbff183ebf20817ff721a48c
BLAKE2b-256 2df0ceecbc547f3d82a599d3ec41638304b88ac941aededc0ff8ceb8548becc8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 aed1177147e94920d8787e1a1e654caf3bf8cd7068e99c1ba30790e1b7551b90
MD5 83ec1abdd22ac80c88b5474a44134b5c
BLAKE2b-256 8b3af6a766e254d746cc913708704a2701b2869fe325b286085c092945c7f9a9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e880a6c576a8d5612b13528aef060c77c0e9d84144ddd17083f81ec639a3f088
MD5 1de03c8a23778ee8b0461c7b54127952
BLAKE2b-256 9b04de3b9b0e7841a18008285a4039fa7f13084cd7f4230b7418198e2fa0b092

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.4.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.4.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 ce2fd386d4fa6f1e7d7e99a5ac2c5c0ba48e294972180f2fcacd53a444f2fd28
MD5 745c21ad354e595e6a5100c3c580dedc
BLAKE2b-256 736eb89272354972246ffc6e17114f55b2b8940916fe2eadc93e62af31062348

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b749a0b5a1e1c11465dbffd4b93d0279bc97ec063d6845832a7017cf8819f407
MD5 d18d508e97dfb22fc7452cc3fbd3304c
BLAKE2b-256 d5aeac564ea52d649a8a05d82a7ea59129bb1d9058dcae836872c92a4f1a730d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 fe2b6f16b757b4d639bfb9f39100672a4c298b64538e9bdcb24abd4c4079e33c
MD5 bbd790990b7ca7180584c00ca30883b8
BLAKE2b-256 ae4347f22bcd9e2cc47b82bad4eb6ac91f4ae8becca3d02d85d0e4fb9fa35f93

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 def6b2c651bc535e5fad16b83e7ec1d6e92bd422fa24d5d4e17e9f3f0696377d
MD5 118a1c86cd9fd8b699d8287a1c18474e
BLAKE2b-256 0b5a7917199d4ed597757b9f9d1ca7f34a9ec2f098a5ee61d38b4f75c59326c4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 da0ad4e8c57fc8454679e80846f2759a0f3223a6e018f4d979a63222434e4405
MD5 2c4fc81ddbb1e72b6cff0c3ef1a82db9
BLAKE2b-256 1744b2b01f3151e5a9a5d6856d03170b92ef1a99685c349615c967feabd616d0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 08cae52606abf6b73b43317a70f14ce912cd1c35ce4833fb1b67b318c8b406ba
MD5 b44e151c14628f809080540aa200f949
BLAKE2b-256 5ed7a43217fd266e17dc8565673cbc0d8b8bbe246eeb4aa72ff2cb86e33b24d2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e8e0f4715c05095e3a7f7656915478cfe02e7f42daa1243b25f1536b57bed075
MD5 b06d3b4fb55e7254b4005fb5823daa24
BLAKE2b-256 c16af6b3bb0773b00b8c89b54302fcc29f22c118e14a89cefa86fcd35e6f95e3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 5c138d07c2396b19396b3954b440a41b7fb9d9b8415c9723e890e8e95b7601be
MD5 03437bf2b995a23288c6c0a784b0a4dd
BLAKE2b-256 1493d26441fe6f1088bd400969c3dcb6a4ce76652880c6649eb04074957fcd9c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 c631a03ac49bb1397cbc18c75566ce6cefe126154299e1784837aa87281b1ab4
MD5 f86c54a4051b54af6efa7da8f9c0d328
BLAKE2b-256 20a3ff871fc88962ffdab7116ee98dbc298fcb0938ccd9c70a17a6853a9ed15c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f6e293c53ef677651753f8ef9c5e77c9fc6b90097079eb5eec852c26e95dc113
MD5 4811807e0824a2b35b12b337a70571e8
BLAKE2b-256 c2ffe645245f95168b931c126dab011b491fea2314856884df21956e58684b91

