Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continuous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and distance.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparison between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparison I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
    "".join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
    for _ in range(10_000)
]
samples = words[:: len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with cdist in the following way:

cdist(samples, words, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like cdist is a lot faster than directly using it. That's why they should be used whenever possible.

Benchmark cdist

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. That's why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-3.0.0.tar.gz (1.2 MB view details)

Uploaded Source

Built Distributions

rapidfuzz-3.0.0-pp39-pypy39_pp73-win_amd64.whl (1.7 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.0.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.0.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (2.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.0.0-pp38-pypy38_pp73-win_amd64.whl (1.7 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.0.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.0.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.0.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.0.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (2.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.0.0-pp37-pypy37_pp73-win_amd64.whl (1.7 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.0.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.0.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.0.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.0.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (2.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.0.0-cp311-cp311-win_arm64.whl (864.7 kB view details)

Uploaded CPython 3.11 Windows ARM64

rapidfuzz-3.0.0-cp311-cp311-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-3.0.0-cp311-cp311-win32.whl (931.4 kB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-3.0.0-cp311-cp311-musllinux_1_1_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

rapidfuzz-3.0.0-cp311-cp311-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ s390x

rapidfuzz-3.0.0-cp311-cp311-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.0.0-cp311-cp311-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

rapidfuzz-3.0.0-cp311-cp311-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

rapidfuzz-3.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.0.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-3.0.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.0.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-3.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.0.0-cp311-cp311-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-3.0.0-cp311-cp311-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-3.0.0-cp311-cp311-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.0.0-cp310-cp310-win_arm64.whl (862.1 kB view details)

Uploaded CPython 3.10 Windows ARM64

rapidfuzz-3.0.0-cp310-cp310-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-3.0.0-cp310-cp310-win32.whl (928.7 kB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-3.0.0-cp310-cp310-musllinux_1_1_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

rapidfuzz-3.0.0-cp310-cp310-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

rapidfuzz-3.0.0-cp310-cp310-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.0.0-cp310-cp310-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

rapidfuzz-3.0.0-cp310-cp310-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

rapidfuzz-3.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.0.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-3.0.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.0.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-3.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.0.0-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-3.0.0-cp310-cp310-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-3.0.0-cp310-cp310-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.0.0-cp39-cp39-win_arm64.whl (863.6 kB view details)

Uploaded CPython 3.9 Windows ARM64

rapidfuzz-3.0.0-cp39-cp39-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-3.0.0-cp39-cp39-win32.whl (930.3 kB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-3.0.0-cp39-cp39-musllinux_1_1_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

rapidfuzz-3.0.0-cp39-cp39-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

rapidfuzz-3.0.0-cp39-cp39-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.0.0-cp39-cp39-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

rapidfuzz-3.0.0-cp39-cp39-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

rapidfuzz-3.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.0.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-3.0.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.0.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-3.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.0.0-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-3.0.0-cp39-cp39-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-3.0.0-cp39-cp39-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.0.0-cp38-cp38-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-3.0.0-cp38-cp38-win32.whl (932.0 kB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-3.0.0-cp38-cp38-musllinux_1_1_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

rapidfuzz-3.0.0-cp38-cp38-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

rapidfuzz-3.0.0-cp38-cp38-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.0.0-cp38-cp38-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

rapidfuzz-3.0.0-cp38-cp38-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

rapidfuzz-3.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.0.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-3.0.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.0.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-3.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.0.0-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-3.0.0-cp38-cp38-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-3.0.0-cp38-cp38-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.0.0-cp37-cp37m-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-3.0.0-cp37-cp37m-win32.whl (927.0 kB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-3.0.0-cp37-cp37m-musllinux_1_1_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

rapidfuzz-3.0.0-cp37-cp37m-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ s390x

rapidfuzz-3.0.0-cp37-cp37m-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ppc64le

rapidfuzz-3.0.0-cp37-cp37m-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

rapidfuzz-3.0.0-cp37-cp37m-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

rapidfuzz-3.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-3.0.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

rapidfuzz-3.0.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.0.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-3.0.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-3.0.0-cp37-cp37m-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-3.0.0.tar.gz.

