Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++14 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparision between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparision I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

Benchmark extractOne

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-2.5.0.tar.gz (1.1 MB view details)

Uploaded Source

Built Distributions

rapidfuzz-2.5.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.5.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.5.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.5.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.5.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.5.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.5.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.5.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.5.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.5.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.5.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.5.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.5.0-cp311-cp311-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-2.5.0-cp311-cp311-win32.whl (1.1 MB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-2.5.0-cp311-cp311-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

rapidfuzz-2.5.0-cp311-cp311-musllinux_1_1_s390x.whl (2.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ s390x

rapidfuzz-2.5.0-cp311-cp311-musllinux_1_1_ppc64le.whl (2.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.5.0-cp311-cp311-musllinux_1_1_i686.whl (3.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

rapidfuzz-2.5.0-cp311-cp311-musllinux_1_1_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

rapidfuzz-2.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.5.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-2.5.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.5.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-2.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.5.0-cp311-cp311-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-2.5.0-cp311-cp311-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-2.5.0-cp311-cp311-macosx_10_9_universal2.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.5.0-cp310-cp310-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-2.5.0-cp310-cp310-win32.whl (1.1 MB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-2.5.0-cp310-cp310-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

rapidfuzz-2.5.0-cp310-cp310-musllinux_1_1_s390x.whl (2.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

rapidfuzz-2.5.0-cp310-cp310-musllinux_1_1_ppc64le.whl (2.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.5.0-cp310-cp310-musllinux_1_1_i686.whl (3.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

rapidfuzz-2.5.0-cp310-cp310-musllinux_1_1_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

rapidfuzz-2.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.5.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-2.5.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.5.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-2.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.5.0-cp310-cp310-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-2.5.0-cp310-cp310-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-2.5.0-cp310-cp310-macosx_10_9_universal2.whl (3.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.5.0-cp39-cp39-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-2.5.0-cp39-cp39-win32.whl (1.1 MB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-2.5.0-cp39-cp39-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

rapidfuzz-2.5.0-cp39-cp39-musllinux_1_1_s390x.whl (2.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

rapidfuzz-2.5.0-cp39-cp39-musllinux_1_1_ppc64le.whl (2.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.5.0-cp39-cp39-musllinux_1_1_i686.whl (3.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

rapidfuzz-2.5.0-cp39-cp39-musllinux_1_1_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

rapidfuzz-2.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.5.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-2.5.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.5.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-2.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.5.0-cp39-cp39-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-2.5.0-cp39-cp39-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-2.5.0-cp39-cp39-macosx_10_9_universal2.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.5.0-cp38-cp38-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-2.5.0-cp38-cp38-win32.whl (1.1 MB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-2.5.0-cp38-cp38-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

rapidfuzz-2.5.0-cp38-cp38-musllinux_1_1_s390x.whl (2.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

rapidfuzz-2.5.0-cp38-cp38-musllinux_1_1_ppc64le.whl (2.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.5.0-cp38-cp38-musllinux_1_1_i686.whl (3.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

rapidfuzz-2.5.0-cp38-cp38-musllinux_1_1_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

rapidfuzz-2.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.5.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-2.5.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.5.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-2.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.5.0-cp38-cp38-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-2.5.0-cp38-cp38-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-2.5.0-cp38-cp38-macosx_10_9_universal2.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.5.0-cp37-cp37m-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-2.5.0-cp37-cp37m-win32.whl (1.1 MB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-2.5.0-cp37-cp37m-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

rapidfuzz-2.5.0-cp37-cp37m-musllinux_1_1_s390x.whl (2.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ s390x

rapidfuzz-2.5.0-cp37-cp37m-musllinux_1_1_ppc64le.whl (2.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ppc64le

rapidfuzz-2.5.0-cp37-cp37m-musllinux_1_1_i686.whl (3.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

rapidfuzz-2.5.0-cp37-cp37m-musllinux_1_1_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

rapidfuzz-2.5.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.5.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

rapidfuzz-2.5.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.5.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-2.5.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.5.0-cp37-cp37m-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-2.5.0-cp36-cp36m-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

rapidfuzz-2.5.0-cp36-cp36m-win32.whl (1.1 MB view details)

Uploaded CPython 3.6m Windows x86

rapidfuzz-2.5.0-cp36-cp36m-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

rapidfuzz-2.5.0-cp36-cp36m-musllinux_1_1_s390x.whl (2.4 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ s390x

rapidfuzz-2.5.0-cp36-cp36m-musllinux_1_1_ppc64le.whl (2.4 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ ppc64le

rapidfuzz-2.5.0-cp36-cp36m-musllinux_1_1_i686.whl (3.3 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

rapidfuzz-2.5.0-cp36-cp36m-musllinux_1_1_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ ARM64

rapidfuzz-2.5.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.5.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ s390x

rapidfuzz-2.5.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.5.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

rapidfuzz-2.5.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.5.0-cp36-cp36m-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-2.5.0.tar.gz.

