Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparision between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparision I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

Benchmark extractOne

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-2.8.0.tar.gz (1.1 MB view details)

Uploaded Source

Built Distributions

rapidfuzz-2.8.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.8.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.8.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.8.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.8.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.8.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.8.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.8.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.8.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.8.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.8.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.8.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.8.0-cp311-cp311-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-2.8.0-cp311-cp311-win32.whl (1.1 MB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-2.8.0-cp311-cp311-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

rapidfuzz-2.8.0-cp311-cp311-musllinux_1_1_s390x.whl (2.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ s390x

rapidfuzz-2.8.0-cp311-cp311-musllinux_1_1_ppc64le.whl (2.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.8.0-cp311-cp311-musllinux_1_1_i686.whl (4.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

rapidfuzz-2.8.0-cp311-cp311-musllinux_1_1_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

rapidfuzz-2.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.8.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-2.8.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.8.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-2.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.8.0-cp311-cp311-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-2.8.0-cp311-cp311-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-2.8.0-cp311-cp311-macosx_10_9_universal2.whl (3.0 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.8.0-cp310-cp310-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-2.8.0-cp310-cp310-win32.whl (1.1 MB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-2.8.0-cp310-cp310-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

rapidfuzz-2.8.0-cp310-cp310-musllinux_1_1_s390x.whl (2.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

rapidfuzz-2.8.0-cp310-cp310-musllinux_1_1_ppc64le.whl (2.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.8.0-cp310-cp310-musllinux_1_1_i686.whl (4.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

rapidfuzz-2.8.0-cp310-cp310-musllinux_1_1_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

rapidfuzz-2.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.8.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-2.8.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.8.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-2.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.8.0-cp310-cp310-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-2.8.0-cp310-cp310-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-2.8.0-cp310-cp310-macosx_10_9_universal2.whl (2.9 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.8.0-cp39-cp39-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-2.8.0-cp39-cp39-win32.whl (1.1 MB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-2.8.0-cp39-cp39-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

rapidfuzz-2.8.0-cp39-cp39-musllinux_1_1_s390x.whl (2.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

rapidfuzz-2.8.0-cp39-cp39-musllinux_1_1_ppc64le.whl (2.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.8.0-cp39-cp39-musllinux_1_1_i686.whl (4.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

rapidfuzz-2.8.0-cp39-cp39-musllinux_1_1_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

rapidfuzz-2.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.8.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-2.8.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.8.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-2.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.8.0-cp39-cp39-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-2.8.0-cp39-cp39-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-2.8.0-cp39-cp39-macosx_10_9_universal2.whl (3.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.8.0-cp38-cp38-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-2.8.0-cp38-cp38-win32.whl (1.1 MB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-2.8.0-cp38-cp38-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

rapidfuzz-2.8.0-cp38-cp38-musllinux_1_1_s390x.whl (2.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

rapidfuzz-2.8.0-cp38-cp38-musllinux_1_1_ppc64le.whl (2.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.8.0-cp38-cp38-musllinux_1_1_i686.whl (4.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

rapidfuzz-2.8.0-cp38-cp38-musllinux_1_1_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

rapidfuzz-2.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.8.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-2.8.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.8.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-2.8.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.8.0-cp38-cp38-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-2.8.0-cp38-cp38-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-2.8.0-cp38-cp38-macosx_10_9_universal2.whl (2.9 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.8.0-cp37-cp37m-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-2.8.0-cp37-cp37m-win32.whl (1.1 MB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-2.8.0-cp37-cp37m-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

rapidfuzz-2.8.0-cp37-cp37m-musllinux_1_1_s390x.whl (2.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ s390x

rapidfuzz-2.8.0-cp37-cp37m-musllinux_1_1_ppc64le.whl (2.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ppc64le

rapidfuzz-2.8.0-cp37-cp37m-musllinux_1_1_i686.whl (4.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

rapidfuzz-2.8.0-cp37-cp37m-musllinux_1_1_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

rapidfuzz-2.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.8.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

rapidfuzz-2.8.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.8.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-2.8.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.8.0-cp37-cp37m-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-2.8.0-cp36-cp36m-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

rapidfuzz-2.8.0-cp36-cp36m-win32.whl (1.0 MB view details)

Uploaded CPython 3.6m Windows x86

rapidfuzz-2.8.0-cp36-cp36m-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

rapidfuzz-2.8.0-cp36-cp36m-musllinux_1_1_s390x.whl (2.5 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ s390x

rapidfuzz-2.8.0-cp36-cp36m-musllinux_1_1_ppc64le.whl (2.5 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ ppc64le

rapidfuzz-2.8.0-cp36-cp36m-musllinux_1_1_i686.whl (4.0 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

rapidfuzz-2.8.0-cp36-cp36m-musllinux_1_1_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ ARM64

rapidfuzz-2.8.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.8.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ s390x

rapidfuzz-2.8.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.8.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (2.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

rapidfuzz-2.8.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.8.0-cp36-cp36m-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-2.8.0.tar.gz.

