Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++14 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparision between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparision I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

Benchmark extractOne

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

This version

2.4.3

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-2.4.3.tar.gz (1.1 MB view details)

Uploaded Source

Built Distributions

rapidfuzz-2.4.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.4.3-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.4.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.4.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.4.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.4.3-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.4.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.4.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.4.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.4.3-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.4.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.4.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.4.3-cp310-cp310-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-2.4.3-cp310-cp310-win32.whl (1.1 MB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-2.4.3-cp310-cp310-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

rapidfuzz-2.4.3-cp310-cp310-musllinux_1_1_s390x.whl (2.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

rapidfuzz-2.4.3-cp310-cp310-musllinux_1_1_ppc64le.whl (2.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.4.3-cp310-cp310-musllinux_1_1_i686.whl (3.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

rapidfuzz-2.4.3-cp310-cp310-musllinux_1_1_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

rapidfuzz-2.4.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.4.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-2.4.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.4.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-2.4.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.4.3-cp310-cp310-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-2.4.3-cp310-cp310-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-2.4.3-cp310-cp310-macosx_10_9_universal2.whl (3.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.4.3-cp39-cp39-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-2.4.3-cp39-cp39-win32.whl (1.1 MB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-2.4.3-cp39-cp39-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

rapidfuzz-2.4.3-cp39-cp39-musllinux_1_1_s390x.whl (2.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

rapidfuzz-2.4.3-cp39-cp39-musllinux_1_1_ppc64le.whl (2.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.4.3-cp39-cp39-musllinux_1_1_i686.whl (3.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

rapidfuzz-2.4.3-cp39-cp39-musllinux_1_1_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

rapidfuzz-2.4.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.4.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-2.4.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.4.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-2.4.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.4.3-cp39-cp39-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-2.4.3-cp39-cp39-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-2.4.3-cp39-cp39-macosx_10_9_universal2.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.4.3-cp38-cp38-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-2.4.3-cp38-cp38-win32.whl (1.1 MB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-2.4.3-cp38-cp38-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

rapidfuzz-2.4.3-cp38-cp38-musllinux_1_1_s390x.whl (2.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

rapidfuzz-2.4.3-cp38-cp38-musllinux_1_1_ppc64le.whl (2.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.4.3-cp38-cp38-musllinux_1_1_i686.whl (3.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

rapidfuzz-2.4.3-cp38-cp38-musllinux_1_1_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

rapidfuzz-2.4.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.4.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-2.4.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.4.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-2.4.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.4.3-cp38-cp38-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-2.4.3-cp38-cp38-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-2.4.3-cp38-cp38-macosx_10_9_universal2.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.4.3-cp37-cp37m-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-2.4.3-cp37-cp37m-win32.whl (1.1 MB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-2.4.3-cp37-cp37m-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

rapidfuzz-2.4.3-cp37-cp37m-musllinux_1_1_s390x.whl (2.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ s390x

rapidfuzz-2.4.3-cp37-cp37m-musllinux_1_1_ppc64le.whl (2.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ppc64le

rapidfuzz-2.4.3-cp37-cp37m-musllinux_1_1_i686.whl (3.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

rapidfuzz-2.4.3-cp37-cp37m-musllinux_1_1_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

rapidfuzz-2.4.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.4.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

rapidfuzz-2.4.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.4.3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-2.4.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.4.3-cp37-cp37m-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-2.4.3-cp36-cp36m-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

rapidfuzz-2.4.3-cp36-cp36m-win32.whl (1.1 MB view details)

Uploaded CPython 3.6m Windows x86

rapidfuzz-2.4.3-cp36-cp36m-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

rapidfuzz-2.4.3-cp36-cp36m-musllinux_1_1_s390x.whl (2.4 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ s390x

rapidfuzz-2.4.3-cp36-cp36m-musllinux_1_1_ppc64le.whl (2.4 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ ppc64le

rapidfuzz-2.4.3-cp36-cp36m-musllinux_1_1_i686.whl (3.3 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

rapidfuzz-2.4.3-cp36-cp36m-musllinux_1_1_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ ARM64

rapidfuzz-2.4.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.4.3-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ s390x

rapidfuzz-2.4.3-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.4.3-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

rapidfuzz-2.4.3-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.4.3-cp36-cp36m-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-2.4.3.tar.gz.