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c562931cf8f096b413b547c3bf9609f72cf6fb18a1feff326755feabdcc6f6ee
MD5 1803ae1557c6adc586228b895dc9962a
BLAKE2b-256 aa65038b695f61d3aec10df9244fda4532c4123124fecba8b13d3e1a76d589b4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2a5f6c64cfb8344dc17cd4526ffc31f1c4180afd2a1b1560119f23eab29d7b34
MD5 43d21fa77b8d7ae73b12548fb6b555d9
BLAKE2b-256 dfbecdfbd9c47ba3c7913cb2f610edd9a03f1abdf742d3d4620e2305c4ba84e3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d40948da7f5751dd2520953b229b122f7c52d08b27ecc3d8c3373fa4f1f739f9
MD5 1083c7c65567a752e093cce86c53f081
BLAKE2b-256 40d227144cfd5fa52f9a8e8abec607e0b6609bc773e4c289f39f5cd7fa6d775d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 648edb918146febf6ec9f3f58a6b2f23d19c16227690e3dbdaba159e5ab5d2da
MD5 b1a455f07eb53ef54028b1288ac50395
BLAKE2b-256 f5a0a9077edc37dd5cda29d058d544d5734ed5660faffdf51eebc3f1c3e9f1c8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.4.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.4.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 de6205429e1233143f8c9d84d12d7e3e0e377bf2a87e1c84986ba5eefc03d8b0
MD5 59b1e45134116233dfcd307319d1c3f1
BLAKE2b-256 8d39895e316b54411c58bcbb1259230d25e0ad6eef8900ad775e2587ec2141e2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.4.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.4.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 29dcbecf59712105ceee5610ca438733894e895eb855c43d4b4271be7659b674
MD5 477435143bdb26d8c497cb6143c2ec63
BLAKE2b-256 bc378b3436182784ea71584b974417e9dc4c803c8c7c644cb5a6bdf9747a8487

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7f07daddf49a920d4b5530f0665e470730906b6639434c9ea9a4cd0672241cf0
MD5 9387c53f8778908753753a3e0d29f8b1
BLAKE2b-256 3c5069b809057e3d6a79405e1d17de14cb95445dca247fe232a5b5a1e50b38db

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 513fc180fe713259cdc92a6e94712cc9703f253ca7484ca9f362e81004f379dc
MD5 a8175057228c09bd4df0b16adc102bc8
BLAKE2b-256 0ee133ebc9ac5346b46343f08ea23fa2ba5a5559e44abc49a9487cdd12722b3d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 d916e471edcb3dc5afbee1e6ab47000b525d6e3259d5fa8d6ba2cd2675d17c79
MD5 44f9b17f7f2f2002820e737f09851c93
BLAKE2b-256 3c9daee6210c6dc416dce1e4c57290eda9ced6d256cfc6b762c08f36761d952f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 c2be7eed396533c2a846c82652fa38381c41366a11e8776cdc0020c37fd2b5a1
MD5 5da9a723b5798afad0ff98d204e6798d
BLAKE2b-256 a28a33cfb65341bcc28f0b9f80eb76f13516ba9518e5529fe7fbf0a776b86cb5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 c45886a0c6b486c6748f4c854c122be82ea22dd9122bab3285633b49497cee5f
MD5 bc6610cc13880765379ea57fba8221e4
BLAKE2b-256 50ec92d2be07ecc5e2435b7ca93fcde79b8f9eec0d3b75870ae1fc40baa30a6a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 39f5bb712a15b9718edde723e4cd9e1bb541ed6f9df468d51d5f2ed249c42d34
MD5 f23a9cf5a5459d5f09fe8faf1112b6b2
BLAKE2b-256 591044df97483ef72e22eba64a9a4067f96c717e8a48d119ee6c5b28825d0076

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 c02019b090dbb641d720216052dd55363b1879f8441ed0e7d0b6acc4cd21c00c
MD5 989a6cda8779e0c62370f48a15bc23b9
BLAKE2b-256 63371a03f67e0cd96872c4c4910b3717c6f3205b801485979fd076da14b99b61

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 efe44e78dfbe0d8a8a173ad462591eb93aa2d4ce26904ace4ea2a4cc4cf21e1f
MD5 c273bee2866ae74f80af03ecdc482eb9
BLAKE2b-256 1d76294ee418f5debdb7b9de4d771126fafe95b0b2e34d11f5353a97514c5ec3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 af2aec016e3c111a11f873fe120448f97ad2c7cd7f9204b7a92883490aed1882
MD5 9c8ac931b80ced230307e99ccfc36493
BLAKE2b-256 57f01a540386a801b077194dbc4a324e87f61952a9d03b8786a85db28ba99529

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 167eb3d8b7959a8f391dd64593fe9bc49ddb4d911b806e06b39fdaf25a89543c
MD5 a92077d69894fab73436dc3d000a4aee
BLAKE2b-256 f5c8829a7099ddfbf3472403f84bdf0d328f6596e2e8ba57d9ae5f43a31d6726

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 31d74d9842f90cbcd168456e5e08d134869edaa69985a82e37104ddf73dd712c
MD5 884356af6452d86199dbf2820e775525
BLAKE2b-256 e18c4b4a5dfefe9b60f28341601b1c31cd2569c134b0ad8a172525fd6b2fde80