File metadata

  • Download URL: rapidfuzz-2.8.0.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.8.0.tar.gz
Algorithm Hash digest
SHA256 6a6f426e71889305a9af3612677b495156f85fc304e7e203df560d04dba0c5b2
MD5 56985b7e4d407b2e6a36f1fb37d54f88
BLAKE2b-256 463f342cbc9d755b917b31dccf8c091cedde18924cb2a248185952c89037502a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 334568e93fd54f91224084be37e4f4ae14cd945894de074e77474457f96b69d8
MD5 1b0ec887aa2773989807558562668d6f
BLAKE2b-256 5985762661ab1d6a00571c43676e43a486895ae232a82a082447b5be3eb8fb52

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9df6d76142ba518938194821444a0173e008bedf3a187291cb8f9f760f7043e3
MD5 cbc5f2ea0feb7df4709307397d166459
BLAKE2b-256 3fff5b9675ec750dcec25d4a3574a42a5749a2bd1b55678314100e44ce8649f8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 164db1b7e370310c8a5c7e205a6f62f1532061f5427201989fd4392b92c3077e
MD5 155d20954cd16d6ad9ae3638bad2d70d
BLAKE2b-256 3678706ef3e8affa3e9423ece596a26c7b82bc228a81bbd9f9e36c3cde8f39a1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0e0230be0d7ad4d5788c2b9b4b2950449d18684a51172ce0187ab8ab50653a65
MD5 010a6bd92d84e74c222f18a5fce2e8af
BLAKE2b-256 f073a9772d9f123aa9a41521bfe02c6de2c8a6d40530aefe5db00d6ee3e03d9c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6e8980082166ab350340f5e1da82e41097f4f22b103a39e3a5ac4112e79b117e
MD5 1ea36892ef755bcacf77e4ec0661c9d4
BLAKE2b-256 9beaaa285eaa8693c9be47d69de338722654a98464cf2fb277edcfd2a5423d09

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3f726a35c529948632bfd9aaf816215177764e66c47874d7dd911d0cac6ae8fd
MD5 f7d97108c340987aaf04c960aa4287ff
BLAKE2b-256 926fec4e198a60f90979da75af0ab4c67922158c713d352fadf6ad213468e15c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e068d58d32d8112d6b0f933886f88dbb75da87e5468a1f2a1935414a6b4d63bf
MD5 e71a6108edb6894a0432c4ed7c3c164a
BLAKE2b-256 18aa381dff130f29a20498d70d3ddefbd8f4ee8ec0657621bd303f3610a685f3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 56024b485f1b8b342683eaaafb9f1948bbbcf1807f721f0ebd488b5d4be25681
MD5 ca8b83227fba2deece9029bde5a46c0a
BLAKE2b-256 5a0c90408001135bd420361b2088bd3fd0151da8babff0c01bcabf524cbd81b9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3a1f26558473e4b5d8a301e92710091551a7c72c88fbc88e071201420199e169
MD5 58b7f3935b3d52073dd38be9f38f3034
BLAKE2b-256 7b1e592632e2bb15ad43ff0753aeadc102255cf29603dfd0f40002959ed5dffc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b53464bc6fda5e1b9402c42940a40254f81874b524c77e70296906bd1f579757
MD5 a83de53d7f1abb680eb0f5ac84622ff8
BLAKE2b-256 0cb894e4d8552e30cae1b128b3daa11f6f006ef1aaa3c614af6989974970eb8a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 00b12caef900930a17fb3973623e43436d667a500f4efb12a4ceb495bfb14389
MD5 9f18e08911721fa73a9005e304bf7e31
BLAKE2b-256 cce26a7ebcb4a84a10dbfc586ac61fa4aef442c0b48397383546a5141e133bc8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 db0e6bc7b13ad72776a9c1f50840d820adff547fd40a73bb4a3403b89142bc38
MD5 bf54a1525f4fa6972b14df92be63f095
BLAKE2b-256 02e4c330436c29a81c4e5fec19659244bd2f9b02fa90246881c0f7d123a9fd43