File metadata

  • Download URL: rapidfuzz-2.4.3.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.4.3.tar.gz
Algorithm Hash digest
SHA256 52cf611f9f3025dcd4583a2d5da5c5611769ec8e97e344107ce9ae10f125a041
MD5 b6a23971cd9a0afef6b715a6c7d83fa5
BLAKE2b-256 26b931f4a56f74d989469ac7af73b3c1d11da2ff89d5b7406d1338dec06c8a4d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d8dca25144080abf415aa8839f71e10d7a1c830ccc1e6cdc837efa1e948744f7
MD5 c2b1007b9db30c0146734f9aabf3c9cc
BLAKE2b-256 6878b3e44282ade254f4ecaeb27279019d8cfb59ccace08504b389b657b9a7a1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 da20d96b25f7655986002bff6c6a2ec98ed4c0203c96679bbdd358964957358a
MD5 89fd9517fa8f53414fb8a4a6efe92516
BLAKE2b-256 3693fc01a62d375d982cf20d904d6a2ba360a9715f69624bfd4132e9de9d6298

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 be1b936b4330574ccd540d82edd8634b1b6fb3d62fdcae61ef2e7b6e07f15850
MD5 641a22e5be6e97f61fcbb2cd06c4aef3
BLAKE2b-256 d9a02ffc42b368871da1cfc5f14e5656fe4a52bfe5f1be2cfdeacd4ce61797be

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7f19824b342579344ac8764f03be1e14c2e28d0555baf0f48dc44ca3c092b441
MD5 e18eae74cf54db7d660bfc0d4a019f30
BLAKE2b-256 e08cd08c2fef09bc9129205f75edb685f1253051af2130d8c36c39d6152f60a9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 62dd5ba7c041f29b7f4a45d00947c601b0b0b8d80e53e46cd2a3e93610111c3e
MD5 67361a4b5f089443267d2b1a513c178e
BLAKE2b-256 80345d8e4f58a585e4771a7d73d4df7929eb69e5cd2b8a263f65580116aca295

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5bfd02834a04fd58024a67ff92d19ec225bd0c72b78108bb1389862cb6c781f8
MD5 d12be792f858f214b8f5f4f952bc7fe2
BLAKE2b-256 9f5a51a34a887f895a150f41252b0a7d61838d6b14ad284db8d2994e0df6006a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7d6e305d4d7586e938e6986457b413fbb90fc5ac567280b719749dddc161ac5a
MD5 0a1e74cfb5aab4b191e5dc00030ff215
BLAKE2b-256 0116d367fc057a66ae075aedaf9cd91463dccc64fcbd9f04ab1d80248fe01ab3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ffa29c5f17d302ce86be7760a6a9c7ff5c269a10d54e2a5afe3d8fb72a41545d
MD5 09e3f0453af2c92869cf0fe9bbdc4cb3
BLAKE2b-256 9c557bb9859536455230158069c846fc5a8c62087845e2e315a5d57fdc0bb24b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ebec9cff0235412dcf3729349cdc562e29623348333a81b83e803a4e1596f2c9
MD5 a0a68b3ba63936a835676d6f7df4c240
BLAKE2b-256 c8170a08f41d1a3203573109b754f771c6c1f734b8e7e5c38e21f67412a05186

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8a119ba98dff4e15a76e8098a91ace1124d4d7017a86be6e82eaa88f2efc75e4
MD5 3d8b9301cdbc2ed96b76c2ee6df3a164
BLAKE2b-256 c0d10e6eff11b2361f6744dd44ad3f2de36e0ea39f7e742c3a1b6d19301fbed4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 04be549e64dc5caa462d68e86642d3efaae3b435af046210119ca147326a1f93
MD5 0721503e7a9928c9d6425d95a524a8b0
BLAKE2b-256 628a15ebae946fe3d101d80df7cfb32415f949b16610d9e6596f21ce759482ea

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 98aab6a4a6e1ac0aadad442fedb93e9cd80625dd7c64b8f72433e45a478738fc
MD5 737ddcd66e3eef31aa2303667d8e762c
BLAKE2b-256 55d388f0df772d847a680322194f2e5e2b7fa99e715d66eb0a4a0e1913f27f4c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ad88c14560c555381cc4b7284347ee60f1d7fe98da96a73c0def9d70bd13b9bd
MD5 90f31d6efc365294e48a5b0416b4fb0f
BLAKE2b-256 c8124d1c9841fb5300d847bfbcf5ee9540f7e715fcbadeba83157c433593af57