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3478e67283cc271064818ad7261c48d4672faba8b1e7ab5e274ca04a2dd7cbb6
MD5 e6794e2541061ebc2d878de36b3a41e1
BLAKE2b-256 7db0e38c0f1304595819b3d9977689aa472cbe84061cea12d444cd2baa5f091a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e5512d4892b8bbb172babd810dd37316008d101a4d8488e8a4be7d7d42a36fa1
MD5 6a75cc165e353146ed9526f88eb81119
BLAKE2b-256 9d228d9e43a2943bfb59b3b8fe2cc94f606f04d75bc1e2d44305e828e12a48cf

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.4.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.4.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c7ae05e6abd9990bdecda263ea12b65a7e3f66f72544909e902dbdca23a32f82
MD5 eef534905d45a3bdb3f7cf86849abd7d
BLAKE2b-256 6f3592fb8934e3193436e58cd4d8f1d25ce4f35215e8c3041732272df3728dcc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.4.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.4.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 c367afe930c404b1ff7af8d67bc0fb7abebe09e0c479996f9fdacc2d102a627e
MD5 2dd3a74586b488d7d4deae6604cfffc1
BLAKE2b-256 16037ab23913feddaac12d2990d94a10625af481a5e521a56a646c64343d2a40

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 476f8c8086689cea68a21257045ef3ffdfd379f93d3221520291e37e24eee9da
MD5 62f82e438e71cc2309c9ccb7a445ad09
BLAKE2b-256 ba08dbb41df01bbfe5cc007e4c003665bf2a162932f76c627ccc7a31df37f94b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 5baa136ef4d129e0c5d970416ba1fe718e575a4ad1c2f1d161c681ab0712a413
MD5 f81e0eb626be13241f297e75cf4dd388
BLAKE2b-256 e13c3025017c728874973578fc350fe79bb8c83ce5b10437da643cfdf47e3666

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 dff914043e37fdeff12cbd1ba152919ec52552da7323658faf4947bda770a74a
MD5 04d43bcc3f0c8412281a2c5aaf668445
BLAKE2b-256 816261f1c35325e41421aad444db761cb12a74b364b693f58fe4dc299b8a92b4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 4c140b9a993a3cc7058066661eaf562ad820a947d93da1b42b706976df668055
MD5 6ac1f955065e6e5bc48cbe87890ff233
BLAKE2b-256 6a6c7445266342fa668f8998b378ec8a09f4df0e5a8994b390832e09cbc70b46

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 be62f916dbaac2a2c64b63d3c02abca092259c761b9812ba4dc1df99794ee7ca
MD5 9e9a638855c58a9fb29057368e8317ec
BLAKE2b-256 f34b09208373708e15a6abeb84d45a0fe4721764137209d1498efd415aa4037d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7ef4e0454157614b13cc0924fc87bb81f30194a58c00f7286fe6773410a5116d
MD5 0d83e543fa335cfc60f5d346b02807b7
BLAKE2b-256 23bab6a6111fc6e30930bb8e5b7def12e78a4beb93b9c45bdcb2336cad821d1f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 9ab499685143f7c075c14c1d581d2bce9af9dc92c72f1663b2e07442b583e093
MD5 d3ceeec9f62b03d9948dc9e21f94358f
BLAKE2b-256 3c071c9afefa226b6d54bfa36df55741b141928f0a7efb916f92a35720d88b51

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 754a5bb9e103d4cd0875fd7c2e239fa6a38b5f9c813cbac909811b8ac4f874c8
MD5 b322569bfee1d117b15b8ce9fb9e99d0
BLAKE2b-256 a85309c9809ed6c037332b11a0fcbdd89cb28f1e78400e790967e59d88fdae30

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cf1f38b22b15e9e6cbc679ad5b4ed2d68a6fab4a81f05b1ba47aaf9bc71b9294
MD5 464101b02f688440fa97c9b8cc31da54
BLAKE2b-256 1428e0403357ac98ef0099344f8ade9afc2fbe2a94ec74112e244cdd22967758

