Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparision between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparision I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

Benchmark extractOne

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-2.9.0.tar.gz (780.9 kB view details)

Uploaded Source

Built Distributions

rapidfuzz-2.9.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.9.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.9.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.9.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.9.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.9.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.9.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.9.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.9.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-2.9.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-2.9.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-2.9.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-2.9.0-cp311-cp311-win_amd64.whl (912.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-2.9.0-cp311-cp311-win32.whl (815.1 kB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-2.9.0-cp311-cp311-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

rapidfuzz-2.9.0-cp311-cp311-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ s390x

rapidfuzz-2.9.0-cp311-cp311-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.9.0-cp311-cp311-musllinux_1_1_i686.whl (2.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

rapidfuzz-2.9.0-cp311-cp311-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

rapidfuzz-2.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.9.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-2.9.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.9.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (2.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-2.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.9.0-cp311-cp311-macosx_11_0_arm64.whl (995.7 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-2.9.0-cp311-cp311-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-2.9.0-cp311-cp311-macosx_10_9_universal2.whl (2.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.9.0-cp310-cp310-win_amd64.whl (909.4 kB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-2.9.0-cp310-cp310-win32.whl (812.7 kB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-2.9.0-cp310-cp310-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

rapidfuzz-2.9.0-cp310-cp310-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

rapidfuzz-2.9.0-cp310-cp310-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.9.0-cp310-cp310-musllinux_1_1_i686.whl (2.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

rapidfuzz-2.9.0-cp310-cp310-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

rapidfuzz-2.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.9.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-2.9.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.9.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-2.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.9.0-cp310-cp310-macosx_11_0_arm64.whl (991.5 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-2.9.0-cp310-cp310-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-2.9.0-cp310-cp310-macosx_10_9_universal2.whl (2.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.9.0-cp39-cp39-win_amd64.whl (910.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-2.9.0-cp39-cp39-win32.whl (814.6 kB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-2.9.0-cp39-cp39-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

rapidfuzz-2.9.0-cp39-cp39-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

rapidfuzz-2.9.0-cp39-cp39-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.9.0-cp39-cp39-musllinux_1_1_i686.whl (2.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

rapidfuzz-2.9.0-cp39-cp39-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

rapidfuzz-2.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.9.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-2.9.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.9.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-2.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.9.0-cp39-cp39-macosx_11_0_arm64.whl (995.8 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-2.9.0-cp39-cp39-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-2.9.0-cp39-cp39-macosx_10_9_universal2.whl (2.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.9.0-cp38-cp38-win_amd64.whl (911.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-2.9.0-cp38-cp38-win32.whl (813.5 kB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-2.9.0-cp38-cp38-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

rapidfuzz-2.9.0-cp38-cp38-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

rapidfuzz-2.9.0-cp38-cp38-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

rapidfuzz-2.9.0-cp38-cp38-musllinux_1_1_i686.whl (2.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

rapidfuzz-2.9.0-cp38-cp38-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

rapidfuzz-2.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-2.9.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-2.9.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.9.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-2.9.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-2.9.0-cp38-cp38-macosx_11_0_arm64.whl (994.0 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-2.9.0-cp38-cp38-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-2.9.0-cp38-cp38-macosx_10_9_universal2.whl (2.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-2.9.0-cp37-cp37m-win_amd64.whl (906.5 kB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-2.9.0-cp37-cp37m-win32.whl (812.8 kB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-2.9.0-cp37-cp37m-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

rapidfuzz-2.9.0-cp37-cp37m-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ s390x

rapidfuzz-2.9.0-cp37-cp37m-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ppc64le

rapidfuzz-2.9.0-cp37-cp37m-musllinux_1_1_i686.whl (2.8 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

rapidfuzz-2.9.0-cp37-cp37m-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

rapidfuzz-2.9.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.9.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

rapidfuzz-2.9.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.9.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-2.9.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.9.0-cp37-cp37m-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-2.9.0-cp36-cp36m-win_amd64.whl (902.3 kB view details)

Uploaded CPython 3.6m Windows x86-64

rapidfuzz-2.9.0-cp36-cp36m-win32.whl (807.3 kB view details)

Uploaded CPython 3.6m Windows x86

rapidfuzz-2.9.0-cp36-cp36m-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

rapidfuzz-2.9.0-cp36-cp36m-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ s390x

rapidfuzz-2.9.0-cp36-cp36m-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ ppc64le

rapidfuzz-2.9.0-cp36-cp36m-musllinux_1_1_i686.whl (2.8 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

rapidfuzz-2.9.0-cp36-cp36m-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ ARM64

rapidfuzz-2.9.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

rapidfuzz-2.9.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ s390x

rapidfuzz-2.9.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ppc64le

rapidfuzz-2.9.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (2.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

rapidfuzz-2.9.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

rapidfuzz-2.9.0-cp36-cp36m-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-2.9.0.tar.gz.