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 985dd7fd772e57e8a228ece2edd3f0b78e2eee13debfd14046f1b58a5385a51c
MD5 700024deb641ca6edd4fd438f3006af6
BLAKE2b-256 09ce182aa3222cf4752e132eb0b0ab0787c9517d2fe07dd7fca37f6e829128f6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.8.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.8.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 26735457bd4f98f53135982524bcd65e40ff2fdbe75893aa9adf60adcc6bedea
MD5 8bd62a3439d678d6fccc520a38dae378
BLAKE2b-256 eb6d1f40d4bde64148300bed7563f6cb1ac5c3a0afec020bc298b819d7098a0e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4d79dad624b4393f43d593bc0aa4437902cd8d0555784536ad098ccee463b067
MD5 41aa06fc2c95c0db2ac42248e3876abf
BLAKE2b-256 9f8477a6f28415fdd941182e94b5270094ece171eca8484fedb322aae038018a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp311-cp311-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp311-cp311-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 72a0f8187e86c8ff290429ef70f7d0b684cbcb1303578c573949e621120c030d
MD5 9d53538999e18ce3bbc29e03b1157a55
BLAKE2b-256 4558a4247e41de365e3ebeeb0e3e05f7386e40c649ab558bfcdc377a12fe4f8a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp311-cp311-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp311-cp311-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 e1462b4b3604629b848d203c242cca6a4b36215ae167eb085d356818316ad8ad
MD5 db180ef0d5434d584989245174c459f1
BLAKE2b-256 80cbd6c7de9b7ca557b8342820d2d6be98aef793ac1f8befe37fc2ad06869196

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 352302335bca19e154db17cc3fe827e6421115ec3b836f4db25dc4cec49f059a
MD5 f9c230a8bf7b6c4f4e14240bed258853
BLAKE2b-256 1ff208954f26653a44f46f76ae65b5e6e848b062ec8937cb908eb414a66e39a8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 4de33ff3c6289dce2ee1734e94c3ec17022cf7219e7c787ebdcfa91e7523b03c
MD5 58e329172e6f3865227af095718d36c8
BLAKE2b-256 38a900750758bc9306012049d534b449c2854a92f7f449a4a750859d06756b32

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 39215f96987a51548c9f4f67ee9e519fb87cdeafc93c1ca054aca5da68dd457f
MD5 199d9e185338a430dc575ae58e2a6b37
BLAKE2b-256 b427f47b8936175f543239dfbe8f07b63a0da6f5bc77fbd13f56414a008c7ca2

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 bccb1ffa7a396a83e2400b3c35e645ef653cc318271fdf54d604af8bef050bc3
MD5 fb5ae4d7074cd885d7c8982d7cfb8540
BLAKE2b-256 655565f5651778450840a4fe4b2397ce281589b49f509c7e7adfb7172c54d172

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 255bf1c1a3ae27aa5c291921250c54f1080877a130057f64995451351937e860
MD5 5608ed4aedf8550e46e1289eaf160e46
BLAKE2b-256 a9cd332d0794870730e8850efd520e635fc40da717326d4f33835f1d62bcf680

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c4540df3d08c50edaa0e7ff884c427029286d37eb64287bba4d703aed6e2c200
MD5 21105c3ac7892f9733e77561d995ef17
BLAKE2b-256 92a7b0130589d9e2f83ca72ab8a53901ea6d24ce7eb6f144ed2f637017ffe518