File metadata

  • Download URL: rapidfuzz-3.0.0.tar.gz
  • Upload date:
  • Size: 1.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for rapidfuzz-3.0.0.tar.gz
Algorithm Hash digest
SHA256 4c1d895d16f62e9ac88d303eb918d90a390bd712055c849e01c558b7ae0fa908
MD5 d3c6390b0254476bf68e0e87eec17e70
BLAKE2b-256 70054030a8a7aa42d3e40ba7abf902de8e7e94ddcb61abda23f6a3ec5daf36df

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 5fdcc1ce830bf46fbc098c8b6eb3201a8299476153bae7a5d5e86576f7228d0a
MD5 6d79d5fc104c0955c5584a21a64da5bd
BLAKE2b-256 7894ec8dffc586d3e9e53869ad91c2d4f0c91aa876f3db5913e82166038c0a52

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 832d953b5f1462eba5a0830ea7df11b784f090ba5409fc92bccb856d2539b618
MD5 a0c0b84fadd91f137e1aebb7808ad091
BLAKE2b-256 3be131096fd153a19cadd4016d84eaa008935b594378b2268fdacdb7d45373de

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 14e9924108a26f2f58aa8cb90f1a106398fa43e359fa5a96b0f328c7bb7f76da
MD5 80fbdd050680f77b7273b0539e3fef6f
BLAKE2b-256 c0f4ab930c2c52d6ef5a34022c3a16a41df14bdfa62fa942260fbd5a8582c668

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3a5670d5475777450fbc70ed8de8d4e3f7c69230a8b539f45bda358a6f9699f2
MD5 0fa1832a618bb2efa10172701bdfba3c
BLAKE2b-256 d5787832b354839884caeebeec126fec92f561bad3b60ab1e4e219d58459d66f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 494b613a3e730e08df1c7c14e45c303a0f5c8a701162bfc8ac9079585837de43
MD5 3de539d81b2c22924c6723c68ff3c0ad
BLAKE2b-256 dbe654efa6437517a658d38abc9350e310f17c446ad635920427284d878a057a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 284f216f0500cd977830f107da5c3f96e91356dc7993512efc414dbd55679d51
MD5 316212f7cb62d62f9194c699566cf592
BLAKE2b-256 9d553a849351247012c95e249072fae14746af454ea51996a797e1744a5d862e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e85b4f4aeb994c841478e98a9e05bcb7ed8ead084d93bd2ca0683dc5e93b1c36
MD5 1523dd191ae3825f2fb4232b6c9dc982
BLAKE2b-256 e897039053f99c41b3b5cda066f0d40a750bdf6e38e52b4cdcb5c542e99e8f30

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3ba129c3c8202e8bef0d9964b8798913905ad1dc6293e94d7a02d87cdbef2544
MD5 2d3fd80c70984dc02805946c4fae0e38
BLAKE2b-256 339df8c2950e81e2315a5d7b76dbfd6a983c1d54d04e2e7192c039bd8f6b8468

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6dbaa605c0f81208efbf166afb23f73b0f3847a1a966bec828f4167f61d0ca4b
MD5 ffe782d58dfe75984573f98ce6c768fa
BLAKE2b-256 e5de7356f69f438c247789b746c41a7ac26ec49d58a47ba226c9b51ab60dd577

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9c263840bda0f532714ecd66f1f82ed3d3460f45e79e8a907f4df8eaafd93d31
MD5 df4c7bbc6c6ad35807242a292006d42f
BLAKE2b-256 a0fad7ad560cef6514483b9773210d53e581881b01e61ecd437ecb6cb2c7cedc

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 05130d9d33c4770116037de9f131e488825165105588cc7143f77733c5b25a6f
MD5 154f22333a57302513c24c3db85077b3
BLAKE2b-256 7e92c9f89178ef9ce0d2bb1dc968e9a2c47b7a95f9fde01d52c86ee861793f8f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a0c22a36b611a2d53fada2cb03b276135d08c2703039078ce985d7cc42734fd7
MD5 3b63357a48b0c61ca2e9f5ed878e398d
BLAKE2b-256 c187ac0e71de2997a1f04fb2c0d78fd1ea29a183c07905ef433c914870734e86

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e334225a97824d9f75f5cf8e949e129bc183f0762f4c9b7a127d1809461bdc55
MD5 3b5de5c16885cd0b633fae9f0cef33cd
BLAKE2b-256 077be40795cdea9f201df16169eba35ff5081029acde28a7a54d4e98e4a25b8e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 db57085c9dbd0b1005d6ad905c610920c49d0752f522d2f34477b13cba24e1d1
MD5 b4aa18b1fe36c7ef904c7e1f5fd417b9
BLAKE2b-256 9e65b5532f3fc0ecd300b691f147a63071713cd335b9e588bf4b14fcceaa14f9