File metadata

  • Download URL: rapidfuzz-2.5.0.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.5.0.tar.gz
Algorithm Hash digest
SHA256 4cf10538a1975747bffd7d3b6d2022ef6c8a8a69dd9adc0597f53a22ff01858d
MD5 e8fa3f50825875e22c92c74e154cb966
BLAKE2b-256 7cfe988d6269d9d729eea28e371a3dd4b97a73215acdade32bb498bd481e898d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d1ddbb2536443a3fa2627930eae068c74269844ed5aac762b111d655285a9d14
MD5 5fabd75e8fe4ca8d7c54220dbd2117fb
BLAKE2b-256 97bb72a3089f622cfea9d3098377378e2ce454607e3e8a9b982a2c5d1019effd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bcf6e573fc618acdd9b26c8ed6cafd0474149e525bb39dc15b45770650292aa4
MD5 a025e0a3162f84eea6f239a1291d9390
BLAKE2b-256 edc4392423babaabad971a6d569aa9561f915996fa367db54f42036b7971bf3f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 315e08ede2fda9b8450ec49bb180b4884b304c79c4cd1d38c54e37e5575cf6ec
MD5 7b021888f8a0421f77565ad16c9ebd43
BLAKE2b-256 c3ff727fbd6ea43bfaa01c075f671e1c82efb2eb9f8ccda905ef1fee22a310f1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7f4751acbdc093ef849bf836cc01ea2c4c7380b42be673a50e915e5336bf1c67
MD5 1290b966b9e9c1237b1addbf5ff78e02
BLAKE2b-256 b6d0c10e246599dc8f1bbd4b7975130d82487abef262df9aa7bed44872bbf5db

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b7dc0e87c074fa650daf795ba84b2524c80d750a1e22a71e5d3cab09c628cc66
MD5 d1747e02562c24e3f1913ef475062fe5
BLAKE2b-256 2a8ea199fadb3e23f8fd5c29d85d1d36f26bc984d7a182943ce164da41d28908

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 498e1240c7e1b98ed30dbac66c2d076d6c78e003177c6acda8bc9559bd95c4e6
MD5 fd6b7b2e0bfd8d1c4e6201010df63f3c
BLAKE2b-256 0183fd62a979293bfa540abfe472e14d8bd9e6199352a25b91fb838ee2f93d4b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4107beda2e5ad165a9c305d2442b8250e7b2e119b37abe2d1cc581c0979e6c3e
MD5 c6323dd75a5f0e4b395d1a125b4cda70
BLAKE2b-256 55886c05dc00391ea3ed8af7f09239c2a73ab11040f17b92b2acea6083118fc3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1d16c1feb6ab0102a2ef1990596ffd3a3650bb63e4ec8278ac364e1316111139
MD5 5d285d035f229a86c029f7f8ee80ca99
BLAKE2b-256 2a2ea1392591335c79ad6d9aff8ecef094b6064c8c9d06e71be8cb676e23c2f5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d8033fe51bb7947543d1b023dc849e95f60d107e7d06a2444c483145099311f2
MD5 6fab2f567186ce399099506a8f5756af
BLAKE2b-256 734d1cda679726484f2fc492ddd12cce756b864b538748cede891b7547be3437

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 462066cb6f22c847458f41ef119c59f3a978b6e281c478f452fd5f2163b49030
MD5 c0799f7f3c52cedc8ccbb520efa03a00
BLAKE2b-256 536aa52ef525c21abf5a2eff6e13d8d3721e9a7ad2e8d969703a9dadffeed7c2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 95b992c6c5fc73a2a8b265dbc07729e8733597e927a8f185559d1f8eda2f7590
MD5 de793b0863ec262e212a5c67dbc0751b
BLAKE2b-256 5ef16dcdfd3cab7fafe2f39ecf044ebee392cf8f020710c9269994514582f9ee

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bdc9dd0a65244c0ce06fd0657793ebcafbea8abe91315ddc360659a60f9305ba
MD5 be1972848186cc13e0789e5131390227
BLAKE2b-256 e14c532361c4406076bd9a0f03b77203025d4b301d7baf852be7a97416587115