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7572ab7ea9ee2f1ab65dae28b6947dbc8043a756fecf679235bef5eb066101da
MD5 6025cdcb52753531dd20eed850d23523
BLAKE2b-256 29007d96139bcdaa8c7e556508800390241b0cceeff63a2424d9d3254b6673d6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b03fe8ded3e8446d3f7aaac247bdd13983086a710703b5dd15b0dfa721584e62
MD5 01e0231049a3251d21eddb6268041836
BLAKE2b-256 5c9b9fbda4f348291c87e4dd0f8f1d2902199c747f58b8a161055e4883d76fb0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 59b37b7c72d34803cf76371778a16b80a11e4874e263187725af5b5056191ac5
MD5 891ce1392552c3dc2b262eeb1aa629ad
BLAKE2b-256 864b00fcc2ad398af906e1394199aee00b15d4c16257469844813115410c558f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 594165ec428194efb9202dfd51917434831e79780279e8544d98f5928ff904a5
MD5 df3531bdcf8cda72cfc0997c9df73b6e
BLAKE2b-256 18dd455b181c63a7b62d1a5dc38fc5a0287bd2e0baac949e8c615cc8a3fdf3c8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 15eadea2c40cd2e4445902638a4b1ede59c5606157e43c9e380e74b5c6092513
MD5 ff34ebd1f4ee8045e5fb62ad64310a3a
BLAKE2b-256 7ed1fdc125cd97659145b1cb2b830f6c4b642a97217e2627954f50e08f20e6c1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.8.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.8.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 660b3ed1189626bb3400edc7bb879c94c5deabff1083e381fa46dfd5cfee65da
MD5 da33f49a81205f8c7ebd03bff90df213
BLAKE2b-256 d7f7fc79cb5c72f37b6653540206ebcdbd36c22dc9886baa33b1d416c0da9ddd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9fa6b3d96d52ceaafcc061944250db5dce97caa00db7ce1835878800dbb36dba
MD5 65e254b8399c2a0de216387ad4a81c83
BLAKE2b-256 5637c3fbfc88ba8d8c02ee5addf3a94c4115458cc7c1f4c872bffec4925f3ea9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 d10badc0ba01d933e33636812f3bad07c59197ee3df54c16519f3fe86865b0c8
MD5 db0197b4eacad7c01d42735cb43b0668
BLAKE2b-256 046a7a9cb1bde1820900a5a2aefb8542a040c6aa536e631fd526dc649e772263

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 62e74229cbf23d12f0a9bc6c47af8325d74768313fee2909992d625430640818
MD5 c7dac6bbba4b65c98d62a78d418aa2af
BLAKE2b-256 0a66e56fef9c85f80b085d3ade594409ba5e7ad8847225b7cb2208c304881003

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f8d49346f0b9bd12792ed31497129b287c536453e3aac6a464a8d29355fdad01
MD5 8ce5cc1f783e9eafaa8056490038359a
BLAKE2b-256 868c0a5c1b21a5eba55489e06df499b8439c2be1a4f335b3493b4923207dca2f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 a62c444b05621e7a4dcf147772a543ad508da5435dfed6f2e3a34262834ffa51
MD5 e38ce3391feb19b0593cc2b52b4bc927
BLAKE2b-256 3b1c9540d0245db80ee16bc952191f0a3f9a387c3a961501b799a6e4a0315224

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bdd3be2a1798d747504c2100678241ae8950e50f68f53f6a83935046cbfeeb95
MD5 17850a406653210476fd2a10fa99b79c
BLAKE2b-256 0b3cfa430ca7658e4e4ca10304fd2f5db2f4d1d51bcb5a5bbbad4aa214c7fcc9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 f5ab347b741e13ae582ee5832c485559c54027a2c5d08f52b78534275bd1ca6c
MD5 18d8714bad0cddf863f4db18df0b172f
BLAKE2b-256 9b8ad4a6fcbf77720d5ecd06f12fc80bfea7295d5f190ff7ca625e29b74fbac3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 7b14fd658fc61137082d2a9caf5e3cc239173eaf37ed8ae5a1b997dade18613b
MD5 f873a857c25c391993e56b15c6c5812e
BLAKE2b-256 a5539b10dd53573b9a671dfc51782fd02567ce42ec861394d114888640479fc4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6ba766f8a772d72b34735a36a9eb4107f17e2442fb17f7b28fe8d361f95f5817
MD5 b44208ee32436add2c14a6f8df876907
BLAKE2b-256 4422b4f5e2e611a4a585ec7d6ae8a1af0dfd6054609f2fc04df47653e7791bf1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 75f732341f89cfec4eed9c2116d9a5e6bf04740634b5f03938e99d68213d033c
MD5 df1487f9ad7c49248f12b72d4420e137
BLAKE2b-256 e3bd6961b0bd4e0aad16182a85045d7e62058e34439b2a9afce78aec41a28beb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c48898123773085a6d1fd8ebe83daaf7b64f5475114be4545e5e904d10f8c87f
MD5 6ce5498947511a5fb4f87f06e5d57b50
BLAKE2b-256 0a7ec27c51752d77ffeb3ad4d1e523d42f131b2dadc30aea1342d49565d58156

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d4731ab96772de534aeb01252a421101f0bca295612f7d0545626ee6aea4c654
MD5 e5e748c466a33295e7c471da133debaa
BLAKE2b-256 e9b60c304bc98670eaf9e0f51f48cb00241567664a30338a8824dfa2d07394ed