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fbe4b8305cb427b49d70c182a01c91fd85112e0573193a1f9e4fbcec35ea3eff
MD5 00b1b6ab92b1a31f27b66e163823934f
BLAKE2b-256 a014fb539004b0cfe7bc2953e72ecec0da30f7da91d6714dda55e84947b0583e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp311-cp311-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 7eea0ca53da78040a6b7bb041af8051c52efa7facc6f18dce33e679f2decaf62
MD5 101910fea450bc4a2aa0aafce107206a
BLAKE2b-256 7ecebe0564c0af01aeb49c4ef947054f1cc1237aa1c758e0422353e32479e38e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 4ef3a6aa07b996c789c8d5ab99ed0563d551d32fa9330fd0f52ba28d20fcb662
MD5 85396d54244966afa41e60c4af608d7e
BLAKE2b-256 f3705303e65d09b87dd6039dda4116567d59a906760fc2498e6b22fa58353d9d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.0.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 931.4 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for rapidfuzz-3.0.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 3f51d35521f86e767d3e640d0ab42908d01c3e05cf54ac1f0b547f3f602800f1
MD5 b5479ef91ad15e6067ae86a94c0873f5
BLAKE2b-256 b11c4ce9aaca362841909715fb7d6a91b81af1fd60bc9f1aa334f06c156a4054

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 87eb7e9fb49265c33bda0417cc74c474a891cae60735fbbd75d79a106483888e
MD5 3e111f02d4434a1ef01341c833c03061
BLAKE2b-256 1f7e1f149c0d96db002079836458ad572ae9d79440ee659b04671dea1b9aae35

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp311-cp311-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp311-cp311-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 938cc766d0ce9eca95549593b6ca7ff86a2917b9e68c1989ad95485aed0f49dd
MD5 61cb268c14065f5a2fed2490d00451fe
BLAKE2b-256 eec7d1f042ec43ef29f6619f1e68e4690618437639ddb974f5b2785df96d42b5

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp311-cp311-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp311-cp311-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 c9ca5f4ae767605cefa5156f5fa8561bee61849f9b2ccfb165d7087b4f9af90c
MD5 0f4130331a89d50c749df17ba7111c0c
BLAKE2b-256 7bc13221f6d750648c283e0517883dbd434c3c0f4c44e2697a675f57ba9003ad

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f213bb5d4cd0b1fddf209bafe2d2896320a737fbded3a567d454e54875e4d9cc
MD5 12f0e056bd5e50e40c82a0aae2553491
BLAKE2b-256 cfc9960189628a41700ec555002d44523370900ba224c61af629403f31fbfc1a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 dc1a39d1cc8e679c7240b2d1ed8366cf740ab8429cc9b582ebd94a5c6ededbe5
MD5 7b99bbe71a25ead0f97f16cf910e402b
BLAKE2b-256 3c10b343a0cc2660c2ee5fc064c7120c5bc74b426ba797b8e0ea26755ad72ca3

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4032713943c32fff97d863e6618162923e3b3c31917d437126d9fcf7e33c83d2
MD5 12b984eac6afde6108625f22270e30a3
BLAKE2b-256 95f72e95cdfa26a6fd8cb52424ff9461e657160789c42c47a4e0f7b4df4762d9

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 c94fe53da481d8580e6410f3e7e4ba4e9c5786cad1f289fbb6c9c9585c6d78e1
MD5 9c1dadd9973cd7555986445086f56d73
BLAKE2b-256 bc322505e964cf5c76bf9759370c00e7e958944577f29467b4e143c56ba1226f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 6ee35eddeddb5f5750d2a9cc55894926969fa0bac80bbe57211ae6fd0d34b39f
MD5 62590fa141a7ffb15e8a60c96e1816a5
BLAKE2b-256 2311e3483bd632a72b61ad5e803da7cbd8d8f9417019b13b3739611aa575f47b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3c40a626050e37c2f74e2ba00538578d3c4a6baa171d08ed5091b6a03512ac4a
MD5 3aa974611d16a13e490584a9f731f76e
BLAKE2b-256 135be594adfb9e870082ea4c86025341b66a05640dbe4a690eeebc4742e0025e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a149c944f3c349f6279a8cc4cbfa3e80cc2baaec9d983359698aa792faa44653
MD5 3e51ee16223d6adccb0d5af4dddbed71
BLAKE2b-256 b004b3dd0efb37ef8d68e5cc875bd8545cd69c9204029b1898ed305521247791