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.4.3-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.4.3-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 bad62b8c82d25c59330dfa222cfc8fcb58c35e480d0a40ac9aab45fb49961bc5
MD5 fa508dc3976da6c7390202453e204395
BLAKE2b-256 d09e0a415ea2f05d58095ec06a529fccd0d6e5bd49c1fd668512856ec058ff14

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e63fb7d85873e513b835eff67a5d102408a0eda5c3e8792d93fd76f1cea7924a
MD5 d5d96e3d49ca50cfc98ce0b074791df3
BLAKE2b-256 6e36011d069e057682458c1fce962e34905b200acff9b295ed8c66294011bda1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 9765210a4e51f9ffefb9fad03abd2b798a9bed13fe241bcad17777a0423d1e5d
MD5 ba2f8a3ec3ac056fc9d7747495464d58
BLAKE2b-256 d2677220c87a993c898f6b5bf76fec02158f3349cbe3b3c06828e1e329054642

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 b9c134913f8ffd5353f04623dd04bdbb96b876975169519552e359465cd42236
MD5 1ff26f8285b2120410588eccd0db5182
BLAKE2b-256 6f046fa1181f6d44663b7791581331a1f7780f90c9f803d534f100efcc13ce66

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 74924f303351da0c49122ab9a8fa5eaa2b4c28dec28b158f789bb4132cad7558
MD5 81e5c525e85d01df275b90850fc1c86c
BLAKE2b-256 9c9e5925dae483a77d3502e5d2161350c40f7fc4fd78694f2e553daf6bd643f0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 aefe9e8c6d0b58537a126a72a53840d26f09badb93bc498f8e349b564977dc01
MD5 68688732b32f2574d5d104cf43dede30
BLAKE2b-256 faf9d9a8af3acbde6b1ffdc5e15c833178f7606e676addf80f2aecda2e902d74

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dc1a8c6e7cb9583d7fee10946a8cf46dd135070c9db1cf9d143efa21eed39852
MD5 18f48f51b2e6032901e5fb79b07d3d58
BLAKE2b-256 5295e8b5b0d4f75fb733a0db9e3eea6422024cf57731da0cd52a5c3945adf6dc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 bd57bd242d6c394bfdb07db6bde6f9fb073e57b905c669fe63f495df4b12e8ed
MD5 804d5582b29574090e008102b9a0c644
BLAKE2b-256 2756fb012e672ac54308b9bcd24ed2ac2d2eef793884caa759433782cda590ce

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 f4e41ab373264bf213c135f6e0b20b88cf52ac76f121feaadce9597ec45327be
MD5 d5eb7c8d4920e40f6bf7fc0d98e28bbc
BLAKE2b-256 f8e34373c114b82432cd98aa8657fafd086f5fdd069ac5df91345b0e4253e474

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6db4564d445c3abfaae4f7041b107b9453c4bd65e467615ac8ab904af9cb65ae
MD5 ddb3159df3f2c89f74e459be1cdfcec7
BLAKE2b-256 2ee80f6a47f6f69038749b470fb70a1dbdfb185680446bb221f97ba4a2a22502

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5392eeefade40fca672dd56075cc200090d3329eec3f1f9eec12e348871db0ec
MD5 490446f0a1d56c30e735240f253065a9
BLAKE2b-256 fb69476bc0de7d134c81c954e35543b4eff0e919eec70ef1ff163b3955122b49

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1d6b392b375f7521e8b80bc8ba13f7150016deca3197c3f647ad5ab557e8f8b1
MD5 4dd185e572ee3729d221f76afee046bb
BLAKE2b-256 80f7aa7fff540a011ed155fb0a49b1b4bcdc98fd99e0de23a7c81e3931168d06

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 80408419566b7138249a861e836369f4aed48e480abad628377a60cafd85c093
MD5 0a4c1eb8c3233b026faf4e1eb88009b2
BLAKE2b-256 abaf7794e6bf94dad17657d3faf979f8ab22a51164353adaf7964dd906132215

