Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++14 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparision between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparision I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

Benchmark extractOne

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-2.4.2.tar.gz (1.1 MB view details)

Uploaded Source

Built Distributions

rapidfuzz-2.4.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.4.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.4.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.4.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.4.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.4.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.4.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.4.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.4.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.4.2-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.4.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.4.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.4.2-cp310-cp310-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-2.4.2-cp310-cp310-win32.whl (1.1 MB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-2.4.2-cp310-cp310-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

rapidfuzz-2.4.2-cp310-cp310-musllinux_1_1_s390x.whl (2.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

rapidfuzz-2.4.2-cp310-cp310-musllinux_1_1_ppc64le.whl (2.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.4.2-cp310-cp310-musllinux_1_1_i686.whl (3.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

rapidfuzz-2.4.2-cp310-cp310-musllinux_1_1_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

rapidfuzz-2.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.4.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-2.4.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.4.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-2.4.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.4.2-cp310-cp310-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-2.4.2-cp310-cp310-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-2.4.2-cp310-cp310-macosx_10_9_universal2.whl (3.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.4.2-cp39-cp39-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-2.4.2-cp39-cp39-win32.whl (1.1 MB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-2.4.2-cp39-cp39-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

rapidfuzz-2.4.2-cp39-cp39-musllinux_1_1_s390x.whl (2.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

rapidfuzz-2.4.2-cp39-cp39-musllinux_1_1_ppc64le.whl (2.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.4.2-cp39-cp39-musllinux_1_1_i686.whl (3.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

rapidfuzz-2.4.2-cp39-cp39-musllinux_1_1_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

rapidfuzz-2.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.4.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-2.4.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.4.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-2.4.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.4.2-cp39-cp39-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-2.4.2-cp39-cp39-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-2.4.2-cp39-cp39-macosx_10_9_universal2.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.4.2-cp38-cp38-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-2.4.2-cp38-cp38-win32.whl (1.1 MB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-2.4.2-cp38-cp38-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

rapidfuzz-2.4.2-cp38-cp38-musllinux_1_1_s390x.whl (2.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

rapidfuzz-2.4.2-cp38-cp38-musllinux_1_1_ppc64le.whl (2.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.4.2-cp38-cp38-musllinux_1_1_i686.whl (3.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

rapidfuzz-2.4.2-cp38-cp38-musllinux_1_1_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

rapidfuzz-2.4.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.4.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-2.4.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.4.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-2.4.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.4.2-cp38-cp38-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-2.4.2-cp38-cp38-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-2.4.2-cp38-cp38-macosx_10_9_universal2.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.4.2-cp37-cp37m-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-2.4.2-cp37-cp37m-win32.whl (1.1 MB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-2.4.2-cp37-cp37m-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

rapidfuzz-2.4.2-cp37-cp37m-musllinux_1_1_s390x.whl (2.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ s390x

rapidfuzz-2.4.2-cp37-cp37m-musllinux_1_1_ppc64le.whl (2.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ppc64le

rapidfuzz-2.4.2-cp37-cp37m-musllinux_1_1_i686.whl (3.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

rapidfuzz-2.4.2-cp37-cp37m-musllinux_1_1_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

rapidfuzz-2.4.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.4.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

rapidfuzz-2.4.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.4.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-2.4.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.4.2-cp37-cp37m-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-2.4.2-cp36-cp36m-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

rapidfuzz-2.4.2-cp36-cp36m-win32.whl (1.1 MB view details)

Uploaded CPython 3.6m Windows x86

rapidfuzz-2.4.2-cp36-cp36m-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

rapidfuzz-2.4.2-cp36-cp36m-musllinux_1_1_s390x.whl (2.4 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ s390x

rapidfuzz-2.4.2-cp36-cp36m-musllinux_1_1_ppc64le.whl (2.4 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ ppc64le

rapidfuzz-2.4.2-cp36-cp36m-musllinux_1_1_i686.whl (3.3 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

rapidfuzz-2.4.2-cp36-cp36m-musllinux_1_1_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ ARM64

rapidfuzz-2.4.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.4.2-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ s390x

rapidfuzz-2.4.2-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.4.2-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

rapidfuzz-2.4.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.4.2-cp36-cp36m-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-2.4.2.tar.gz.