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 8b5075ab8f40c19093c722d0d962d7f9e9b375f5497c5c8fa9129186c871bc1a
MD5 131738b395f88f3bca293db88c9224a3
BLAKE2b-256 47036a0943463b7b961d9f9d45ee0cf067f3aa6d1baeeb899fcee5d6d6e3fd96

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.5.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.5.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 fc0aeac9893f0b3f6cefe99daaa79feb5b0717343de08f824081f29e543d6495
MD5 d594937ce7271602fd4b4574a2fc4a30
BLAKE2b-256 94fd23957b5f301b0b523544d6c06330ca97a0bcb6cd475e93f3fdb7752bd4e6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a8123ac72461ced3c125d2b511f2d50eac0b1fbf17b1d66c0d1be5459ae907c6
MD5 ff56dd48cb330a0ce3b8c221f3044ed2
BLAKE2b-256 7465aa3f17617f34b00087cc45d3c57bdbb54ec11ec6f88f0c5c48e781e9f199

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp311-cp311-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp311-cp311-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 79147c7e991df451d3a54ad4bb5f1891ca14bbce04e88c5e4955b9416fa8e6ec
MD5 dbcf1c466fd84485bce6d0dea9c95a5f
BLAKE2b-256 784e12d00afc77eeabac9526cbb44bdbf565db98f7862fd947cd8b6aa20ae30b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp311-cp311-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp311-cp311-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 e763ff9b822e8036a39d6c31f5e4a4ffd49c6a6490662ec29f64b0f89acb2abd
MD5 7d5822dc6c0ad535eac0c6983368949a
BLAKE2b-256 167a0477d0a4fa42771b19a6227cf3742ab16e30004ec26da6c7b38bc30d27cc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 b135b1203a09439348289ee5a2a4173e2a50d5647b0056e8618c112ad69a1031
MD5 1139c1a88bc281c5c3bbe51404449b78
BLAKE2b-256 c6357bd23cf78b62125923951e255644a01b3627ba040714139a804bfb34b2f3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 b5e8bd94a142bf168ccd2a463e88c97825b518facce864c23e3d044bbdc28962
MD5 f9e274cfcad7cb2e9cf5a277dfc87910
BLAKE2b-256 ed4825dac806fe062581e3d574b1a19310e11685bae65150130b881df3038033

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 69da27b1de45ec301bd2ea416fecf27a772dee6e4109961acf92594a77a7d8cf
MD5 664ce3427a4d9db1ddc78e5188fdd888
BLAKE2b-256 6b3aff53a6928f463fa914132f8e4cdae573368a8cd0166deef75b7cb2b2fc1c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 3fa67c9fb26294f6e3a715ed0f7b7c22c9a9b356519fd75c081a576036f3c8ee
MD5 65ca8989a4e2c4ac4c1e3e55f89f05e3
BLAKE2b-256 d6b44989f286a3df6dbbee89ad61326d33e3ae012dad12104161f2bbefb420e5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 4759490ab2f8b15117da7c3ff3818b3fa697dc80bfa5f6218741d79ef4719544
MD5 bff92b6b751225ebe98789180731f60d
BLAKE2b-256 6eb8ba7eadfc3b9ddf6de2b2fc9a84ed39c2a0fc5e587d5f56b150009a593971

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d147051d5bb0dd30f5a5799bd0979d118efe266d2b8c1cc530a151c3c45956af
MD5 1d17a030977623e7046bb714bf4f079b
BLAKE2b-256 4e80b667ad63a03d8df50caf2b4f8a70d827584a79989a53023f57e45b8f07fe

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 663d41a1948369792ce5f003f0d412e29cfe8f488396a2de380df717621bcae8
MD5 0a45a12568bde6d590fa6d98c77f963b
BLAKE2b-256 5dc6468c3249fa82cc43aa753de87966422cabe7518049c85963df13b78af9a9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0c48cb893985bc8ae15f250b788fe24da0f0df694ff98dc01274c1dd05545214
MD5 7ea11a089a88c8813d66ac693a22ca3a
BLAKE2b-256 ddcd294c711a2e57c83abb81fe3a770244574d262be1c17c08c3b3ac39859320

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ec329c6db324d160192d49722962ff68b8bcdf9419ddbd57672e725345c2efe8
MD5 1b886fe2d6c3dee66e0d844d8147e566
BLAKE2b-256 7e0181da571617fa0acf1eeb1dcbf6f05093d9754bd68748d7c1aec405f36939