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 55afe6371e3aeb01e53df3f36f62d1f5f768668d95dc2f2567d93081a6860a74
MD5 10022689df9af99b696656fb2f4fb640
BLAKE2b-256 919fdf8070c6ab5b0615e8c45d3b2a9ae5a376d188118564ce5a0b3e091b1ab4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.4.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.4.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0ae839681a54ae804905afd6b3c44570abcc475c11e62c39593c289de08a38b0
MD5 743dfc8a7a0b945fe84ccc935936bcda
BLAKE2b-256 accee05abd6f713f63ca56a9bb4a48d215a359800bb0214c30b94ac55e2c3ed6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.4.3-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.4.3-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 8699333b32d7ffc00e546ba858c376d2765b1a67381087bc6149a1d9f193e349
MD5 cc0a006abe02d284f032fad667fee7ad
BLAKE2b-256 ae098b6aec39c0dbb694a12b97de6538203b1073977b06aa5f6b489a3c4ccc99

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 56a51317bf71c0ea9d2fbd9d83b59113fa1396e0a26d58e0db4933bdeb593df6
MD5 ff745d808e67402786eb7b3f40189e15
BLAKE2b-256 de143fa61c5cd18d7c428c7d058bfdf79588b03175789abe6c45c1e5c142109b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 fa6c8b28e239dd2aa3b30e95d4f0b633e478ceedf6f173ef7b51768d4307353c
MD5 c14441db7ded24467e769e591e11fbd2
BLAKE2b-256 51f63e0a30fa29b2268d4e1d07cf50ff7565e4a2f0972999c22ff2b23793b827

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 4b41e52db5732ac30ca8926cf0b9ef1be86ab74ab9d13dd00799627003cd51dd
MD5 7f754f40a05f766fbbf4a9cb3e48a77f
BLAKE2b-256 a137672b9f2d49ca20a268921627db424be41240cfa18416b1fbabe50d612f6f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 75a21cf7ac572bb7e11532406f7df4fece945370900b2456154a4c77ba43bfa1
MD5 56decce5c9a0f99d7589b4dbe8566ffe
BLAKE2b-256 1acc2d579f935c7315e7575d589106f5171aa882650166a9de5904f93f7f1907

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 277a0f974499267163455b512fab3d2235ac9af2450f4a8d6cc19a306dcfe866
MD5 3f870dcb3e43429cb2a041cac2b61e48
BLAKE2b-256 2b4af015f942c12cc6192be2b31b4dfce1dd4df00a3342069ab0655fd615f919

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e595c8e30a891633b7cd4480aeae9ad3b3a69ce9a5a4987c787ba9412e923b7f
MD5 6a49325900aecb849c44fda3431ce6d0
BLAKE2b-256 32a9d4b1ddb17a7e8176700d19f34902a95be9ee1811bfc73269281d2dbe7bdc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 6917b7986345a291de0ea125eedd315601ec9b5ada64af2e1641fd11b138ab36
MD5 3c0690c9650e67e6397ebd5eb108b885
BLAKE2b-256 67afbf69752c679822857c314c690766abbd342e21dc851ae598fc6707f16dc5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 a6d7f8c1da2f51c40e7f65b7630e4211feb3e3f1db0cd29c717a64ebb1147697
MD5 07a6b6038840700f56a1d05c101502b3
BLAKE2b-256 5c974a0114b683abefaa9e686d0bf1ad8fb6ab2811115db9e199c525b4de0f20

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3a891dc9b8c3bc2fb4571cb2c3ed874a3750d359e41ce5020c8eb2660bbc635c
MD5 2a6fdb342cfa0cd54f02afd0679a25a3
BLAKE2b-256 f3c5aae354ccd3780627c76e52fb814be77a1cf8729208d0f3cae07b6bc11099

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2690f7cfe3c27ab0655a08e1738f4fdcd2a6e5cad6b7eca4053594bdbeda4557
MD5 4fd020efa449bc33af1af58d856ff81f
BLAKE2b-256 2f63d903970e6aff4958f20a1795fe30e3a3fc48a706e1b247fcd715e86bb4c5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 acf13db703f97e1e7d7bbd7eaf0cb5a50e51fe9a5f9e68380022598d6f2ba08c
MD5 1ec77a248b7c63903bb70729371f64e9
BLAKE2b-256 a79eab59c6fb725688b684892ed7c053dce7a90555f488f0c05f42c3947daca4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c31dcc5bbdd3fb1cfc72050d804f99e2203d1cec4509dbc3885bfcaaf89918d2
MD5 b12e0201f49bcd94a2cf2e58fff144de
BLAKE2b-256 0359c717a4c3f716e05ce2a48636b8fc715c0891e6dba7f34b97caa9da680c90