File metadata

  • Download URL: rapidfuzz-2.9.0.tar.gz
  • Upload date:
  • Size: 780.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.9.0.tar.gz
Algorithm Hash digest
SHA256 c2f6a70db369cf74068295c4bd6332bc38a4be030b07127f1a4f6189902a7c3e
MD5 a962be22a4a5e4819b46bdc4016dc567
BLAKE2b-256 d224f60db8a8bf7dec496ec1ea06eedab8790329b11ef5c052059011554be51a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3d5feafebb9e9a1e5806a7235daea4c644c7b6904b03b420596aa2f97ab741fb
MD5 19e240a3e1defc354007f6f574f072aa
BLAKE2b-256 f07aabc14e40e5be3e3a09a1238db89119904ea243bf23c785083fce9de2748f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8534c594db754f8b929cac5a4d83215c65f128c76f0e87a80e58533224a29213
MD5 ac067568c41c979aa7d7bc5c447bb38d
BLAKE2b-256 fb8118ea3df18d8298b81fa302d2ea2dce3a756a8aba2113b29ef5a3b4528ab0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f355babbfab11bb4f3cebbb25172008a05906e05807b7149e9bf219829663da2
MD5 69e1ae8144fac2528b7fe721872fce3a
BLAKE2b-256 41bcc9405c7dd8ed7f0c15fd1c0db3979533eb680fc73fd420fea40d3c068562

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9fbe08ba79cea842fe3a0f436d9d5402aa032b10b7f1ccc2bf253829aff58192
MD5 0bf51736448da7e55f25596e3ffb3340
BLAKE2b-256 6fd92fa4ab8a1c73b559f18008c7838c0de1835a01aac08162cd29116e37e878

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 19372c6d075a861ff12a8ba6943d598914d0bdf0e4a3b7c53c63a104df473d51
MD5 605e173b2ed2c73974c6911fc6bdc061
BLAKE2b-256 e83cb7f87a7648f5d6ee9d7c10602eb05f2bf52b967660bf9c3a08e85e7f191f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0573561a26ac71c4e865c87813c63283d174d371a1e33b84aee9eda386ef6bfe
MD5 4c6d0a4af0967cf9ca93fe8b8264ee3a
BLAKE2b-256 106e35df7d8b6781fb319ecb390e6961bac900fca30a74b4ac9cd03b8e3055a4

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4c7aa079ca7543c53951020f2366f5fc0c933a1eeaff1868a44ef575bf6903c8
MD5 190cf6ebbaad58a25e622e0e154c7d19
BLAKE2b-256 b5de5cfca551b3d773017fdf310dbcaf4b0391df0fb6b1e1be4af63b4905a281

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 43219d907ae049f2b63e82f094601844c13bc2417ceac73b214fc65d1132f5eb
MD5 2b2a51706947036bbe29b53e96ab15dc
BLAKE2b-256 b45eed61ee9e26cd9820d0f06d9cc26b6160621786dc16a5c65c583683b4e659

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 709732675acade812c21f0f6023de20d80f9e716c36f3b64eccd3e5366bd8c60
MD5 9903f260e37ef0e79e4976e39e6d7054
BLAKE2b-256 eb15cf61979318d282d4a8fdd661d92f731b01d51b8e037e6c5ab8d58b19d8f3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c83208c7646f4bff3c0a27204e6e603880ff0d09e0c3baa406e41a214467c151
MD5 8eedbd2acebf6111a37fea9f2c711cd2
BLAKE2b-256 66004a56d9e36afedca75987e6637905d6229651724e7a2093e88ab43ab7410b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8e25990b9250ab34dd2c17355b14599bd7da3f8ef92bb2c2b334203add4a0ba6
MD5 9d882688e2eae26bdb3dd81f0cb741be
BLAKE2b-256 6103770888bfcc2563db4effec8facdadfaf483e07022a866463f46782d90d3b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 faf9a8d3613aa58e88b88620c40dc1d351ac1892feaf3959c5bb7ebb43d2d63c
MD5 6a03a2809e00f50584eb9aa3d03e068b
BLAKE2b-256 c1291b2c780e941541f8738d81196821091177d1b9cea299ec97ff944019230f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d22bda3e4a84f43d3b4786261a62a7d970f4c8d29e8f7a93f6ed38cec462db9f
MD5 8c3b1a5bdff2ee63aed88e2926ef5079
BLAKE2b-256 5a0292965f17771ac45909d9970433f407f9adc4d4d21d4622df1837dd59eea5