File metadata

  • Download URL: rapidfuzz-2.4.2.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.4.2.tar.gz
Algorithm Hash digest
SHA256 5046d8beaa829e4bc172014a006fa78825643fa39589cbf96f0e7bb098f1e973
MD5 0dc20fdf1f0ea0e472384e6d5dfb7b84
BLAKE2b-256 2950e73eeccef303e638bd2e78a4c7fe7579e2e94f8f7ddd48602abc510e192e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3e10965be55a9c266c54fd2714223c5fea4a71a96db326647382376207822bd0
MD5 d59c2ac3b0898ceffda5f6d42e598fb5
BLAKE2b-256 621eebfb2dd8e78d191823c63e3faa05854251baa0cb8aae05f2af18b1ef3fd9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 18feef8dbd70b206993362997cdc0af2c120b7f1e2c8a3db5ba3dd8e427fbea5
MD5 c3d22e854e41ff14948298906a112200
BLAKE2b-256 6a904fccc15d936d393c94c5ab5d09a62786a9873bfced0dfde8b5b43d6d93c6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5efb6b5121e6bbe5f6b69f034a1de494ea4ece48697f7d80cf3b40703b21528f
MD5 7165396db38ad920143cc803f6ce4829
BLAKE2b-256 060c5097f3fb75f627a24675377032c9dc176e4f7aa7633901611d21d391f7fc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b1e8f5d0ac93a63df3912e8b2d2e1bb677d6668b70cba150fbd9510c1d350e04
MD5 65c086a4ca165e58384d51a7311ebe90
BLAKE2b-256 2654be3bc75e8df5c1307a61d9960e7bc7578df1e19b746ff6699a8062e22cc8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7e2d9553f56f41f90b28e2f4ab073f609b18abfe1550bf1650cc21415cf25bdf
MD5 004fbecde14b02d2021bf9705a1f6832
BLAKE2b-256 246dcca4858e568280572fd781cb212dd6bb63c9ed043c2654f4eda0e9382bce

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5b099c23a890878bd4d79116dd979b219199eac7cf804f0f2335b7c464536305
MD5 941d7c82886794a4c68528bf9ea28508
BLAKE2b-256 750f4c58f12afb3f1f9c141492f3abf90c0d9f84384d7d1face88a184a84d0bc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a3b76f56efd376c2a0e008d01ceceba5bc52645558dea772c3c38cc6124dea3c
MD5 c3d066f46379b8aca962f536e000e7bf
BLAKE2b-256 ef5a538e2d8a2be933325698e6955d33b37646ee1bb8cccf8507d2b10478e1af

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d79bedb937c6f4eb22da687903accf8d9196a37edd92de5c6a78a2289c762e29
MD5 1f342d6d3893486836493e595b378633
BLAKE2b-256 1c71590b69e4af7b3503c178e875462223236e6b0ad7aa4dfd4604e05445b128

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5c9338fe795624beca6007db3b8e582cc8b407915d417f8507cd412e9ad3c034
MD5 cb76b51b34d38c70541310717f80bd84
BLAKE2b-256 65350e06e4eb93c111e2643fed778d05655299fc31b23a3c62309bca49ef5c78

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 695ea2ed9ae2afafe0ab72036a97f6186c5641f3fcc9131f23b113b7add12cc7
MD5 85119c11084a74bfdf6da611c41ad6a0
BLAKE2b-256 5144bf3d9b6f0fee317c4c4e1a1488f3976601f20535447cfcb17456a6caa722

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a5efe2eb4ff58f90f997fe18a6fbb8178ce3d6871fe1a407d1d4d2beb7235d94
MD5 1ff2e9b10d9b419bf74c7786e2938839
BLAKE2b-256 390842a7506606732240fe9d903c77411d6755e9bde56d828e6c8bfde7c81260

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1f487ad817aa83365a7c7826f574b4b94c7c8aaea51a0379d223da0088126e72
MD5 7897f2b9882bf69f9aa228728ea7394f
BLAKE2b-256 43dd4df0fbc7e4db586eb4a423fa457eeae439555017c4ad45b08f6bd259dcc7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 17b1f0df1a3764940e00771b4fdcb7528d057c4c1b259b9802d8459b7828b250
MD5 8c6ae867bb3df2828e17ae535d313234
BLAKE2b-256 6f0057e206992c386e7c9d11b3716629299998e622a0345522b64d07efc2595f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.4.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.4.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 c5eb35dc1f1add1f760c2d57ef5ae5570b075979869b27ce646f752cff492d6f
MD5 f49175c848da56d4dcb5b2ecdb8c4806
BLAKE2b-256 9f98fb8846e1a659f8b97819828a8d3b5415ffc7f743c487cc22ce6f76e9e121