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d1ce6269ca86bcb2d7abf77f4a8ff33cad45fe15b6e6c4900241ff5264c54f8d
MD5 c27a5deb299b289d7ddeb0b798bb333d
BLAKE2b-256 a21ecda9ecfd893f1fafcc55cda1c767994ccdc4666a315f222476aa05edf251

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.8.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.8.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 85fe5a418c8f53daffff975da998e3e6bbe2d129294fa33f52d283c55906d6b2
MD5 fd240ea0ec5989a0ce47dfa10d7d4762
BLAKE2b-256 005cbd159902c1ed9c14d19b7d75e25bedf34a7674132fe2bff1c82bf45fbefe

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.8.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.8.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 e7c9b8e3955fa44a7cd23aee79270279e5df7d9462ce855c827405932bbecdb7
MD5 eea98ea6375174016c2ed8ed5c81ef20
BLAKE2b-256 178f960673aefcd0e21c25ad79f3575fa5e06fc2602cc8e23f583038efd13d96

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 207b4d043fa47410d06619c0a27cfe56086a2da662ec5aeeded0dd8a2398724a
MD5 e4145ec7591f9c9312617808cf8a6993
BLAKE2b-256 d83fabc70b5f42c5ff76d557db2a4b3cf62f04f42d4c324fd5c258d33c2db066

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 302381d9001238f6c19819b45b079a6326f67814a7fdefe3b41fbd43930833e9
MD5 4a35567b90253998c793508f6fff4291
BLAKE2b-256 c4dd0e528131b5d183db8f4ee6b7e245eead5de87cb3add429302c49b65a8330

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 3e7b9e4e302085670c1e0416792ab7470f630c1973620af42684a58740c82f5c
MD5 07a8d0e728f6ebd9d93a53fa18f865ab
BLAKE2b-256 01bf099abb22a612fe53f41003d9226a37b51b0c5476333180dd72f51229ab8f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 d33b4cbcf479800fe610e86e8cedd9dd777ff96ad42892a3355949efbdf8d7d0
MD5 f58dae0958ba32fda34d5a234b6ac75f
BLAKE2b-256 5e501b8f9ff478bc3c99644dc7bf037907250e858cdf066de6e7cb7cf56096ba

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 02d31ed1a87f7abe0d3350393b2c0d58ad93e5fa4ad0c298ee05fe9492669ce7
MD5 7c81243d7f974d0a4b74280f853b3bc1
BLAKE2b-256 0d30e32c187d1f0b8e9df29e5bd62b8b0de66c2d828a808f6bdb2df9b4343c9b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6456180fa62fb648c7e47b1a3db21730c7097bdee509c686a5becc6cd4daba0e
MD5 d2b366587014451691f396caa93109ab
BLAKE2b-256 c0f781fa5811bbea83060ddd32759ad11d662b0d34d9c624cba908193dade1df

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 49a90ba5ff5f16e2f931540c4255c3843bc310e8a2b2d77815a190a05b17c2ae
MD5 e2129a2cc6bdf8dafdebf1c0e9d77064
BLAKE2b-256 a533acfa769a06924536102395adb2ba3872ec49e5514ed783ef51cb08dd00b0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 705dd9d6b962c9bb5c4e8459f79c7045281ee4cf6a967887f12f3a602b418d55
MD5 185fec821a7c065c02f3f6cdc9741d58
BLAKE2b-256 ae64eea7f440fee1e51d0b776a609b2612bc5bf76d6f232728d272035f084e07

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a8a313a4ff3e87fc1973128d2f09f823fc32dfbdd8bff5d82d277067e3290505
MD5 451b578a8ebab83e4fd12475fbd5a539
BLAKE2b-256 875d328a339310ab8e80034df5770b8e358413d60835947066ef3146a5c4b7cb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e0ae591689e98a0931fe63630eccded3b3e82d34d21ca2470a73509da117e3c9
MD5 9e441ef11e8492c472420761808fa5b6
BLAKE2b-256 1fba4277a6cdef1748e1de7275d15da07804b66eeabdffeb2147ccbd85a2a04e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 026320bdae3b6857368cec7c5322adb7a59f00c9027e97b5a9ad328050b3dc69
MD5 311e7afd47b15b6e16ccf2c0dd900edb
BLAKE2b-256 d9f0a8c24beb074e0132a3a057133c5c6586846a9f806372e82e6b16e5ccaedd