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.9.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 815.1 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.9.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 5cd98c2bf78d42615c840b4ba8eede4cda3ea43380e9099b2171cb3f9ccb5068
MD5 eb64d702fc09296e40d76f0274f366ab
BLAKE2b-256 c5678be4ad49d95b335cf11e255cbf9c2ce722c475375ecc428f9fea99a8fe14

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a8d9f1a4e87c21f82adc7e03c3b1cfbe1943c15b5ded398b4ba7ccddf358a0bc
MD5 cbab3feb75e7431d2bf4a623c8a9949f
BLAKE2b-256 28c5b60a46729401107d368a58737e17bfad603d10b0b3308e32cce6146c7400

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp311-cp311-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp311-cp311-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 b8c97e8fbe74a318de83e252cb6c4ddbcc10cc5a26ff1d3df4a44ed05f98613f
MD5 3e65f4a9fd5fa8aca6a5ccbd6e8cecf1
BLAKE2b-256 f3bbba5a64c0bdaf564b5aac641c9740b9fc3f249c07cee16f88e89751055e50

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp311-cp311-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp311-cp311-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 c8ad2e1c7171f08480d500560af95ea1098f379ae742db84813f302a36dcdf51
MD5 445c2bfac5b7ba717557102b43a618d3
BLAKE2b-256 cc8eda780c930e2a7d5e2ee1a115c71e8be26cc5c3859e09a0a5a7dfafaf70ff

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 5d9efae73612275bd26d332dc70a1d80d13544aa0c0e222eda1f6aff32963d6c
MD5 4f1ffad20c925b0fee5da222b71fa5e8
BLAKE2b-256 e7b8364d2c55f25b0513db1babbf6a9ae46a4bf0635ebbf3c8489c72e1b8e388

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 e5297a3c6a2d6f77af1f1ebf15174989d214ddbfa038b60653478e4c022af777
MD5 b07b64c70fbbecf2b77545b4c5048793
BLAKE2b-256 9bd5d14462311a54208191f12354e7d4e51b1092df5b4026f81b183e4e03db4d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4bbe8e3e977704fa8b2fabbb520a8d21f35bdb11da41caa4841ad73b28a400e3
MD5 733e8d5dfd599db5071b1145d0ed8047
BLAKE2b-256 0f576d83c2cd15d76d659a214b96eaec821cc9acd861c437e34b58b318700cc3

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 87e6195f31ccd90885025e702818734987819b9999cebc5807da09d9967b78c6
MD5 91473f3743f8e501881efedad8085557
BLAKE2b-256 bccef3bba031f7b954537f2f7ded2cdfa956ef5665e20da6de7b688925a36f78

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 9b7a7ba5e28d870b1ecf4a17959f9c49dad27c71e7ad13eca5a24d2c35a9f82b
MD5 a367de31fb7ec4add3424976af2317e4
BLAKE2b-256 5e20369f7ad5147f8e43017a9d82f8c943fccf85eb53926ccec4bddee06c884d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 558deb45784440e26e2fc743f5b0d6d7890ffa04e1d264a2c51febe0baab11d9
MD5 2e7c3e78a9d14b07bbe3a8882554ca14
BLAKE2b-256 6f782a4486f988ffa5fd068cec67e2d92db3425c2e937b01847c15a23b65d044

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0d91adfc55903b955acd3a36dd19579c6628e4f3c1a99da363ffdc8639308f69
MD5 89ea54ac6700919968452db6b6e082f8
BLAKE2b-256 1ca82a0c55e4c05be672b96d41497ca18ed572cc93db8d775545d056872e6d54

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 84608310f78746caaf10facfbd5f3fecbe862c6e9e6be42121d762d891b0e8c8
MD5 e240fd569641f43c0cc67493d5b5c1b2
BLAKE2b-256 28a314e42fbf7a59dea909324627a70a5a52e7f7f058a623640daeebf22c478e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f561fa805f420abc649a59f00224e5175aab37b40f147f0b77b4ee72cd2b910c
MD5 fe290196a0f08e8fbed8f41a431a6501
BLAKE2b-256 0f3400972c238c43b306bd3c6ab4355aed5fc155f1f9cf8367deb8866bec976e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 3054304fc509a2dfe8c65970db416c8508d6df7874c9b2772301abbdd1366fc0
MD5 212b194824a3d704242dca88b1ec3177
BLAKE2b-256 04d07dd54b01bbc71b7df59f7d6c0b05b5e40a25df6a2d0227f343c9384631e1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 46eb47ad910152237c76f70e593767d52ee4602f7a1bde4833caff92d162639a
MD5 c961db0c250b035c399d5d3d178f67a2
BLAKE2b-256 88318a329d5f3eb241ce29dce90e84e270b11862452a91d130f3020d46c205de