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e663c73640324fcf83725d9f76fe963ff3a4ced1718e7b2ca6690d2b43dca61c
MD5 bbc7e208d0c4c32f9c60ee5c59e597d3
BLAKE2b-256 b4d7ab750079fa7ecf255801726928e3c31ebd0a5a0f234aad5bfac5d0cff5d0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6805221da2566b8a18ba6460e824774069354fa34190ec65a904768d763420dd
MD5 aea25dd4392ff74940fc5e39e0db00f3
BLAKE2b-256 7cf8f245a378c455ae73cb9413e55cfd5f5aa98dcb404e15f09403a5c67c1cf6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5b20ae7fa322c227b0d6cb22ffc8f97d03637813bea5d6693f5d80b0f08774be
MD5 6132bb2651b82b7193d68dd786085c7f
BLAKE2b-256 e6c16ce6b3fab83236651dabb9739eb6910b1b65491675adcae16ba30ded4c60

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 6f2869d54817b656f428bfd925fd163681681731ce1975f546d40180c453da0e
MD5 dfb54216defc5a17bb23a337dd4150e0
BLAKE2b-256 7cab4af1cd53f1c5f728abb6594a14779b55f5bacbb37c0cb83d288241a91aac

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 48e5dad55d7926ea62b3e26109f39d147f2a395a221bbc4979d97b20b397a34f
MD5 613de7fcb2287e4b03192ee7d17651e9
BLAKE2b-256 9fcbc0006cc957b9394a917d519273e0f9f75517b47100ff2ad74a318fac7a16

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.4.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.4.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 409e9f3af77145c51304b69a5586c28e78025966ba4530faa20dd60e5763219c
MD5 d7ec78abfd9a20711ca6cd41ecd5caad
BLAKE2b-256 5a7e9579a40fc93f3c8b64351b819b829f08ca4f9ab060bec621a71e1d1ea033

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 02aadc462b2f52378bfeb59358084eb282a2f79156c9c9864f99b6549271d538
MD5 8e75047fbc1e5e178f9f7f67f6ccfe10
BLAKE2b-256 891c6786ba3f024deb62eb10dcf1e9ae36ad6237800806fc54fc832af1e86ce9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp37-cp37m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp37-cp37m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 5c0bc83f28a5e65c61ab913d2531892648e648bfdd7cba6fac95fd2fcb34e612
MD5 81c0a25685a6100293d1592bb8ad27c6
BLAKE2b-256 1dcaa40647ed28532d9d1a24322f28dd2b9911bc44af3ac5400b2bb1f2766147

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp37-cp37m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp37-cp37m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 210dc47a07bf403b3a1aa13733e3cb00b5b17d66800e2b4f333f000f1d9b7278
MD5 95a57c454b396c68dfad0587a07f6940
BLAKE2b-256 bfa7c8f090337a5767925c5b7adabdbe1654dbb870415a79d15f6ccb3340a77c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 4aabf78cfbf2c1c846993c8a645509c7d60d00ee80e9a0b9a516f2ee0c31a4d0
MD5 3cd8c8488b8338931085932a4f6c294e
BLAKE2b-256 d564a1071e3d4bd3ef2758ef85a95d8c037f7555b62c9ff8d5310ae217f4a79d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 5117d1c5aba39518c9597852c7be34eb61bf303e95fea146bcad64e27dc46c98
MD5 37c4d24381536e2687150e169f534404
BLAKE2b-256 4b916af2dfd2061a4af62e5948112d1d4d7cf49342a0369f05a65d11aa784a8f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 585c45f3931a28dbb241b92596e3a12d2ecba61445521fc95d04ac84e33f35d4
MD5 134abe977a1b248f6744fea1ef8705fb
BLAKE2b-256 702393a94579a7a29be962f1eedd7b0e45dc3ce410bcc3cedf30cbd3c1380a51

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 35f8bb887e5fef3f3b2f7fdd3abf5a3fbbbe91b54075abefa60fa1137b82d9b2
MD5 80e436812015d7032b6d3461651834d6
BLAKE2b-256 9875fd0758c4bafbbe66e6d7ad4460f5eef97ddb89c637c6d5440f9740e38d4c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 95926558fe1d0bcf8ce0da82cfcb8a631d297dffe270fd710667b08d8216f1f3
MD5 4c5a23bf4e183ef3e5bc06d08fa8ed9f
BLAKE2b-256 a5283e9ccb7d5be8a44af18500a60438962d34e1d0ac8da6dadf3bc28abd5e6a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3daf8f37ee9982229aa99fed172e1e8712c9ac7192d9174a3e0a9b440b096305
MD5 974247c695061cc0ee0ad47eae31676f
BLAKE2b-256 fe5ec9fad032983ca0c8b557c0620ba1d4fc24ed5796070e7f93781d9170bfb1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 421f7f96aea05190d0a83d650efd22405e989cf614b46e6d2091665a51796d39
MD5 5e8e72004d37ad8a6b0b6526ce1b9913
BLAKE2b-256 8d2f1bda03ca58f603a47cde9cd9540df08cfec90df596b6151a0ec544fd1435