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 adec5c5ee2e131afcfed08959a3b16b66ea30ce657eba935bea8a3f03035f973
MD5 0a14b5e6b507291b569c07f0a8900b0b
BLAKE2b-256 20e9d8de988fd694d6c5b1bef6c3acbdb82e6f7fbbddc4565b4dea01fbc55209

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f5a4cb671d720f8cdeb1d9ab9c823839b5f097b65004b18d48629460599f20e9
MD5 7aeffc75f6b984c2f54199bbbf1e7690
BLAKE2b-256 f06c3daf223551360e3b2421addcd10a24a6da41d1c157e0a0f2e09856afa0f8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.8.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.8.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 27188080ed2e36eab1f3b2c2f3c93f8971a8ed0bdec77f771b450e8a4ad4837f
MD5 cfd15583f30bd05eabc331d1dbe4d118
BLAKE2b-256 64c8bee9838086db79619bd0203c83bad8c9e6a0d27e078a77a72d436fc19574

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.8.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.8.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 776d091bb201951bd21ade994266ea694e795824972fff22f032faeed93e8e69
MD5 5138fd0ed032f641a2bb8b7cedc2534c
BLAKE2b-256 ca66c375c0637c0be68546bee3fc71976f483f57abaa6783946793d78fa90eda

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f0efad8c3d662c0c445afd5cc4daeba07837065a5b1b3b1ffb71c1c81045198d
MD5 0a403b607fae9d8fc1fda7869c06f69b
BLAKE2b-256 47bec131aac95fa7d3c4c7fb48cd1553d12689670089a6f533f7cfd70f754685

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 26c1063f1b92ea3352e413519530aae0648db7e334805943152d442e1917a52d
MD5 550d24d53d665e970bfc731fe36b0ab5
BLAKE2b-256 bf626cb8cdd7169725c4dac616d7715d40ed4ce4943e080f77f80246ff726686

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 902999468bee6281a3a538f293214c312903403c3a9b89e35f3580288e1e76d6
MD5 8034c69df34790543dd27ca6e0b116b1
BLAKE2b-256 179b9093cfde021b65618c645cea543b3b5934a179e99646b9eb0e75a6aea9f6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 3b6f174e49bc9f2e6d6e6b0b57ad56e639e0efd338739dc69216f29ff7ea2744
MD5 ea2af988f3191f1d3b1f1258da8deb3d
BLAKE2b-256 16a9934dc4eff6a88ff6ecb39b8c8cad800583dbbd6b6ca8bbc1988fe23d8b03

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 36d2babe5f957402ab023420314c45c6528e30dbda424101f16d090d18565dff
MD5 a6b7c26e942c3fbccd21ab41fe0f072e
BLAKE2b-256 90e785eba45a9d08e82a836ce42aef90c0cb01fd58f4d3fa77389c8d3881b04d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e2b62e0b887626167f7598043e241ffc01de7164e5cb97901aa93ff7e6ec0393
MD5 8b69ec9bb0465150710c87d3957f8462
BLAKE2b-256 bf5c4811944217fa3cc04d0d094c3eaea4a5d345d08e00da5653e1f22b440c14

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 f26df00ba5275cce914a5e92207a4b011e8db5a183544a978d990e0f579a3f60
MD5 eec96ac458069a798a4fe6b347d72551
BLAKE2b-256 c969d9f3e69764981323fbe9b451956f7238c7973fc2c24daa7f47f77203e25f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 6caecb3c46b5ee855a1f7bc9692b7125754748aca1c88b72881564018ac7eadd
MD5 205df00e3a5f0ec9b6eb1cc074266ea2
BLAKE2b-256 43c3503cf1632b89ec558b51621be7b019315ecc27e926b1c1dc6fb9dcef4f00

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 283f5a2ac66616d2c2d446bb5968b2c01b573bc08caab704b5358b79c920ba5e
MD5 5ca634fb178c38d9230ad95752f6bb93
BLAKE2b-256 a0c73627c6b7e755341f07924b7afb9b1123f866958ba3aeef8320540ac5bff0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5722cc98243167294044c9fd45712146824ecf01b17618afb140d516d891f156
MD5 65ce4e8ea3e3628571d6f86b06836015
BLAKE2b-256 617b79812d3917b522c0a34715c83186d6dddd3d378ab4350a9aae2bbed029ed

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4f331b36bb5217eb9c8662e5519a4fdadf00de1c87b1f3eeb68bf9e81a9e878a
MD5 1c09c9af90dd62e3fb6165f557e5bc6a
BLAKE2b-256 a0975eed23d073dcb55cb8865ce45b0a3c1e2e3ae2b4d80de2457cc43d862de7