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e8e6b7042382b1344d3de27248f0156aa8ba20500cbdcdfe6457c517dc08dda2
MD5 84fcd09e7a8177aa20eb034510355c9c
BLAKE2b-256 a237fa683662e5414a3857ecef57debbbb367f718275f24c19e4adf58dbb24cb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 617259dc0b0f8acc5b8ae1181607c71851f0d61f6be035d59c070592d8997d25
MD5 56e41869d5eb4fefb5ffaaf3c1bbe9d1
BLAKE2b-256 b14ad6beb728079af619dd8c7674e5a536abeee2c4f7d54aa5b5863e0d831a8c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 a323c9e58e03ece0472d05554f0c8be0d754119aee8771a7c276b8168a428801
MD5 53aefab01cfcc599a6bd851afb74fcac
BLAKE2b-256 f500ae53913edcafebb0863181b17ef85c60cf493560f5e2db98c61953c2fe6f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 ab800d0e56b59e9f5208687f04eff925397bbad80c3e9e9775dc68a44fefed8b
MD5 7a6fd97287471f3e3529b8020ec7f2ba
BLAKE2b-256 76832c009912d1ef32d0a7451ebde5617269bc74ec8ddb03f27826a17a538681

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 80333b98c0b8199036812666a7eba458b3ede8a19dbaf74cd68ea62d3d777024
MD5 54292eb0f603ef146ed9575b734d1d6a
BLAKE2b-256 3f0a8e76eb84930fcd56e1c78a79be84b5b804b5d461b1f935220c0c732ffdab

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5491e035c3b9e4040388b07cc2bdeebd267f19d0729d983079acca36898ffbac
MD5 afe8e7671144805a69cd7591a4bc5550
BLAKE2b-256 ac51f40d5844d04904757fd7d95cfe5c2130f5fb7e16b7607ffcd371240662f8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 462b42d3b5819e2752c1a5b868f649aa013ce12baddac9a5400f8b90dc21406e
MD5 46164a31f01f80f5ecc567e65e29b70e
BLAKE2b-256 819279d6944c014a2e8afd88beb9eff3c14ad8264be5bbc74956efd11d9c293c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 53a275fe1398f2e8866e39c1cd3025f2ab0553f8c0d97ba0d404d69ef99b6e6b
MD5 cb3a51b3a5f4b87ee50e560d41430f00
BLAKE2b-256 908f5661e6371b3668797012a5e240adfd92b0c6ce34341569896fa185774e6b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5e79816d28f7f921f0e0201ade671ae4e024486320ff752d98754f4d32a24810
MD5 14629284b383d2b85672098911dc3b78
BLAKE2b-256 d04189f3b83ff0db601a6442695a8d34189c3ea451528116a8a7dbed40effd2e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a94f35c587ec0a3655c38561b1490ee58b616f12f8994ab5219e6c9b6d9bbf60
MD5 299708ade5a0d912f0ecdab7a3a30bc7
BLAKE2b-256 f16aff2a42163df239a23faf53f6e7bbcfbae09d362360de158524913b6ac6c0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b0746cd7bd898bcb066cb007f96a4e64e524725779d9776b23ee859d8df96454
MD5 52a9ddd39638747be0d242877b32687d
BLAKE2b-256 e91fa35c3562c06c5789b8700b728720df0ede23bda32b399742da4e5aab15f0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 75b85d22243d922b7993c9c14c28ac108fb992193974afb0bceab5dab31be401
MD5 015ecba8bba68478caa81cfd4c144859
BLAKE2b-256 f52ebdcb5e3d3d033eb589e0c935452215bd14a555fe599ec386a93e3b3678ae

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 ec68c6570099b5b5830cb75d032765e9fa40ef2c1cff560abc8702909a99579c
MD5 1bc563a84498a97254de43b5363019bf
BLAKE2b-256 2a10729a88939f45b7ab58df84a91c231cdc1b7d8766f960afe589649bba4006