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 cf2c8d14f0439ffec6a36ed99e786fd9dcc9ee7ab6e3a77a5a883458988e88c7
MD5 bb29b91e9b5e94fadf8fabda80bc4479
BLAKE2b-256 0cff1096921938c77d1064a839988fc2c3432de2017c2bb83f41b6e65e113a4f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 17ac7e27932549eedba0deac0a69e4794ba9950404d9ea65464f7374052c29fc
MD5 5a6e7cb669db4e33a431085dc2b13229
BLAKE2b-256 93050679661630bf49283a644ef9f0c5ba8164e162ea8d017fead5398f59b3f9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.5.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.5.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 398af48bca750be36ea40ac21d033d28bd581c59281d3ecb4e8d1c545e8f4b5b
MD5 135fc2dbbfc408d2d5326497ed2a141d
BLAKE2b-256 0632d4a1d79c00f3cd8e266029420cbe1a636770d05660e6ccf20f206128be84

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c74319635be9fceb85713bf864748ca96e4bc12081242a001c07567acd5a703e
MD5 c37eccd1b6125e026ac6ddfdfb96a282
BLAKE2b-256 d9b3d33c9b78151019a7e4cbcdf3669dfbe0399cf7a34763541c3c924ebaca08

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 35f2225d8827414866b1df2c885f6a5bf9622547928c052d4669464cb2c2d33c
MD5 494d8a0f0a975de29c457204d2a4b4a6
BLAKE2b-256 745dcfa11317bc6c23465690140c6671e03ef93df1c21a2b5c88d80ce63b5f79

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 7b2a6a989ff6062726ffc3e881e5738d006fa0d6be6b532ed4c020748a6122a0
MD5 eb27cadd36dee4b8a19661638fdb0706
BLAKE2b-256 d4e4bc2c6697154c8f23851cc9a9ee378dd328e60cf7a769627a8eda91dd0b62

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 c7b7002bdcac445f3f13d15458a62da1bf1e21c08b1ba3357b37b3f58e6ffa36
MD5 fc05a8dd4b293936635e745a09b3d077
BLAKE2b-256 793dff0d21d7bb66dcfb67fcecc4f44855449e347cb273e87c70e929459e78d2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 0339f985a8392c28953e3e48511c1848cb516e8aaf730b1071deec4c9eb8b6f9
MD5 546ef31600bead74491f41f0ddab0103
BLAKE2b-256 f4464810fb9e23e88c46a2801b0b67427bcb7c89404264286a7c1d9127b67a29

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6f6a33106618360a837f4887e195ca66b77282ae32191286348ea3b2f698722e
MD5 b49f08581e5ac1180eccb1a3ee87df8e
BLAKE2b-256 e911c8988c886ba72c700e599a814858ebca1badf48f29b59bad46e8a42f5955

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 681ad31c76b0ba27d5942ef287e416d82b8e8d317d3c5b0d6c744f47f7150aca
MD5 9d33979aab4e5569b06f25a379c33b57
BLAKE2b-256 fe132893067d08122a260704722e8a5f8f716843fbbd45d271132d4a652744c3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 118e60b51e4f16fbdca39a88d300a1736e064eb5ab777eec97c7eaf45e53c434
MD5 337aa87115ad7f2cebc6cfaea347fbe0
BLAKE2b-256 c37229c5ac57e95a139fde6bfa967d23469acc610144c3827147f6e57a7be7c5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 67efefcdb31eb9a88a3999514ffe9a707e1ba24c3eda990ee247c008f45d1a90
MD5 e08456c74b4b7535e01be2baf6904bf1
BLAKE2b-256 d6d4e1d2752d2ca5b9026e52f6147055086d586f55d664228c6cc4fada279c5d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3fe54d01372d3484546b988e4a1cc48630ca4fe85c838755eb24babfc0fad236
MD5 e87ddb1e2699fa057425db191f1ce9ba
BLAKE2b-256 dd8503a62f4728e54068ef63f111b46ccd01b3cd069a7d019170134ffa62d294

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ef077d6287f0c3a14bbf25fb41dc6ff9cb5355780557b222b8c7eb8f8d8d6468
MD5 1458325eff63c1da4404365adeecdbd4
BLAKE2b-256 0ba390637881214748b8ccf8baeb7232e2529ef58b54556968db787eefa07bd9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 41f7781deecc8c8a1b419724c8f8d828b1c6751aa4359ec8d61e1cd3f4a0148d
MD5 6360ffd3368c68a4712d419d931e6af2
BLAKE2b-256 fe59c8a2159c9295940da8d4e8a44e0e93db0c41077b98ba8ccf1470b8906812