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 705de92ba1573a635caf6e32d14bf1db4cde224d288a86e9a913ad757023bd81
MD5 dbb0501ea5469e00f0c00b66342ac0c5
BLAKE2b-256 7dfe8a2d08e1670465020b0c8d9beabc1b7abef3b5ef03eebeb6649527f4c6ec

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.4.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.4.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8b611fa5aecb0868a5084dc9f24ef4c19ad9a877f1dc786f9b6d1eae89764ab3
MD5 804bfd0b70e72629e376726ad95b12fb
BLAKE2b-256 b62ca9516787c47b221bb8449764b925d53cd35a83c5a29bd9f47414015235b5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.4.3-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.4.3-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 29b5060ecd67ac8755eccfad2e89dcce76d05cf3a067881dfed8a100b5c1da34
MD5 d3308ab1f04b226503bd2f1419cfc25e
BLAKE2b-256 d843d6ebe8baf85e15d77df2e1346258e057736e87eaff335edb1cd6ebe518c7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1dd93a0c3c7375a2d718453efc17f9c1365201c4945ef0603b32c787a2877601
MD5 dff5ec723f545cef10322cb607995a9a
BLAKE2b-256 b38b69eea53c3715d43092ebe3a2054e9898e1dc8cdfcece08261d41386142ac

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 0e403b66ef2183974d9e49ec77242b3520c0b4c83c4cc7a674847f5a4f61a268
MD5 64545ae827e9403daffc4875b4a95e8f
BLAKE2b-256 27bc8724a680b0ac8dd19d50f523404a78fffbb801b249b8e13b34afc19a955b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 aac09e8b9bc727e1fb8cd6fd5533fb44cc1ab049d668cad36d649747acefabfb
MD5 77b9ef33bd93cbf9a5c2ad3771eceec4
BLAKE2b-256 12d2e58282d9d3c0a8bf6fc73dc3c44454fcafb4e8c17f7ba4b7db5a977f8750

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 fa43b1d1612682ee5776beeb2f3dfff3437ce328fa79428cc37774384bdff1c9
MD5 bb22323ceceeb7a6d1c2863afbce199c
BLAKE2b-256 ad4c8fd7bde48bc428455bf7a0ef303a55b582e0b75e72c5ca3e4b47d10f5262

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 5c3338804507fdcbb7245334ba86e0310905278fe3645e9a543771218f5367f8
MD5 b76538153c9fbf70735b5c205bfd11a3
BLAKE2b-256 e90908c8c11019685c5ad536a441e855001e363eb395b0aa35908b49576f301c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a7c1c4bcaa49bd600d3c228c373beae83af649e61b47a54841ec5451da34f612
MD5 73c61d280f694b6fcb29a8b00fcdd691
BLAKE2b-256 e11e2e2bccd63b6ce6f2f147d95a6c641c4f6f5f23c1d64d91860669c712db75

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 89cbd3054c37b9be51696c69dc7ae6d81c9ec644fa4dc3337167a5ee10a0ba1f
MD5 9f6feb5b2a95f6a1da20799ad8ea5954
BLAKE2b-256 5f4761bf73533cfb46579832755b5a71bec9a3850e57d0766a75d1df3f350795

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 8e90c1106c2ee538700143eb86ea880ca2a8f91657cd30efeaf5c4a606e4cf01
MD5 8c9a93d8b9dbd7ea3cd8575e456c5497
BLAKE2b-256 d282def1fcc88ca449d4966f1764769b6d7fc5d79c0ef0a2b023ee30950cca06

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 419a16ba3eab153aa57fcd41bb8f436ee817887294aaf0f46dcb5329b79055c0
MD5 27f82782c9c89a2e4ba826853317cc21
BLAKE2b-256 a02e8e3f35f181b9a388f0a7f1798fcf41703d958aedfd3ef27d05104c889d44

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 78fa6f2b913c4198c745dafaccc78e0e80706817e8f697679f58d9de2bbde517
MD5 946b74dd5b92b162047b1cea57e66391
BLAKE2b-256 41f0c7b530fa5a83bd1aac1a2bb21adfde7ff69444ee812f4b287fb767647cbb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9d33d26ff9057263e31290fbe07256086f6af055c9693004329c505f8a2861c2
MD5 0da07be2583f89a852191ccef256ac0f
BLAKE2b-256 b8ee949f18b9bb54b2bba01512ea84a56f27d0fd5f4d581f013f5e6daae57a33