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.4.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.4.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 da45154ffcbd55f4162040065149a9248412a9eda183065d4e09e6e510fa6ec8
MD5 e5778312b4da9fee84d3a396fc605183
BLAKE2b-256 ad411953488ca8869ebb55fbfd08dbb6d1eabf563b6f42f625b613453a837ee5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.4.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.4.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 0a51eff891a777bb18774332c7e7f09da0c89d6973d6dcd1a8c145bbfcec3b19
MD5 e642426b39efa99fc39bdd6ee2428ce1
BLAKE2b-256 c0532a30ecdd4153833c73dd254087c8cbd292f330d5b3941c1b9e9a7f341b8d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 34995381b24411c40cebf6dc6e841768b582b753a7c954fbc2de1db5a37801aa
MD5 ecedd94c2e2de3f086894e959a0e1239
BLAKE2b-256 297306261703ffd41ae2472fcfd160b15231a7fea1a4c0fe28b4e956a9ff6202

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 2c95031e1af7f4b6f8113e1d6f9fabbf8046dc1c095bf7b6eac9ff72e50ed97d
MD5 95880cb7cb552d4ce8b3bfab6fefff2e
BLAKE2b-256 05a15f9df78177ce9d9f3b942cfcd071f4f5792ea38019e5bced58400e189327

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 f075ac1ca164bae6f0915867630c2ccdd8bc10938e2c851e4e9bf0d2e74d57fe
MD5 b0e45fd09d754210c5f70ec5406a831a
BLAKE2b-256 6fd869d86f6cca3dacc2db1f3efc41faa967f8b40287731222d50d0b1e00e97d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e64d9d4dfefd763bff83347222e0ffa11c781e3009833f28e4f1a43d01d85272
MD5 9f170229935b3edaba9250773da819c6
BLAKE2b-256 c08184b8a86f36a7a88e34488bc7155b9fe472f037a7813915c883d79785b92f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 04af998fbabaf1e46b28926a0fcd5a47f3811e179113f23ac972234e84172782
MD5 d32899cf98dd86d8f30cf3b7dc7ef150
BLAKE2b-256 ac367d0ccb35d1d1613ae48851efb5a55f311b72391de7ed828ae639b1f75612

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eac3de695a8b97bddccaf936d509d24ca7ad23a38190969102f870767a2a5fca
MD5 63e0088c339739cda635359ffe69c0c4
BLAKE2b-256 4081e0065ecfa1edc01097e7ccbe3357f735b55dfa8baed4367c7c3158e0795d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 0aaeca495425d131f695fb8f2eae897d0b90a1a5e82eefe4e9eb3764390eb556
MD5 995ed277399143061710870280a4e54b
BLAKE2b-256 48ea41c4a4e56b1e455fae9b978895e4e7c527a92a158f3ebaedb757ea38b859

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 b5adc20fe7e6eb04509196335d52eef95dfa9d372c937e060c0d6d241336c3ba
MD5 0af2732476a7610141401491679eb2dc
BLAKE2b-256 4559e17ee90247027090356ba5b35cc361072dedafefa69274d205f617b6198d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 61abf3f31662e1124086889cd0ab44666b6f03aa9703fbbcf88602bd7bc4e271
MD5 038526242ae1c45807b1c92594b5b7fa
BLAKE2b-256 9033419c4335cfa598c2fed521eb56d817636f2290669aa0537bede1a0fe5eda

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d72811205668ddef07e5eb16001f1c37ca5a16e6155854aa85e474954f357084
MD5 f15b2c7034028761d4f23fdd93792648
BLAKE2b-256 d52b15e81ea10117b6cea65c9e0cce681a5f2f53a78314fa070f90f0a9d4d218

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 eb980899a7a2e5af71842146b92d1c0d3ff3f73b644de76f44d03533a5c82ce8
MD5 5b85ea5f4a9d143e60c9251de6ebd073
BLAKE2b-256 88f072f48aa3327550bd19df920bd465dfe35e4c55ccea7cc25821036bd37938

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 162b27a40e44457bb52ae8b76b4e2013b2c12c9e29a005decb92965b4f86b032
MD5 99ee874947df76072f6bc9d5ad32fbe8
BLAKE2b-256 237254e36ac2f37e5d85f30081788d3320f0c1f57beb18e541b13af1d357c28d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 b71579682f308c99d92b4306abb881f69c85253444717d94f0f86c1dc873bd7e
MD5 787b64cc7e66436fb5a4cca1edc36932
BLAKE2b-256 b3880a8dd379767ce056eea7f6b60ce4642f63182c057ec363b2d15de63f7821