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 bf1a356203c88b48f0b738f5797ec5d531e3015052cf0e695a4a7e0babb0362e
MD5 656ba7c7a2581caa8eff79a3c0f90e2b
BLAKE2b-256 35cbea22bf1ff9921ea40e9f559c83ed0cbd85e3db77de52cbb14c0855f3b754

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.5.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.5.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5057396ce1c83d061677a3120113e7539fc8c28d3f261cbd62f93eaa0b0db8d1
MD5 d7cb6565887d8c1727165857a9152c29
BLAKE2b-256 0f031d588b62f44e3a884c6558f27eb3c731bbb0d482a748ff18ae2dbb430bdb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.5.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.5.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 a832c23694c8a713116f00e7784d5af3473c664f87fd036f6c07532718436da5
MD5 53d27358577856cd51d04036e85df9c0
BLAKE2b-256 6542a729befb6d0e719ff2bc7b51d7d9d5b2303d4243f946da091a23a5be90a5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7a249b7e972e9c7d43629c62b0f2b5576eb8c4c09ec784072f1a04d823e537b0
MD5 7e9a5ad5a9fb0edc7cf888b119d4d953
BLAKE2b-256 ddaa12e42bf8415dd0232cdb0208f52db13b6e44adab27d359064dc208610fad

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 b77e4de627d53df0a69fa2cc65c24be79bb49cabac07e24b6e68d4c7c546e2b9
MD5 4d3248ea7e8c7a31f441fe13d5514a15
BLAKE2b-256 e27f9fcffa9f98f7549755a62935627d6eb014a792d18ab153e5000b10299934

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 adb2f3f8d4d4301d74279abd541d7bb71e82de738ab7be895e1ab525280851d8
MD5 6b11356fc2b94306691d34d033b9fb79
BLAKE2b-256 6313d8c6fcee59a19e2be3c57af60767cc2f84adfbcd439f9f795af9dec9efc8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 ba40e10f6613f6316f51e052855ccc8b9716bb9f0d0ecdab6117f65783acf966
MD5 60079321a5b4fa7b952b76ee77f13e3e
BLAKE2b-256 840b6bc2ddafb0a467f1df24317815929eefd44d0873d9801e19777d393455d7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 d33c4dd5c62b542aa94f37c24ef63d1bc613904ef2a073f4d722133f8e9df6f4
MD5 396cc2bece353e9ebc85c8ff1d15ab33
BLAKE2b-256 d9f6328b805d8e33cb90dafc1384e6138ab79fee4a35bdf19f7f10ac758bf900

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8c95adb8ffd1d7c9f69c2d25469a8e27c2454ab97e07569c61f7d267e69c27a9
MD5 641d15b59f2aaa8ea736bcdcd15761f3
BLAKE2b-256 9da8660ed29325077b9f862bbfe7277215ce56f76322aa77e953bc73122e7e6d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 f8e414ddfebb4d8daf7947158ba5431dc887e1d9c4a49b61a8b63b98a818f506
MD5 40c69d4d25b69dc0bd19173623594cd3
BLAKE2b-256 11d92f634475e033513b52f90346980b2b714fa42f5aa6d4b6d8a358bbb5e474

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 38ecdd77af6962e9d44b99f7561b34e9644d3403c694aca8ce80b7d845a92478
MD5 2b007d074ae97b267791203c8eb6a673
BLAKE2b-256 d55c34b73191632413cf6b1760a2f19a78c3a27cfe59048e13d34294192375f5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 acdcfa617f95980524380a4b8b7be7f914d193887cb2aa095d2f5a7071219653
MD5 870b2cfb6a5b3802d965b9b053b36ff2
BLAKE2b-256 e5617383577b389893ba17a0289351a132a79458429494b24fc168553b16b9d7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b44f82624f57f99607b7e18224be203b31f774345d332465fda2ccf720022020
MD5 6863a0f91ec5342148f6faab31ce4648
BLAKE2b-256 c85d6c41945766e61e053f43c540c0d8622eee5021e941e3acc875fb16a5c793