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2dd68f72afc47e03cadcac290808a9a826187ae37e6d77b46479b1f407737152
MD5 6b90b8142bb37f661633cfd9017f2daa
BLAKE2b-256 ff505aac3965eaf0e95e578f99a3f20b9d33d3fbda2829366425190011dc4acd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 8e37757940b4ff78ec2790c203f7700665f0612c4f485280bce99b96f55523f1
MD5 17924f4928f705f41f91b3b1a72f0efa
BLAKE2b-256 6cf8d0e0ae3b6ac54bbfa9b7e16620feb5b78aea6b79fe33cb63a3c3fec5063b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.4.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.4.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 d8f657bad3c4979cde6a1bb4a24c439ca2151a6894653676ae79acc8310a9d73
MD5 f5216e522ec624692d01ff3785169e42
BLAKE2b-256 a5d82a2dabadc1bcc2db094140faed6e8c20579a28604fdd642360ca7f4296a2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 58dec78d7581b08c085cad94f77346b56597217043694f61a7e64f122418e288
MD5 8dfaf42cb0cf0b5d88d8b03208a77eeb
BLAKE2b-256 3a51308f9d5e011982ace400eb3484aba40a9df8d07165d64407e40e409dc29c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp36-cp36m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp36-cp36m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 268cc30176dff1691513361d3d6a15178f7ad9ea1d21356442d2a7b65c89b985
MD5 adca438642aa19ef98126c03888d629e
BLAKE2b-256 2a967c85ab79b3560e0d1810c563cab304b7762fba033c4a9ac2dc4cf3fee6cf

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp36-cp36m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp36-cp36m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 7a04d4118202e5bd578936ac891f5eee98c56f87c878d20313905a88ec633b40
MD5 5dfe9f9da2125175b085ed2be37f969d
BLAKE2b-256 8b72b6bd70f22c037483a3bed688cbca29e19dc6df3f91d6e3c597c59f41d820

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 fb4ad1fe40aeea11011b7d7816e348e7eb60e004b7c38ba8e8f23d0b0ae52846
MD5 41f670e9aba412e2d085438f7a66e1cc
BLAKE2b-256 c113f1a583135abc849648dd0e084dd7d91cb391702c728a064277885aafb1b5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp36-cp36m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp36-cp36m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 e9de26f2a24a3b656266a947c343100a6c721d2a3d992b65ee7c063595e6fe25
MD5 4658d434288d9d82dc8cbd87249ec9c9
BLAKE2b-256 33a15065fcca9c774690ce19411a2bc7bf443ea1f214adaab32d1d099f2032b8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c9cc9aa97985e69e81106780e348c653eab036b65c51400ee127f5a99bf5b77b
MD5 1a2197a19d5dd726119371d961e6bd85
BLAKE2b-256 95e84c270150a64da9d507fc4633cc27e823644bd6ee1ab93ddf87518ab49003

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 7702a1a46c1481f7bdcd57435e4bfd323eb52a417a36f824c61997d3c460561c
MD5 d926aea018b122cfabc5454c02a6ab00
BLAKE2b-256 8006a9967450e3cfcb9c8eb80821a6264c1ea8965aa360eb7bf9f1a468bf1861

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 ac7ff0c9e78f65d69583086fdd928dc94a37c7dbe9c57d531a887e879b47aed2
MD5 02adab758be294fa154db47530e2b645
BLAKE2b-256 675769867fcc5905b6d2001ffc2089235b95d3a3af68e9c9c2948eb2ae89f780

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 df3f948ac2f9364a1e8b0bfb8798abf090d5ac8312d4e98874bd654886c6ddfb
MD5 744b6f1610816c575316039607524a71
BLAKE2b-256 86e4ede51d6bc89c82417198a535c7574d826aedcc13b555a3b688a2c53f23d5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3df0ef41c5f8271e3994ab3a16ecbda5b935ed26df05357b6a94ebbff4e29046
MD5 2b35c22a36d892e5c3eaadfc3d81a5d5
BLAKE2b-256 7c0792f6c31170162608c0577386dc829b95e757d5e4f822f50ef08704870e29

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 19408817ca32e6c1494f0c1b3ecd60e46b31643ad7b44c64c22f89ee80dcdda2
MD5 035996b6ef5d42022905990f7fa9cc9a
BLAKE2b-256 abf055e1adae46c3b3b12037a44622438aee45c1a4dd5698d920a1b07a158bd5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page