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.4.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.4.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 940535731f23f8bf220588bf0e47e724e995af219941dbf823733c06ede0404f
MD5 625b6ad4d662ffabbe6d9d427a590a23
BLAKE2b-256 dddf521bf73e61bc899cae6b3386dd397fa9e3d7d38d437b1f9918c73063f989

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.4.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.4.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 ae78638d876d3f084bc7ec856032d887805cb431a560f8aa7ad3468c77148949
MD5 2eeff263d6e2118e94b0c6675e9470e4
BLAKE2b-256 5cec40c2bb8b4703910974eafa1e9b31bbac5bab393381b74df6afbaf957eece

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 cb088b965cc161e43842d413e00970a46080b246d8813d22c62fbe3643a4094a
MD5 460826be0fda1e6b260c1d3af443904b
BLAKE2b-256 07de03b8eba30c16b846576789e167ff0d2b87a48fab7071e60104463b03756d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 ef341383d92b1a493cbc9cb00e08d6a829b975095c4abc17707360827721bebf
MD5 addd07ab1ac28a4368dd99515073116d
BLAKE2b-256 08ca92c8fa840104e1016c445010f472f2964155ecb9d7720c94abe6f51b29fa

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 84a62049bad920ccc5f15ff3248f2136b5c7b2fc662e4c1849e0c01258e6dfbc
MD5 7243995124f417dc4df1aab29911974a
BLAKE2b-256 7930089ffe97684a9e48a279b3d7664a3f55b18e8432013aa20816e37a83c9c4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 8140c1511dc5c9f27dae72ce7de626a4dd87bcd8260020750ca27f0a44e21cbf
MD5 3a6c344c6316aad656b3eb7d3559cd79
BLAKE2b-256 eeb06834f8a624bac448ce6eea50424573e290fdff15db6a6523e1a7fe9f8eb6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 488e815362681d7607201c0dd4d28bb0b8ef28f2a425905501475ce0337487f9
MD5 fc0616ebd11d3374bc311d2f23085a77
BLAKE2b-256 a391fe58e9c57d28006a6bdc21095c86a9424a70b4ab763bac4f9bf0ecb527cf

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9685921ebf1c9d9f936f525ad6f03eefd3bd6e879dc63e4a97a351d7be49b7a8
MD5 97f25c619057201192ed94c232211758
BLAKE2b-256 f4c27d106ce00809af0ac1a367d64d313e06444019e72ef44a6caa4db06f0b91

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 2aff8094cc3b1e781712b50455c3bdaea14c4f73b55ac42319e3f7a3da7b6fb8
MD5 0d2870a2bf99ab98b37f7a167a60c433
BLAKE2b-256 8b9f42167e5aab94a7c42966c165582ef35f6cc7613fb5f908703d9f9dc33b3c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 9234fb6c5db2461faaacb67f9f4dc4e82ea9d016a81592e13beb3470fab8b046
MD5 dd8473722607a09fb4d2cf55d3bb4323
BLAKE2b-256 500c1617e218bd7ea4d401d730b8659ddd5dd9b955f5fb2fa848ec903eb931d8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 075979d675f3f443253c629c09f619348428572d05ce3b88fcce683a09a22501
MD5 d5930975b4d1611b262b6a07f5899dbc
BLAKE2b-256 8a4c6be3785a47a5850176b5836bdbabcf9f624b15e2d4648c5a20bd7d566af6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4bda63a943b4e54a6413523d6d056d1ef89a75bb5e70917a08dec91387f90d33
MD5 ac9df647c98d4373fa045f4ad6b63de9
BLAKE2b-256 38517ec48f3833afa6d3b20521de36734f00618b9908e24d530a0ec31acc1136

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f4533fb8200bb06fd7170b242b9acae5da3e0da2fa476f910f89c69735500e7a
MD5 8b47ea8e0a504a430f8538e0c11461e5
BLAKE2b-256 4968469338d2a0cf37ea7b5af0fde86a36ccc76d518dfd954b59b33ab94bda6c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0733cd7a3d96d42e9bc195ecc73ff86dced389126c3b2c087766da1b1d7351b3
MD5 e7d59ee000e38eaec4946b18375630c5
BLAKE2b-256 fd484767e20f1fabb9ce0fa26f7320b93b88b4381bc567584c10aeac05b511e4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 5b1acc555cc5f9f99fed06f794e8d875c8f1089fb9398a661c4ca1fe15a08fe1
MD5 05acf5d02b0ee54fb35936f3658180e2
BLAKE2b-256 a1b09b6a346e6d0d93271d452924f4b2806e080a9b762f94af854e059f03fd21