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 460e82b449f08e2246aea83f40c294a15d62085567b21fb25e06ca30eabccd78
MD5 49f3a647609a3f6f0346a0c1acfe37e3
BLAKE2b-256 f72166d41a1cabe5b36421c15a5789b691feab840c4d1fd3c12881ab44112b8a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d6f6dcac3e6cfc55aa9dcc7b1aaf32e4eb0ead120db95dfb9c28d2c4bcfa9098
MD5 1f810a7708439632b0a309aa17f511d6
BLAKE2b-256 f963c014fc0921702261d38e89f4bf227b6b7e8caa936316662ee9d358d165d5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 05bac8b013adad5951675fed36f8ff528b8977f13b134e32dd5afadc35880cc4
MD5 f194f748230337e9aba6adfe375fabbe
BLAKE2b-256 44e3ce732c3a47faefec0bf8db4b4d6644b61b74cb89ec0de57825a0584e60eb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.5.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.5.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9f9dcb434065825b143721ea3e5b9ae3dd7b5451139f32d0348b95c529b1df7a
MD5 c693b9739a59e93ec512f1c342b8df7e
BLAKE2b-256 7ee9cfa1cf0b72f924e4ffcc5f67940d2c90ce6a1b53d460430bce286d27133f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.5.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.5.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 77a3cab70bfa18ffeee0a35b00b829a7ed870ad85cf381ea257215e946b707a7
MD5 26567e5fe120e36df93348fd47420d8b
BLAKE2b-256 2f525efdc570d48e04bb8f96300a0839786c9972b81b5401890a047ff916655d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 06bb5f94ef242b7fcd031231b055238b32c863ed9197f455b1d4dfd635cad739
MD5 87b63f825503e77ebc77982806a3df7c
BLAKE2b-256 ef4251dc2bef1a1efa700458e73900029d84819377ec488209196db4d778bef3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 443e9153e12c507c5ef50ee94b4294056e2f41b0ffb2585020f73d6d0fa6acd3
MD5 4963ceef209ec4c1bd7e14c30af5f1fe
BLAKE2b-256 60d55c4e8683b00aead6b88734086faccebb2cf9ad7d75770861e7d8a927e32c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 4f1168e9243ac7f1084820c7f9a61402efad0112e4bd3eedce0fb54e884e7fa8
MD5 4fddfc81ba40ec1417dfe4d93346b99c
BLAKE2b-256 4dffea972698725815e2e70132964ccbdf3cacc09c02fa40a4457a47b86c8668

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 d6c0d80d066c1ec20a7daf5b2881d935701137383e05b68031bfbb3db7221390
MD5 b30e9fafc511d04619455a99cc2856f9
BLAKE2b-256 a739e47f6acda851fc090dc458bf8c34a960d194ba83671508431c30519f4a01

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 59a22e09059ccac8a19fd6c1c4439a96d2597acdc1a54b8a8257d9332dfb0b58
MD5 a029ee28fda34ccca64a696b9e73057f
BLAKE2b-256 ac3d21cb69ae86b53c890aeb91c821529b594eef03b3a1d6cae38e4e6a002f27

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3585f073a08d2b143dd6939b58cc68ae77bddc9ea2abaffc21c9d51278894998
MD5 8723bb8293d700153a6098f8bf2565e5
BLAKE2b-256 936d69ab9c351edcb3a04e530ec85801393d2d985c48bd9171d883012f13602b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 a2f4c7faa23eb57d93b6995aac40037ebb2602b54715a8540c9434436fbb044c
MD5 c962da46ad664c174697b8ae9c1b29d9
BLAKE2b-256 b70e90977e4892058a168a047c6e785ca4199ffac4cade3acab7bc127abcba0c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 cd5fbf79685f33636044c545a0cdfb4db5e4261a2b9b1a31cb51a598283a96d8
MD5 0e4ab7aecaa7c29975585993d40fdd88
BLAKE2b-256 40423698fd76ab161bc404cdab1ec0a50739161c090ba1c78e91577aa956d67f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3c122934bc76d0683c986453606c8d0b55ea1bc3e64bf1b73d09c8f798aae24d
MD5 fc139ef9b2c7b688a858b9287a6a72fc
BLAKE2b-256 2eac6965037c30268a05a5b8a40dc94f0e72506a2c96e658b1591fc4fb528441

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8a508a353be2f5a8de12119d469fc6e0bde6acb29965f301da0dae0f7791e7ee
MD5 7fa258484c12af2c712c5d3b547df562
BLAKE2b-256 025f3b9c232a7ac35deff54f1d527752aff125b147fb87e99e1a4171d9013a11

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7b0d90b1a085b59d56283ec3af65197c618459c5bd6b443bd2d3c1b70ea328b8
MD5 f6e1dfc51b64ee4b9f5c07198111fdd4
BLAKE2b-256 70ee2bb731a543450ce0109701a46911d49cdff03d85a753e6597c6ad214d194