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0a397a1a65c249976650b2e2d4de7861d57063a8735d0c4ca015b017ca8a25f9
MD5 40dda0a6df7384867079cd629d8d43ce
BLAKE2b-256 d13b8d5bde6a3c695ff71e77270527da1a0023795ca8766e0d62c3413f06cf95

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 34171781317e85053b7e5a4a3bd8f7e46cec4390f42a5de8d4e216da021ecb40
MD5 877b74e5e03c81619351a98774a6532c
BLAKE2b-256 f6b7e8ee731e2202d08b6110af85cad2fc858a74fc234ae16c9cf0b909026309

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 11d26a0eddbc818fc3204b77597ff6101b4fb0ac0c2c07b48d26f7b91b967d4c
MD5 e82b9cd46d7e12b9de7a4a3a82c435a0
BLAKE2b-256 e938c8368df2424125af77c26cc69213355d2df642e3824ffa963a32c1815f2a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.8.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.8.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 852a3a24b79ee79aefd428f7e1d446298b579fafce40a1776a28e34606af339f
MD5 e09c4c8ff39e5d38b75d59abbddfdd40
BLAKE2b-256 57e1568b9b0c7b4a53859b46a294c85a5646e716c8aa47775fd03e789ae2bfda

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a42339de6c7841227b18b6d5f111e0532fcaa9c8ceff3dba30d8e6334941edc5
MD5 65ea3f89c08a3daa3a9f433cb063fa4a
BLAKE2b-256 859be580560850006a3bae7bff9be331d47852d81a707498329ca3df062f62b4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp37-cp37m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp37-cp37m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 82413fa1397820d198262e2bb4a2e702bad8956f0b3b20b7a90f011a9ef49137
MD5 87365db91078b393cd98450004b8e8eb
BLAKE2b-256 eb63c38de303a7e71cdf9505b9929a86a98dd27b9c5150a071ef05af2257c5c5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp37-cp37m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp37-cp37m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 08f3499ea2860b466c40a5b2e8abd3be73f7b6961e2235f3c82044fc57231c7f
MD5 3b3f08644e8298157e31f7943b9c790a
BLAKE2b-256 82f67db8b7bff365c42e365a4d3b7eb51ee5ab1e99951add35d1294c987a2694

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 6b5d6fa67706a094339283f8e2278e608fa2763921a16b054f49a8ab900833a8
MD5 edece2c6ea275b11a405ad4e04200141
BLAKE2b-256 ad0b29f37df51f6705c0b8af0c268807490bcd114d681d4cc368fc77fe3c852b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 c140cf89eb7af5cd2a68249a17e4615a27478033f637394b64d085b82d637377
MD5 56ead384c7c097b0802ab50bbd479f3d
BLAKE2b-256 0102ea8ad5b8982c6cfebcb2bfa41b2e536235f1f722f039e1805dd447ea1ae8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 324d9ede75a47ae3d21a1be34d94f11dc1669c6733cb0f088de966cbacbe31be
MD5 94ddc2cfac49cf7d3923498c7893c5c1
BLAKE2b-256 68a1342019b77f42a856f021cb5e8de07b19e9bf41fcb98d85c90520b694a14a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 cf6e8bea441a661f2a4b63a44f936f7f0fe9a9c4cd5160b970ffbcc085a7c4a2
MD5 7d244db1e75bb936a8a8c469b0a93f6c
BLAKE2b-256 425ef6ab5948d6d82e73bdbdbd238904bd39ba672a81eee6aa67cb4a02ec45b1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 22bb195a83123dce6ae19eb63ec58d4f54ac004c0a01e5280e94250572185a53
MD5 a94920d61ed8306066159bb0cccb7764
BLAKE2b-256 68f1a83813c9c0bdc7fcca6325531acad619c56724d6d0122b1f25d14b5f8c50

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 687b10fc2e5c59c11e999dcd26467345fa020eee4ca9d64d2ddc1122393366bd
MD5 692256735b0b6da72e9d72d7bbcf454e
BLAKE2b-256 1c97031b0c6fdd0e8089c6a17e6427afe9a1200c4d7944daa7fcb6546187304b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 73eaa43be511e8740ee73e20553029b595b1c1b17244fd79e5c10db2e97efc5e
MD5 23bce988f670da303fcda75861ca8868
BLAKE2b-256 56d20b07987c3ae138e0f6edc3866a1b3add174d0a83c64613fb4ac981f64466