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ad38cf20626f17a35a164c9659d274957c5b8b35e6e20e126da5b7a0542f4472
MD5 081ba8b95c9fb6d990a50c9f80844e38
BLAKE2b-256 db8b2b58c45843a1b8039a15c2906ae85a6a49f03f6b208acbcfc45df2a1fd4f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 54d182608cdc59447f2cc05b08578a881fc0deb15bb8b6de67424d56ec570f11
MD5 d9f82cbf79135d5b1e7b4c7e312a8d73
BLAKE2b-256 0137ab744c4bd32d875c5428b57d5c7eb7e68a3f9018d0eb9f72d9a4edef2b48

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 02c40c45b86404eb72e4bb88f2a7213d9069d1eff0f7cd9458092cf905359ee9
MD5 55287635b1398511f3ba1faba07a1ce8
BLAKE2b-256 9b2f81bbfac79e8dd7dcee5754eb0e708fb7f94f1c2fa7ce7780e09a5d292046

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.4.3-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.4.3-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 7876d2bf91b0ee4ea1611adfa4f7cc25ce17ae5999b0508783082e5297b1124b
MD5 9ad246d7ffe94e44b8c329b66d09a641
BLAKE2b-256 1f84b728f4c69953794a8bd525ba22523e309a6626ec33f8c7f9d9b0dbc65f26

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 31f475ec94b4aabebb9772abcea4b94834712ed4377306950228c1a9e62af429
MD5 ebc7b6951565cef380a58372ab9ccaee
BLAKE2b-256 e5a0ebec8645191d83871ffda45b9664f12b0a484f85b142ea96283292cbb61f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp37-cp37m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp37-cp37m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 9ae779a55a919c9d3fdd2907373844e369442ec92e87f1d34dd003a8947221a8
MD5 f3a1856ed7b2957adfbc169cde772568
BLAKE2b-256 3b89fd857f2bb1712c3764d7cd62e99c097668fce7d1cc67317d7fe08fcedd1a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp37-cp37m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp37-cp37m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 239556f3d9487cef7102102754365a65254f66e3079d131a9d6e4fe49f36595f
MD5 f99c6a0c43dbbcc2e24df46269003b44
BLAKE2b-256 4f28f8593ac0c8b245dfe5494f3ce6a2ada71b44615c0461562f0e0422fa37bf

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 b8a6a7d2147feedbb596ac422d035977f7464fa7ecfda8275a66420201537c3f
MD5 f68cf1f3cdb36c0a3ca1d2bb9f40a85c
BLAKE2b-256 64b1c71a229d85ae2dfa21f8188d6bc2640fdbcdf16df2774058884ccfe85bd9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 df857ff0220747753d804dbddf1b1c756ccf474330f94410fd985c0fa0a7d18e
MD5 b93714f6150820dbc988f652e64f18d6
BLAKE2b-256 cba104d03f9e622ec679917c93691cd0ad7c8aa030c325971812f96d7c9d3b42

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d9d3a6166a6e7171849c3d6dd35565d791fea2c7f70d2f84a850fd51f8d24413
MD5 4347a1f7e5d116dfa40c1a158b658709
BLAKE2b-256 db7322f64a5028af4878053a44fc162fc87928240ae35f6607a6585c531115f5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 05270fece1309e4328a73091e39727213778da758c252d99382b1b168ad41203
MD5 dca1ca7ce46d1730052bf4ab745cc2cd
BLAKE2b-256 e676facf1747cded13e6c6e84d01af0d0471048d90ea6862fc422bdcf32364c3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 d72682374a53e1b518a4d338156857db029935587b248359ab85803492996da8
MD5 4658c57cff1b7a2285447092d24d6bd6
BLAKE2b-256 86e77f4b380bf1e17887466f9679e7838f6fe31de7240a4e863d9d4cc39686a1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9fa7909f9b0d390e1e5e6a0c046c523069252700df0e236859dd074977ca9198
MD5 fcf3feed03b04b59519558b42f4422c2
BLAKE2b-256 3857293fb4bd126277a6d8cd6e0d8e2cafd632e326d9f67ec2c1ad47ad55e24f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 128845a0350d1ce4f3662c7590e02ec585ddd177c35d1e83ae6d34839b8f27b6
MD5 e6bd94ddc375dad6f71fbb603e7e423f
BLAKE2b-256 51ec299631c02ed15e4a82a18e842d2c4c4332b8f693f88adfb6e617ac8fe6d1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 821cd04116e8d4f97afb021c44581b614688ce526023da947ee0fe46ee421cbc
MD5 cc4494cff994c7afa455c81c622eff5a
BLAKE2b-256 cbdf1efa418569286b1c35ed12bce4c9d85d8ae35c336b432da6f15e5e6751aa