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.9.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 812.7 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.9.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 eef6355dde9f0b10d287d3e103fe8708c6c968c37cff73d50f035787865fd966
MD5 02a006f94fb44780427413d0126a8aa6
BLAKE2b-256 f69e10b85bb401805e6bc8b7dcc655824aceeee66416422b856b0a46fde32933

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 963e9cd4dfc8f6bb56a3f8255f4f954d1b7bc3d405364b61bc1149f5a664f961
MD5 b4a69f8a5b2fb223518a571cef93720f
BLAKE2b-256 f052c4781a46b47eeedbcbcce5b4b60895e7e062140c26546079153f367e667a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 c5a2b22d576ef2281f11b1c9afe982ad2cbdd6fa119e34569a67e36437ed2df4
MD5 86fee0543140818a654aeb3ad8e2b77a
BLAKE2b-256 cee5bb7a20207f04af0990def3a2c26e20d9d2b6a8fcf33f7572f1d0bf1af72c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 c6d63084abadb8e5e049bd8fa2adb225a251e94ef29182459531aeb01bddb36c
MD5 a7509d4b952572d494abd1a3833bb30c
BLAKE2b-256 94568bb370f0f082c3c3e1d4c56785075fc463d5e04ba6bd96eccf8f1243e4d6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 8a71d3aaebd37b83f8273d3fc96860a15a0edba036418bdc80c09849181eab76
MD5 83e9e0762460d9821db38ec69f662f0f
BLAKE2b-256 9cddd9acd592df142d34ba68adef04350e435cc046feb6b010bc42e3d048d920

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 43a662092c63f74de6b55e39a58b41cb7dfd3de9c9a856f725d7dcaf7cd077ad
MD5 5432a6a150ab30259519e8c09c4e7ccb
BLAKE2b-256 7f2d75c1aa0f9d391d9e0c7d79bbf37641869f85ceb31528ff3a659b51b2cac9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e10b891b233a89fb11bc478eb915dd256e23961db47f5e6385a5a64fda5d2818
MD5 58e7c8b5af0f309c1b38f07593a36de3
BLAKE2b-256 e8c8ccd0619fd31c7a6fe75647f5cbea32e375f1fcb6e40c35cb83d6149069eb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 bc259dc4d7572714bd30af0a32d3e57628893b966cbaac30dee116d7aad33561
MD5 167e9b2b809ac8b8667aa9916cb23e66
BLAKE2b-256 1f4b933e07ad9c86b69e53cbc5b0c49a783cc27777f57fd01b532d34e4cadd9c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 5cba137075e5ac65380bdc99484480d161d6ad903d2aa4c7389e5c9cab8e7122
MD5 b08e377f2c4cd22d87de30661147e45c
BLAKE2b-256 adda852c1ba0f63fea45e7ee6424765fe1d5e4f8d29dcca24ecde01b324d9610

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5cc277cfce65e36320fd48edf6b8acbdeb869e742114f9b0a874c18e7e998dbb
MD5 f603e2ce4be3cb44c69d337bd0f1f192
BLAKE2b-256 68ac757f2c9b73a62db861034ece0192f58ff3a8370690d5a16c5430a4d4e63a

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f30af639695501fd09b39f7b957d6ece71668035c9ff814fa995384fa46840eb
MD5 95ca5d2e476438e3e91b20849b4c812b
BLAKE2b-256 4151e6223f0f1c5e227231e97235531fe4003fb03ea6ddd90767dcc6177ce33e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2380862db3ac85e14d745c4da306aade63f49e60230fc17d10ade451d7e08ea3
MD5 b95af692500ad828f5770be151d82da8
BLAKE2b-256 040f19a8f4090e5d4f188f26c3b9e4d0ce8d47a2b694bd12b7ea2a2d12d9d3fc

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f42296e9c441040223f0605698ebcc2561d50d1e446339e2c4a19683104cacdf
MD5 db156e7864b7814f96f0806b622c7d83
BLAKE2b-256 d29d11ddf3fd603926824767b3b6b75da38898f75601540ebccc8444e554f85f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 9b5d11d68386e69569a24154bbe7d1c804252e3de1898dd4109c5474e8a01310
MD5 b34fb0d497c9399ccf11e99a9565b92e
BLAKE2b-256 514beb89c2c362750ff72468f5b0406dd1926f7d18385692ea64983a5f55343f