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1906ead673a5ba117b31e788259465adde6d2f2741acb6d08be3bd2dcd2cc6b6
MD5 f165c91b8d9d033da7a96576b5f0a260
BLAKE2b-256 d361a3d0f357a89c7fa2b7139378f7753b3b40c2e72d4012de71971a042d7308

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 d26a916defd7b21f4017b88196b2b4915f893cccd31087a68c12bc143384cb18
MD5 6b65d3c1bc35735a105ce183e74db80d
BLAKE2b-256 64e02f7fe5976a8ecea6913c3432dae1e0edb9731c77694234e7c8b883589e36

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.8.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.8.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 e0b8936a689424f43cdff24c2cb352f297ca92521bda8312cb0574cdc775bd50
MD5 cb300770fa0f60af14b8607e206de0ec
BLAKE2b-256 e32874fc310642fbaed8f32917b28668ddaaae68774fbe312146050ca195a87a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4ef914582f76367d113983bc0d14ddc0a8fde65a490fe3fa93e649aea7fa1a94
MD5 003644e1dd98bb8f92a68cb9fdf9da56
BLAKE2b-256 ecf2de7c2418d8962118cc4c95e45242820d3db5b83032b9cffea7bdd4138991

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp36-cp36m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp36-cp36m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 581728981e1b495f5a2030650efc706c9b3ebdd9ebd5bb1bcb28d54c18cd7756
MD5 416f97e91fa89c7a85d4636fb6cd5228
BLAKE2b-256 b58878bf0fb487f4545b59a002f97d7f97228c9126a938ca3ab379c1b885ee1a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp36-cp36m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp36-cp36m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 621a3f51029b01e8f61d31eef551c2f52fcccdd7031aaccb5d039527125aacd0
MD5 2e9adf9100078881adbd3aff8148d81f
BLAKE2b-256 e7d7b97bea7ad792f0478f9e1fca4df2c448a88b1d9bd13c2385a07dd690ffd1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 6f0ce228a56126faa39351186dc7ea933977ac2722b3314da6d76fe378a5d7b9
MD5 4712f4e56a524a8ff138d9f3df76e337
BLAKE2b-256 f84df291744f7cc17133a2eb9a8a093516ca506160e5928ad0427be71c29339a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp36-cp36m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp36-cp36m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 779b0d78ac1b3ccb2d9e260b9c674078bc796fb646ebe269ec04e0421767d266
MD5 345efef4c4407b6a212d3c834d4b3e07
BLAKE2b-256 a89a3553b47cf1f24df013096060ddeef8799a6102becd4d80813afe51f0d2c6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 94de9a09dd09e4d93c8cdfca3cd94ffee67cd4a65b4a3e47ddbbee671e7f1a6e
MD5 a0898b945e79b95d35d40f46324ba1fd
BLAKE2b-256 a1422ed5eb290dd1847c136534faeb87d04a524cd7e64afe55eb0697f9921210

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 6c51b3eea02ff5ed690cd1931ef2313b398b378cdfae4fe4c6f582529d043f71
MD5 d8d7a9952109202cc3a55d03b36c4d61
BLAKE2b-256 c83fb4047451df02d7f9563e92ae73b05a1022ecd57345864429ba2830cece4f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 915b4eee4a790b62296f1a71ade5bce595a54d48fa02d597642e56d55ac7f9d0
MD5 f66e2d01f2ff12d5c11f29ee0a6ceb29
BLAKE2b-256 fa069010f80390e7e74df145dac10183066ca469876b5440e0521deb0eed7419

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 402b0196f1378cbd0ebc8ce88c1834012e837147d48df650664a81ab66fbd899
MD5 bf0c2db1f585d68ba2afae183868b14f
BLAKE2b-256 8bb71371acb25a102ab006eb1646a82820a3b32558f68962ef0a796ce38cf36d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2104e5def7fabca433b63a7ec85a38843b97b028781d555038b0c885fd4f020c
MD5 6c861644511cdf7397a81171cdbcdb4f
BLAKE2b-256 7e032d589b8779976b5f3298d64c4274ace87a0b9693b928eee5951d341a11ba

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.8.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.8.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ec4f429d7c7759380c616738c946dcb56dc7b5a5e3cc7c219dd2044fa555ab8f
MD5 988867b1dc007f2aa97301ff2836d511
BLAKE2b-256 0629db599ee14b431d7eece47600edb5cad534f64bf8d99a09614e16abfeb63a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page