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 f43177d8634fee7e084cccd5c6e7c4b8b59324afaa633736c78d596f06931282
MD5 5a9d05ca52ee05e32f24690923d90280
BLAKE2b-256 d5223b0b6f6115848ac64d034a4a7867d50f121773f5ad5c0e0af85e5e581a2a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp36-cp36m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.4.3-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.4.3-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 c872f561339554525ea2281c0695c9126ee9c9b1225d3469ad1ba62d18e62fe6
MD5 c7f69cdeac342ee109dc535af5a57c86
BLAKE2b-256 4693f87949a623376893bce026811a3a81e22f286c512c66aae87f457f6f4a27

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0086206e1eb6d514013de42b9d2fb73f0b5549543776e125d4f6e7af6791440a
MD5 789458bf09ece8a1a8cb60bbf8711ab3
BLAKE2b-256 c6b1915d5364b90d483d6b37874c2618841c934c96403458730c51fed1697cb0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp36-cp36m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp36-cp36m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 29c2e5e4613ce89a51edb9a043179490c8705584efdf3744de453d4e62e9c789
MD5 e28977f159f62ece05aa2661542d8ec2
BLAKE2b-256 f27c92ab33b1ada2d7f91370b6f6f9c91846fe790b7ca3dbf7ebbbdf09a3a075

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp36-cp36m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp36-cp36m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 23731b7e55336bfad867fc833b88f7e7ac520286bde6752e16c67568654e9fe1
MD5 064b18a5588202530aa6585c0737b0ed
BLAKE2b-256 990d18675bb98136adb58518062fdac7f7b4aefa44fa286ccbb60f0c331e15a0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 53907bc4810660596e992a45679e05c6ac5500a40dca67d5008bea7c5365f4f9
MD5 d5a71afba82d16c9f1622ce49a19437b
BLAKE2b-256 41b4b2cbadd1a594fb49b868777cb159d668ff3e6699ef26dcedc04da491cf56

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp36-cp36m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp36-cp36m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 bed06f4fea217cae6325101c6d6945df86fd369e027e91b7d9332702a9248173
MD5 96486879cc8248be3a67f2a8051bb47d
BLAKE2b-256 6d010e077ce19a16d39bd6a919aa3b7c02a94e125504bda92f1bb7543da7b1fc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 62cbf993e93f6776dc817d5bda551b2f615b57d371922fff14e515ff521b0ba1
MD5 79cb7196224cc0c9ca2f47efc73c2efd
BLAKE2b-256 b4366d6b1fa58aa385422661fa3be1f5e8f085dbe2e0c6f29bc1efc2372fef13

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 ade0010baadde7e3c90e6a5a86a288bc441983499903e742301639394658d093
MD5 8220a73aec9d01063badf4326ff45ee1
BLAKE2b-256 f3b9533fd9a5265560a99af0b03dd7c9bbded264183130f1e717c5b4b3963fae

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 7399d4474ccb06dccdcc39ae5fdc7aa2572535999ea458ae24fab49e4b305ea4
MD5 b61f212361bcb09b5b73dfb632ff4c1f
BLAKE2b-256 cea2993f8e6ef5e36ac87da84c20dbf64664b82b1981e7f473de731e9f961aaf

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7b585b60d0242982cc5bdbf835fd48c064309830e2cebe80c4183a281cb37fdb
MD5 5ae35d435e920533be99f8fc09003780
BLAKE2b-256 cb694a38329420ab095f0246e23b5c1dde0f5a81c3da0fa3ba468fface415370

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7df491c96107d3293fa1ecdc46faa49a6ad2c9175a7dff034127fff83e337479
MD5 93e6f00c1ab1f99e3d3eda0fba5776a7
BLAKE2b-256 1a4612f01828fcc275b6e60ae0a1a879f848b5e45f4326f350602c346dfe7132

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.4.3-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.4.3-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2b7eb2a63f9d5398afb1682ee1f56f1c50f6ba25db5adbed9ae9ff527d126a68
MD5 9f5c8fc6cd3806849f215017ee670f6e
BLAKE2b-256 3f2253f5a624cf76a582a635398b2669f62e6f4f25388659a8c2cd6920cd7efb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page