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7efe29f70c2d1c6e2579fe5b280bd2f6f54238379858d186acdbe2a226beeed4
MD5 47b8c20054c4de7821e11195e5570f8e
BLAKE2b-256 bd93bc031e7a5acb10c700c5c62d00cc92c00bf2ad3d48e26c8cf604d646a5a8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 5fd1253362623e9294c086f72ef81e1099dd1f1d495b0dd204077de4f10978ee
MD5 b0b3c3a7ed55fbca37a7e91ecda431b6
BLAKE2b-256 cc371c7d0021209d27480e5d5eb07c53a16c4104b6ba466036f10ad555b000cf

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 feb640c7465410102dcd84325894e58b98f9fe50353d29131d2309595b880bba
MD5 03552d04b8265cb5ee281daa9649a727
BLAKE2b-256 d1e6f5f4599fb6a76f7dc2bd0dac31b6607d37602e75fc1aca9a5fd662d373c0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.5.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.5.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 989b058eefa4b294d39484939238a3d7dbd0a63e4328d637476a7be33a350cf3
MD5 3e1deceafb21f80939ced9768fb858fa
BLAKE2b-256 44e901c98307c9a3bd4f0ec7ec3406540ccfba8f324067792df27545a62ba7db

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0503250836245e9ab41a7de8b1db9020523c0bc65fa541cd9f32a72a39deb35c
MD5 e897030e773d10e02cd5afac0e22b69f
BLAKE2b-256 4059377b50c3d7398704c9e3a7626517c17e204c86b1323d9e0787cef4e23613

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp37-cp37m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp37-cp37m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 d83d3eb94a7bed800511479e874357ebaa3678e195786777eb5456088430f70e
MD5 aea73a6d4e61a4348a1092f1ec891ed4
BLAKE2b-256 26dd8ebfdf530f0a40962f628baa74d17268eec88d3d386b2eef81f476a66180

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp37-cp37m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp37-cp37m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 1fba0333de26c0070f2a7e4488bd5fb44732e199a9eb613b86ab1c544bb8a1cc
MD5 855e4278f619947334a50f2ad67b586b
BLAKE2b-256 947d1c0553472c951327740c7c6900b06349bdba04fc03ebdc0ad08f83b366ef

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 0753a7d612d15ba0859d4fd74ad20a83bd6c5c794061904947b519ec7cc3d4b2
MD5 d3dbb32571a6f4c84f998f696a871ccc
BLAKE2b-256 b3ff768d012c7b7494bc0097f7553ba30f6109037036c148d25598b22a8ec574

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 a9bfc4cbe5ba2422e64727218797c91067cd4d3f9529704b86821351d4468699
MD5 8b440c6b6498ce05703d964958bf9a52
BLAKE2b-256 6cfe8e58da2f4a982c8a14023b36500108578fdf4f0228ece507eaf3d75bcd52

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 39194055af928f188d70b1c98e0a274d3a8938e4e9447ab142b911b3274d71ba
MD5 f6237ed1c777d6ecfcd6d4edf2b7d463
BLAKE2b-256 d4b22478db41ba3d300f600c1f0d86dcb9c166fe2c8c45be861c810f451a95ce

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 e780f8664704052a3a36745314d8b816f117160ee9da56117e236e60f492b3a3
MD5 4f2d794e7358eeaf95ec0a6ad6075f15
BLAKE2b-256 5b26fe97bbb63a98d3a5c689c2334a324c975d5535403717a37de2ef39952686

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 0b07b94a6be23cb918d19cda7f675f50d2d181f476b32b4d62b04ab5f1c6a74e
MD5 b4918c18fab4a4d0d9c2bdb49a387f1c
BLAKE2b-256 b5729de37ecabbe9f36207326b0a0e8077f39ed8fb78511cd3b2083cb031537d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 016935bfd9e19011d012e80d7f42bc523ef244c7d9839d649fbe0d2e3f985ee3
MD5 0eff89788230ddb8233ec7857f5190bb
BLAKE2b-256 f13208b1cdd154a919bfe9f9051c6235ab6a09d4cb52b4f3e9699bec121feda0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8d5588d08f8df3a8832fd98cf6c67ff775f9b45b1e23b60d8d10e770cca7260f
MD5 def24d7ef1908ebe03636ae8d9b0fb75
BLAKE2b-256 7af1d9732f90711563491aecfbb80e44918d841b9029d3d7ffa468a0aab4aad5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c0fbba746eaf3bbd4042266d7739ef9496fe09e190dd956a2c67b449dcb50baf
MD5 d2cf89e8d07b4550ff15210e7801e835
BLAKE2b-256 bf92c6277278090b4b23dfe46e59250f10f00062a1fc4d65f2d282330206227c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 88451e721ea8e92bbf2021af5705367ca92aade57a46debdd50dbb8194dd7d00
MD5 e1adf0a96ca308495237848646f4f6fe
BLAKE2b-256 a2ad5d2bd67ee825b44ee6490f4f8eadd8117d5ee925d14d566b4c2cb6ffbf6f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.5.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rapidfuzz-2.5.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 32a252c38df2395e87a725bbc2e4eeab497bf0fedcf0afac03682a85b454f6ba
MD5 cfc4fdd99afcc21cd721ab56024630b2
BLAKE2b-256 150afdb38552bda79e3e08c97fe0289638d7dc5c233abc319797381a820d9724