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 60261ed6c41aba2e400be9eb5c92746b841bc8f9e5e1d206a8b67691f76a7bca
MD5 13e3dc8a54ce6a4728a4103d53d082ca
BLAKE2b-256 6e1309b4346c7157bec1ce6cfa939761f9428b8f72eb87711874897b25d47e91

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.4.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.4.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 eda35d01f4c072d978bb067ad5d21001ddee0b4132000b0a8025bcc42eed22f6
MD5 7961645539c3aa88c4963aa67cc79b98
BLAKE2b-256 3fc5689a84566a3545b5527dfb021ed27f5f6476af2041be87264add7a742753

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 752e7d197cdf9da1609ce33d25ce092e1818353e7ee8aec8bb28326a42ee0057
MD5 5946b305c620db361634526b21f4121e
BLAKE2b-256 f5af75e9a200192d2634c61933b9762d63037fe1340dd6729e2be6a5d605c2e9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp37-cp37m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp37-cp37m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 4f1940fa84e17cfdba9305f6f368fdf963fdbb2e25c20894c72f4861dcf1f015
MD5 bb493aedff2a47e3c651e1ea812f8c26
BLAKE2b-256 8166c978b14705173e4f0472a6a054f1973d7247c1d8bed1c63b1ff98645a0ac

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp37-cp37m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp37-cp37m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 7064868402f1e579b8b6031f203aa87d70b6c1c029e0cd1facd586ce551f6cf4
MD5 e2c68660c419ca94697da4af50fd7b07
BLAKE2b-256 247538e3d5618d69651ea25100f117fd32afee925ddf9e5ba6045cdcb89a017a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 af3e9372cedd532aae9bd1e4597ae5dfa6c18dcd32e044e132b177e9792d552d
MD5 97c048c81f8d681352049635f4594676
BLAKE2b-256 51549c8f46320f4095c52e76cb4e3204411e4b39c9672862e4d0eb91201cef6b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 163d31bb0527d9b07ff90a7cb52388c5c6c4804c180f637ae652e108057e1e11
MD5 ac56267765ca7b97f3ccd588edfd7a2b
BLAKE2b-256 68d2f74fa081df19b7da27ebd9cb624e940d2715fceec819be4224acf574ba5c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 921de7b2fb337d5778587713b2abd15cda393fe65f0c5a79877e94fafe6fe565
MD5 133d146b535bac185628637d0a5e2621
BLAKE2b-256 e3b722494dfbb3a16afadd5304a598cfa9f9284bef420004a48b94b8210cf4f9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 f2a474f0ce6040ee77ec37d57bea8ef12bc3f39cb5bebdc93f5bbd8da8b32293
MD5 b044ab68da1d68d01fe8170be50a5dd6
BLAKE2b-256 edfa2d5517498f7a6b4cdc719c82ac21728309e72e8920f9b65488377b9c7e60

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 80b250fbb5b193c50115f1f1e5fabc0aba3fa1ae327a6f7aa68644a4ab0567ae
MD5 15a84b0725c0ca3699723a62232017b6
BLAKE2b-256 f8b2e28934c05220edd2d0db1f95e715ae0cb4e9ed62e41e5e3c78c6e5209053

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 fbd0725cca3f37f2e02b321274df2e36fa5e1b565d8deb5577641d9f7b9b505f
MD5 b1dbb37b6e7e20365546706ee4811a46
BLAKE2b-256 97ebbf2397dcef2d6d6841e03c7b0b0b526ecf3c486af7a26b6c60fe604e07f3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 941e1a63736c602f7c1fe02559e2f5a65508a1df65526917c8312d858fc94627
MD5 e813549388b1387da5b076a8630e11cf
BLAKE2b-256 fff69cbb0b85d0c01d8fc673be08116e0e74e780688e0136f8fcb5cf4063c874