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.9.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 910.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.9.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8cc12ccdf615f90d1d0bd0032d0c518494b99842c713db1b516b4099e6fd488d
MD5 39dc3b69be37fd5c8cde0a8b38c7cb82
BLAKE2b-256 cc96c2c22a013027adc8aeace88b948048fe57fa392513be12aed4ad53bf7598

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.9.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 814.6 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.9.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 edd1ac20a1d8950e8cea970df4455c89d8599b0487aac0f6ff0acde61191f7be
MD5 9df53fc897066b0fd0e8904f53389141
BLAKE2b-256 cbddfbb49a24aac18fcb91f0fd3585c3a5a84a3c122ccb5c24484773d189a8ae

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 38ee3d00ca63333e3001addc5f88341a4f3f1870b53a5dafb6daaa6afce64cfc
MD5 a1626a504271f2382dfd553d7834f85d
BLAKE2b-256 b4d5c669289e41189b49df193657e3dcb9718c37eb0ec4fc1b2e739730562eca

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 5e6e2cec0c327d4f9debec103e76b095d6a28febd9e794784f4a9f1604e3ed64
MD5 ec2f5849585eb57ba8450cceb838324b
BLAKE2b-256 30accd38daa0e1b95446d1637e3f2a97abd9f3c8bb2c1cd6d82432d3d978cd2c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 df7f5b8142402603ba73104c66b0f396abea55e543a14ac8b8cb82c0e5b39c0c
MD5 a7d0eced39f9e12162f6fdb9430141ae
BLAKE2b-256 eb0cb8e34d86f6a1f28a5a82612d4d60f831e3f0d72780da9d9258977b1914ad

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 3936a8e8d3c4e351bdb382c9bb1346724e46ae12a34fc08c05d908743e2ae081
MD5 c47204babf613d41459b267696db1006
BLAKE2b-256 7b7da777957117191756aff75324a94b490cc1bf2378c9626b58ff35135fc27b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 bc9f6f68a272500724dd345b3e2a44bae6810b4fade81ddad392ee206f0afed6
MD5 3e2cb25b653544faba1a97538cd46781
BLAKE2b-256 fd48f9dcfc15fe98549cfec582be82b7e081aeb3d77b315a157706da37ae49c1

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5af60342061b31be7e02b59fbb43bd9b503847a15380025fafa13f637adc61fc
MD5 9ff72cea0abae4dd4cd168026135672c
BLAKE2b-256 04296335cc7e443e3801ba01077d7bdecc7d2877340a4c88a6f1f1aa9084f702

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 7a3c92f62d63469b78d815661fe5395ea3635898559365f09d128f5f0cb4c88c
MD5 92731535abb7dcde3d07db79033a217c
BLAKE2b-256 f15abdb833715c7baf5e298d74cd6b3b560e8ab197adb1a8f64f8b3c68b4adcf

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 0413915ff450bcb8fabd8b89a40017ecf5287a96c28e1f6f5e9937eb891d2a20
MD5 6ba5004b00aeda7f62d824630f19e88d
BLAKE2b-256 b52a4ce3db33e9036b01ed5d3df6d574e9a94d31889d0f203962e68329a73b13

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6ac93d62dee0ab72c5a2a798a695d16aa831a3b0f69e42e03327c1122a1587bb
MD5 62b2d354e19a584cad929788179f498b
BLAKE2b-256 acf5a5e9ba796bc8352b9936e713750769def77459f87a5e67cc2eb6a35ae3c9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a1c80ef1e65d392a9ed8b87675e04dcc8b937ca993ffd58d4d0d0902c53165e6
MD5 3c7270121b834ca2ac1f3b8411ebec20
BLAKE2b-256 dff0de5042842f9c7405b1f6d24be981bacfb6c3c229fce6c22699f41b6ee142

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b0b5f170ad4d12649480112021fbad179b818ef462aa8be597121595e29b2d11
MD5 b18b90b9d6c1f12b2e6d4d221a0509a6
BLAKE2b-256 026332a512d97ac3fbc9dce6cd5437e7ef86debb90d7a69ed70223975133d99b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 17167944593d9974ca9a2192cac5e9e3bf024c10a1ae7ad81c5c87533a1a483c
MD5 8f4348cb10a5b3bb1a087660be621760
BLAKE2b-256 e57243cd14390410acb80527a5271ce8d862a61b0e9d00ae58654348d9129010