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a4bbd70943ab52499499521e208ae4ce95ebae2c34c01d37afbbbb06b638769b
MD5 547c89f6d1b519f88e03cf0519342fe2
BLAKE2b-256 1f40bdb725688b20e5476d0d2ec165b84d959c18f9a2cef22bf3cacc5ab7591d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp36-cp36m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp36-cp36m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 ff26dfc00f91f0330e4fe1c725616bcc56aa82c1cb6d361ab0bb0ea63a4d2381
MD5 9552814fb80aaf7d6de14d3aea9f6e0a
BLAKE2b-256 4131f0184f4e0ca8caac2eea6779ddb9df0b15e3ed948461cfdc016d85ed535e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp36-cp36m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp36-cp36m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 c77ad3acf62eaee05057ddaa576cf53737ac6292e2a9bc13f47785bee5c1c90f
MD5 8691596e8664554a030a9afa66b2c707
BLAKE2b-256 198940a24b1647ae06ec7c4426c01d04098c9fcafc3ceed012a9a0795c990340

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 3a94a6d053c0a79b1fb042c078954211e7cab5f07316af56282cfda1c9df03f6
MD5 c2a8628ff35a2beb7d3b4a167449c2a5
BLAKE2b-256 66c97aeef3faf8c46b4fd904941cdf7984de93fecbd35005a4468bbdb2fe9fe8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp36-cp36m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp36-cp36m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 6d02a36eaec43d4c6ecfbe8bf8e7137db2c685f6a95a604414de83c0cf6b42a5
MD5 20bb7a1125b8ff85f213a5381ddf3fbe
BLAKE2b-256 22d916833a0084913d38dd81a3faa1978f6190c31a3fb7075a3fdab6222b3e21

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 17a165575a584671d537eb7b0c0076a18d4cdc6b60a351e92f0a8349819cd126
MD5 b8f62d4fc9a04e4a1e05ffa71229acb0
BLAKE2b-256 6a85812e3167feef9863bcc29734d5ae2311789993127576d7762601e00fe709

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 c441180bf8c89777093927ac18ca255982d4006e9e13ee5d8764d2f5451efae3
MD5 bcebde8e7379a1b3818883c7d4dce40b
BLAKE2b-256 6bd4b83f2db887b001b53c0cef868ef9875980ccb0fbca48370b3862071c6c26

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 cdf604fb6ca63a7810a6a61c6b8f1fe6e8281b15d8915fc403cfc0d0369514a0
MD5 94213f7f768f3bdd5466441485e5e3f9
BLAKE2b-256 c240eeb3b48df26458224a90b5baf9f5ca6dc8de0b431f2216992ea05ce1661c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d538395c3f6cf8370ca3d847d6d1d5eaff3dee1378e6dfae281a0be493307a3b
MD5 3ef75b7a1051ac44a2b8a8ee106a0298
BLAKE2b-256 4ae1077a986b7330a0e4b91899aed05e40f7c489c2b03223f132b7d1474fce40

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2ba131db707fce93a25580784d13f9865487dff90ae1192e88a34ea6394077be
MD5 c6dde3f5deccdb198c345d3284cee6d0
BLAKE2b-256 89c4e6106f0606ea534e91adfb02a7796e9b61c3701c453e3b9859af0ff8c23b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.5.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.5.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 79cbb0d600a6b69bc8507400084f351f7a9509f0346e206efafc2ac69e7c9e2c
MD5 f5ec8054710c4eae2dbb08563c4076ea
BLAKE2b-256 bef300435ad853a2f3465f524d1c9ab441268e40e8cbe7897a9b6ac5dd984598

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page