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4bad3b017b6449e3ec6113a48da049d2c37c5a2ea76d3f4fe077a9de28681571
MD5 bf9c7211d3a79852bc945dc0127dc451
BLAKE2b-256 9b6c4ee631e29aeb2bc299a2aec0b0be5cef5fe11547f4c0af50ce511f586450

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 1782a512270ae46acc83ef3d7bdc46b89bd445955f81c29164d3f4056df12049
MD5 bce77df3cd32aff41ee3df8198b60958
BLAKE2b-256 fcc48596eceb1dcfe1035a1c1ef0dcaa5c1ea2058baa665304dfbf76b8e498e2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp36-cp36m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.4.2-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.4.2-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 40f7d3875c4d79573a3629cda4e193cf83c5c251f872e5150d396617d95ce8f0
MD5 8d138edfb8ac9a6ef49ccc3913590fdf
BLAKE2b-256 dd68035725ff66e6736feba5bf9223fcc58ce4f34f8aa32bf93266e776ad5c33

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 51cca688d0106359dfafef7dc0473dc9160f050154b4301018be406c07d6a02c
MD5 00db3dbda22ece90dea48879686deedb
BLAKE2b-256 58b569fef08cd52ab936f9518b1f775fee69ab24a9c10ea895405d452f715f28

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp36-cp36m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp36-cp36m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 ad984b7332d21cf0566ee96a6694ae410f40b5dac0ff6e36467cd0a0019d74e0
MD5 9ff8e28c1029cf142e1c492cf107afa7
BLAKE2b-256 878cddc407e0aa2046039e837f332fc4dee52c15506d77b6691f8fb869d41fb4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp36-cp36m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp36-cp36m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 417596c462d00fc04d6fcef2c9eb4fec947559650e3b6fd8099eea8af38dda8c
MD5 596e344de1469932937328de69b8585b
BLAKE2b-256 b9a4b3c2d542343e7c1be3d6bb70dd828cc1c9c1665ca6ba7991c9c62b6aaf26

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 be2244b10bd1145a243abf673befe387d2726eb596dc4ab9a00d8cf05be210a5
MD5 3544027672ecf6fbaf78584823b39d38
BLAKE2b-256 22e10c5f96166730c8392be8a17e4e0435fb05c00cb594624620a9232547e077

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp36-cp36m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp36-cp36m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 221635d4733ae55495e189af12f4ee8de02d32d0f797d4a28363a61071a5f6ca
MD5 4192ceb355414fd803d65c630bc388c6
BLAKE2b-256 bd3794f60e80fab111543cf9d7ae6df155c79d313c3c8e398a25f653596493bc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aa87bd40623af1af307ae9b00c891e53bff4921f3087362bff9a8e88e3eab720
MD5 2865fed6c1dae7472d04330b8d9c6616
BLAKE2b-256 cc56006df8b7a32080385b12a24b1da92335a6a678f783423b4ce99facf73874

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 01cb433334202f1aa6136b482860773a4f820cbe83abfecc0eee9924a18a1a85
MD5 e3cd200776f1b098f44900b7a251bccb
BLAKE2b-256 6a12cf235704dbabe578e397445b082986fd7987c6e5baf851a238865136f6ae

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 9d8aaaf7415f68757d1f0b24772ed16b8fc418b10cb6022fa6d41acb7704a496
MD5 80790481b52af255548145bef093e2ae
BLAKE2b-256 569d2745f8f2f843af607e8dc7b694d89a4af5b4e3c932fbcb6fed3c0989f2af

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c6aa9d8ab74f7390890b89c1bd949775d9af949b54373b11f01b7692e65f82c1
MD5 d5923ee39cfb8848606d6e1962e2fb82
BLAKE2b-256 fd0520afbee56a126c65b77b4f3ea71c35f1c73a50bf1f2576f0806518b44780

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b7c2c5cfc2a4cdf10b89c526409523e735c100564a792e5c4737c8f30dc79ca3
MD5 33becabbcd9f3c8e8b8b5dac2a8096ef
BLAKE2b-256 16fa3a3a8075be8c4e6dff893108ec75a435b692995ebc8042016d28f6b6b5db

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.2-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7417e3d4b69e97845cec6d79bce434cf0df80f319b18acd7c3227fd85019eb52
MD5 db310ee1210d741d44466a12ad5b8682
BLAKE2b-256 22cd1592a007d9a26eaea6890ac90d49e9b347fd4cade75bc69b95fb9f73a29d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page