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 4c6ddee589d7e8953d8ccf5c60faaca2f7fc8ce7f1eb672886c0b152d95def5c
MD5 ca0c88bfa1f3dd354ba03c90264004f3
BLAKE2b-256 44e1948414bcb3e527a2cdc9b0edce0eb9153b1fd490161586be1f9f579fca6e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.9.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 911.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.9.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ac933e2e9e75e72ff6b94ae162145cb2d4fcc1542e58620d8a72a75267d0833d
MD5 e62361640806f15ccc81bb04863040ef
BLAKE2b-256 a167602c9631f592194c3978fd822f36d133af3ca0384f4de0855803ca825106

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.9.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 813.5 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.9.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 9ba3c6482b7d579377ac234181cbb025e1c308920c6943c70a27ef3533c35ee3
MD5 bdb799485beb492c45b2fa6e3feb20e3
BLAKE2b-256 601c422ad3a0ae40c5ef7df2e6484843d30e0ae7264150330f0518174d1f64e6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9bd8945afd745c85d35760d9521e00487ba566f5aec2b2c35c010f6e3f187340
MD5 cbcab3b70769899a6a2a1e246f9eece2
BLAKE2b-256 c37a2d3e7ecdc3cf96a66739620d0012055a506a5ea651b1abb868b3db87bbbf

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 332bf6b70e46f909d45107efe42b99f96363a9424767e2a459c0eafd953c9268
MD5 e3c1c0d18fe4ed0d3e22a1b4915e1042
BLAKE2b-256 171f6b4f2cd0950e67f4f3495a9b1839c4df70a777aabd914aa854978d9ae587

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 7f4633ebd7aeafbe54dd60ec2b70a8269100ea7db6ecd7674d5b95c7993bb9ff
MD5 1763d23a8222dccabfa3bab9b53e4feb
BLAKE2b-256 81ab62ccc30e8d7a237698da65615810eee68ff048e2a4b6ad509e3a266776f9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 d73066430c003031f98f190a60dc21d1e101a7b2c9e059e980f3a74c7aa66da5
MD5 5c657b0da8dafb88cdc52b6c798230a2
BLAKE2b-256 677d74830756e39ca8f352b39680795095ecd88efc097978d038e77812270847

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 de64c2c08be1057b373515131fa64cf152e3192738b3ceef6656ed54acba5315
MD5 4c21fb84cfebeb7217287b075993935a
BLAKE2b-256 756c692bc2718ae6d3f6d456d2858bc2b2bebcc700b80982bb6c494209d34d54

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 465379bef4feee9f5abf67ef3edc556645ae42d4252719ce640d4bf3b7443b41
MD5 5234bc197219f7d9289230440b34d1ea
BLAKE2b-256 3de5bfd27d51a11e1e9d74d253d44b99d61d6d6b04bc23bee2be7dcd0e0dca88

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 044aebb5b9da36877a1fe2fb286205364773c957b03fa895562e871aeb4c063d
MD5 6d93d139e69e2260dfd5784b0137f2aa
BLAKE2b-256 8dd16b400308417ba51282f7392de05b6d37cde8956756c4fc2433f5fb97093d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 804c0ec18f2af5c7de0e51dfb90cef170c50664fe43cf6c9bb0e025b44f6273c
MD5 831c46dac904e31557aed558c86e4b25
BLAKE2b-256 738e704bef98e597013ab8ddcc02a55794e0697572b15068dc6664b211d5ebbb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4c5ad5b8bf6e56b16d4eeae10c97778f4d44005edc100e77c845d7356c0d157c
MD5 a5e3e63b9ad0a5c40905b138fb5424db
BLAKE2b-256 b8994330b8c7c1bc3c45503874809c1c47c25a0f36ba66c39e77483bdefd3a4b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b4260daecca1eec9a1ddb9581ae63a3c11b96d751b9f8bdf0893f137c3ba37ac
MD5 f86d7587d86473bb3dad783ea18673c1
BLAKE2b-256 73b44092b9bf28900147335f242b7ecf6de6c341d18cf3737f89b0c7695fc026

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b1848d5dd1d3b91458894def9ff450da083bf9107a79d5bfada5d012a9b2d67e
MD5 0bb5e2e52d3392b61fd8600b102ea3fd
BLAKE2b-256 474f6b1362e90f8417d12c4cd5b10588e86b20c41ed61366f180bc127f94290c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 84d7c5c2c31e11a5d4f709b27bf5012fc3eeb74cc6d1ee45b2b1d50e9a700c5e
MD5 0ae2f6b82f5bd17f50ca3b6164a302e9
BLAKE2b-256 58f66b7c759b5ae5aab4893d6887adb0823d40bff9350b1bd96078c06e44cc62