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 562caa39652c72156574fcf60ce7adf29964a031a57ae977c180947e00425b4a
MD5 ce36b2c4035153c38743184ba9f68429
BLAKE2b-256 08b2030c3022714913554031c443e0558ac66fb7fa57f017c7dfce21abbeb3b8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 88c9e93508128168708aae3ef98eeb422a88204d81ac4492fcea1e1162a6af74
MD5 1cd76ee338cb85c7ce80651432eb64fd
BLAKE2b-256 55bf62004779ff75c91087a583d570a969bd4efa1c04bf0ba63d4a947fad4824

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 526df35d07083480e751f9679fd1f3e8a0819e8a13586e3860db5b65549a408a
MD5 65ee330392618705ae83c6a1d75e661d
BLAKE2b-256 0380b7400d78efc2e0c7308eeeb8dab5ad979ea5f36968cf704662bda45588c8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp310-cp310-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 0bf1953a4c32ce6e2f3ed1897d0a8dbbbf19456ef0a8e37bae26e007d9fb5096
MD5 cddae326e2d5a3cd57b57aaf7f8f732b
BLAKE2b-256 b95533110e465556a148347eff568f4ddffae350320e46d128cb92002ad77368

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2132d7724c03dd322035cf1b0c23ca9e7e449ec2b7225040a2ca2fa3f1a3bbfa
MD5 a19b47d7ce8201d58562519afc383006
BLAKE2b-256 5c54e64d26546d748077a2a7da34cb4375aa7581422a892e7dae7fcfb7fb6a0e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.0.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 928.7 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for rapidfuzz-3.0.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 7f8d89b16b4752deeb66dd321548c4cfa59819982d43d2ae7ab5d6e0f15bee94
MD5 d0fcdc3edb06998a900714406f6259d1
BLAKE2b-256 7d6da3cbf2118f8a92a35fb225476215cef6718975c4a0027d6455e36dc9fe43

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 658be4cabcc229f52a902f5e87205e1b9c29c66e463a267c8d8f237acde56002
MD5 c4825090a221c36b237e3e9f493a30ca
BLAKE2b-256 1bdc31d978ed147a6579a3a571a5a56d91b1636c6b5466adc8a8f980d1a2fb2d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 481c0389c3b26cd2aa498b6924ca6e9a1d1dd5b15ad5f009d273292949e47e24
MD5 7722989f4fef58e88ae12e0fca974711
BLAKE2b-256 65795832b538870c353c27bd3b8c7468b97c2b7497d479e3fcf73f434000a7f7

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 1fe6ea9300f347fd3352c755aa04d71a2786afa008d1af1a35830e6a44e7fd5f
MD5 36e07a272f0b7b82d76c0ab873a3c95e
BLAKE2b-256 240a55184e080fbbd64910726cb0e48d1411dbce248a03a61e592f0ccb4f6c3d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 5759bb0fd13ee030626e8bbb5b644092a043817fb192335ff4c481402b1edd0e
MD5 80c29a1a788a2c4071c7b52de2775b13
BLAKE2b-256 599a1d68cbc9e6db547deaf5bddcd7b31b72f14bb464c522580b1634f50a2e0c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 59c6c9d3ca7d84c5878a74d142816350a3bdfb51e4d10ac104afd396168481f6
MD5 c42a3658ff7d531f1c478e688c24fb86
BLAKE2b-256 721942b19bbdaafd199b4c8f5568dc8d63547d6c9ea5fd434bf17b5e925317ea

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8883267df996b42494f40d533ef3a3fea247531d137773a649fb851747ae12c8
MD5 f39cfd06747108ac929dba1c1e786402
BLAKE2b-256 a4fd9da44992e5cd2aa92e5a258a90c827578d25c19b1122aed08f762814c6b3

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 339b94c536ab9c1b1bac245fb6814df3ba104603d2c1a97f8fb41922357bd772
MD5 0c895408f305649c5033e8dcef7c9b39
BLAKE2b-256 4412866aab008f6c6157f67e40d434a9cc10d82885abf122ea37638aeace5955

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 abc2f05c1f30b9533cb9b85d73c28d93aa99c7ae2992df04c1704fcaf248b59c
MD5 cdb312c2edbca58c08676921c11a4621
BLAKE2b-256 89f16733e5371493418a33f22823efb2ee355f929fd4461961a088a664973cc5

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7c81891e570e50d0afe43f722f426b0bd602d3c5315f0f290514511d9520b1e6
MD5 402605b565ba19d609e8cbd5405840c2
BLAKE2b-256 f11a1d4a1e00d4ac2f7f9bad59efdcf729762ed709f4603b02b17c87a38cfa3c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9a9b7d22e46ada4e6a1f1404c267f3f023b44594929913d855f14bc5fb11b53d
MD5 52195cc584055792fe6d75644d73b71e
BLAKE2b-256 54c45c5eba5e8e8338a62b79bdeb2e5cc735ed34359f495104ecd1d252e20e50