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 22526473db26580a5a70437fe5b3b7e33efae7e69d9a9dd4e20673e2ec9f8592
MD5 5ffa475dda3e19d288d6a017a44ea386
BLAKE2b-256 b2904b6bcb8bf8de0feaee36142f95fcfdcbbacc01b8fd40cbf14a746ab22bd0

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.9.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 906.5 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.9.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b567d26eb2e959f3f972dcead85345d43a0951249d792c02765fa4aed6e03dd0
MD5 a7874a3fe523f77588c584fdd336abd2
BLAKE2b-256 b4214d0203f082af831f4115498f1f906ef2fbec57ce9ff52b134f4d179c0412

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.9.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 812.8 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.9.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 d436f49813a984c2785c452cab15024781e3fa2dd25d5d574df8032244f8c85a
MD5 7be3ddbd077da98ff7077269fb5f1f44
BLAKE2b-256 7fb005edcc62db8ce3e57c48719df046f56839a90d4aef6c4650b042be2030df

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1ba544dc396f70e4cd6add73abb5e235158840b146b882c157dabbeb3a0a7f23
MD5 d540e8cb34981367a92945618ab47504
BLAKE2b-256 60edb55a895c9a3bc93f9daa5fe75fac9697ce609394bdc1b91de9bdb2a5cc98

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp37-cp37m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp37-cp37m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 39b2fdf89aa34b4f257f729985467be206ff24cffc4b43f61d4a13c4e4dba747
MD5 a033d45f07290b622446deba27e3a15d
BLAKE2b-256 5b1ad8d8c35677cb045d9025485b79bddffb65096c1b4507dd1e212282c44ff6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp37-cp37m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp37-cp37m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 11a20f4ba0ef38c8fd0f69a24aca4ed07175e07ab1640f4cfec840129b5f700b
MD5 ac01ad4f18a9d793233b249107b86a3c
BLAKE2b-256 103d00ba5354b47b0245c655f0323bda86d253f9b29804aa764fa7711db8f997

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 8189fe87f497f743ce34321dfe6b9f9a27a5ead57cb9bc7d035fcf777f7778dd
MD5 1dc70f91d2b3382a2c4c26d2aa3439da
BLAKE2b-256 219868b93fa7bdc43360f28e3cbdb74018993c0a10c5d9a6d2ada56932ee669b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 0adf814da1f88689153aa0b91fa1e760316068211e721b44eb4796c67e53b678
MD5 cf4b5232876bb64c368ebf72c893eaeb
BLAKE2b-256 2cf02d88d958ca95f97dbcb4fefb9e7e57dd63cb848a0368b0ccc0cb5b9295cf

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6eacd7150140c022668ba471db061bd132b8b09d12cfe2961adc47334ed318a1
MD5 25fd893b95a1257ec03f6fbe6abc8e80
BLAKE2b-256 15e6ed7e803f4ae482f13de651e094e68c613bbb5a950d1efdb436798c6c054c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 6af60c4e0581f320a1ea25f64b9ec73b95033f46dc1d4859eff1587a20f71beb
MD5 9badf87be05a5abf86205899640db6a8
BLAKE2b-256 fc1450b4fa39377460cb12b0701dad734e19519ab2a028258ad166cc296a3f65

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 2ece0a1944862b066b58a11946c2ef8cef8c2eb219dcee6e819791ffabd2f060
MD5 79527ce8ca3a5e4eec2c90c2f05333bb
BLAKE2b-256 2cd4b956f51f266af735c44403e525a0ab5cc78a630902fead4eb35e10267b47

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6aaa072db8f015b47484bdc03a08d63240af3c670137ae7d30238490ad395f2c
MD5 73a7410a75ddd25431a740309e36156f
BLAKE2b-256 94afe6561a991c236cef79b82c6dbcfeaa670d1df5c8924dc52a26b3dd02cd3b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 32fbf47426939dad1000b05db08db12261f04cba5323c92965f01cbde3de1943
MD5 e0c9e7561b7d2262a5f548dc6cd639c2
BLAKE2b-256 f3acafa04a08e4c6e5c0aa2d6d42d44950054469aad9db0ac509d1a36f42d06d

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dcd09a3f6ed725bafa2e6a5745dcf2ceb063888f38f7f1b3da42ac3ea3fb49a1
MD5 e66e8ffad753426665c73ddd18ec6168
BLAKE2b-256 41b8fdb1fb92ca420e6c87471e095722b1c37ee330733effa52bfcabac37f751

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-2.9.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 902.3 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.9.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 070aa1188a4fe9abff8cd8e303c9a6a15b6c7ebc229bc165d4c8848185dd849f
MD5 c84ed90b6cc3a323369f6b2b4f02c5cf
BLAKE2b-256 17e5735d681ce94ae9c7b4c121e96f0fb7f623509e304f452bc75f4a78ff4854

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: rapidfuzz-2.9.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 807.3 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for rapidfuzz-2.9.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 25de6e7fecaac6d753072b64e69c4c41487e52d419b4ed58452c27fd6ba31e43
MD5 c0c1f0d2363c6befedddac6e3c573073
BLAKE2b-256 9841d0d47815a157d8b68b1cfa7b4c64f205a0502078a617a9be5aff3fb30500

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7893c27b5051f779ec7d4195407922b12b4bb194a184856de9906b382bd85127
MD5 cfe8d23a911703a7b3138db4cf5ea1e1
BLAKE2b-256 b8b41375aca100f419aecc75862eeb73edba69311deab4024457ac48681937af

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp36-cp36m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp36-cp36m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 c48b0254c2daf2a314de342df5a967fbd24a8fefe32608ac3eea00debb86b367
MD5 1a1e6fbe2a4d689ba1aceeeb9fb07ca3
BLAKE2b-256 abadae52cbb26993957c95a33edb4b3515fb1509716d4ec19d54a6181ca2d118

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp36-cp36m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp36-cp36m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 28a1d213aede0e68943cb7d8aceef4c5908b24d5d3c68fc8d305f86189ba9cd3
MD5 0c8f072e0e72dc2ffff16500359a5df6
BLAKE2b-256 f1be23b74b547de394d78fc26a74453a9f81dba76f811b528c98abc6619a36c8

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 8dbc710af7e52cbaceb8ced90f17b09ea9f06ded0643c4ac93d5ec66fe5ef7de
MD5 e57e7ac4d82adf793313221c7622b3bb
BLAKE2b-256 5f16bf7b6855c0e8d67b0794fc263b59e22006844010a4befbe8a31bd9943db6

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp36-cp36m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp36-cp36m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 15bdf219ea0252b9a3de63656894cf2a906702eb16ef17b2ad7576394b6a7eee
MD5 0f1e724b5486f59e0e70c2f738aeb34f
BLAKE2b-256 57af7ca06a1f5ebad2d28ffd7d0d5f66f05b27a1da63bca8a967a2e27f91e98b

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 706a533e18df419aed6e98a23087a67023ff01952c297ad299f2bd5995f97d92
MD5 c002bf4740fc609af0b373937ee956e2
BLAKE2b-256 8aa7ed473b45a6ca5a7fede71fd74e4a7dd497eb2c978935a0b1fbdc955049b9

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 58942b138fca494b968e54a1af0032ecb9a1fa517ba71e68472e0a2696f588b4
MD5 3144e6f90dbd8c1e2edc58637c326fac
BLAKE2b-256 fb73af69f1aa63eda535d9d12eacf2169830490a1186065f9ed979779c31ffdb

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 92b441c3201e709a1bc54f287ac4f6435dad55676e8a26757b5a63b6ba64d1b9
MD5 b142a494577eb46687efc7aef28ddac4
BLAKE2b-256 e55636539f5ded266ca47ebceb59aabfd641c1c946b181a360858f031cb1618c

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1f245b4057096405c4108fabf992dcd30b205146500117b5909f66b52de096c5
MD5 843f1b93fda73a03d06cd4e6f938131e
BLAKE2b-256 5a549ac0e2ce38bb85cf0b2ed40d9261e01a28be29386ef906d4fff69e7c8a0e

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 59834d0f7f580660fe3648c7f5484232ac5dc41b7a3e8ecf1da31149f4bfa364
MD5 54ac488b47fb64220f0210ae47877235
BLAKE2b-256 3300d4f28f571c73c78b6ae4db7404b7c78d00dba22259c6c368cd7084d6cc87

See more details on using hashes here.

File details

Details for the file rapidfuzz-2.9.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-2.9.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 886960411f328850c45e29da9279aa43bf85d2b4a995ebeefc8fed0295be01ea
MD5 99d102413ccac94b84debabb2a7154a1
BLAKE2b-256 aea917f03f959205d254e4d82ae49f726a20416176b0a083a935575fc5f9b775

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page