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2bbf9aad86b70283362dc2db3cacb7dcde0ffe6027f54feb0ccb23cf87b6aa11
MD5 5696e39c058da0f49b6a82e3077a0a51
BLAKE2b-256 1088d002f351e68fd3ec43239d8d72e2651962c79d1992ede88c262ed5c7dd0c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cf8b1b29028dc1bc6a5654f22425ee6d3967bbd44bc3a117be0f43b03300f928
MD5 49a97951e2e55b5c92d3af33d982dce0
BLAKE2b-256 1a99c389e14a7a4e6bd713f75a77086256c7637f9dffe44df983098ea1e636bf

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 3ab635a544243e1924508bfc3f294c28bdced6d74388ac25041d3dabcaefab75
MD5 c799a9dc701e8ed4e35c563338e31545
BLAKE2b-256 f874ac1911faaaa9ece63659fb8a91e6bd9193ed7d7400a5db3f99255fd4ed1e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: rapidfuzz-3.0.0-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 863.6 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for rapidfuzz-3.0.0-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 ebf96d236a52058c010f354256e8de4274621a7f8b5a15dffa54d9b6a1c7e6e8
MD5 813896cf46ecc10c1c3f561b0fac2de9
BLAKE2b-256 3464dc2d20b41346f24e9afcd0e682154c8be780443212d97bca513c3197e3a7

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.0.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for rapidfuzz-3.0.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a0e0d8798b7048c9db4e139bafb21792013fb043df07bfaf0d3dc9e1df2be5e6
MD5 7ced09e0efdc329fdd723e1a9b0f9554
BLAKE2b-256 c236f61390b058ee34c5503fe415d60f34037b26664e6c85b6a65cf32886a871

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.0.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 930.3 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for rapidfuzz-3.0.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 aeb855b62bc351884a672b8f87875c552492d9199c78f33cc8650c283fd7504d
MD5 ae97dfbac3281c9c3fa64e772f8fbef6
BLAKE2b-256 0a9a0f3dc59f5b1c6535d4ab6e95eab9d62a0e0b07d55015daa610eb1fadc485

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 62aac81ef17bab9f664828b9087d0afe5a94ed48396b0456a2503b68e3d567f2
MD5 48ab6f3448ee65e529632db1971e22f5
BLAKE2b-256 dd68a74e6b305f8c48127558173f3e5c367c45f96f8af675aa36da4a316ecc76

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 fc764665ba19b923696eae6912a2f0fc52bdd7db6c53be178d1dd70eb72f2f68
MD5 beaf87ab26c83992bd45a9c382223204
BLAKE2b-256 9dfde64687822c72d0a2224e9ee1fb382a4b8ae4508e1a8299f37480aedb3682

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 8b5d78052e840191b9c7556eb3bd4fe52435e58bd979c75298b65262368dd1fa
MD5 48a6f6bb161b040689a63f58840fd22a
BLAKE2b-256 5963ea392540a05f5d798d48989232e8e2d3e7ba3235f361ab08dc6f2e401bda

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 62c760748b1253e08ab5138855e8f8d2c25a7cb5a0bfad74bb66db63c27d8a50
MD5 87e9895903421ce483b2bf237dfda7a7
BLAKE2b-256 afe7aff57758eb5d9bffc2b7ac3f312e3631b7dc129d8325719b8f57a3de607c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 f80986d3c8d55b848d679084231a35273320f658e64f0d86d725bb360e6cd2c4
MD5 e29a56bde28552599c185750f39d8a68
BLAKE2b-256 54f37beb243bb0578eeb99ddbfdec83abd98adffb2c82e56c660f5ecfbbd6a88

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5f241ca0bcbfcbf90bb48bb1c8dbc1fddc205bee5520f898b994adda3d3f150a
MD5 15dfa462769fa94dece9480d38bb3768
BLAKE2b-256 dee28c610844282009d185268f73193a47d3508dffeb9599790ff24ad9a1cbcb

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 6bf090b9b4ec4df5f0899bbc4055b8b173b33169186d4de1dd3d9c609bd330a2
MD5 0ea59d6a7ccf253d779f46b5eca67696
BLAKE2b-256 45008052970b718a26d8dac8011d075c147d01aad08d22f3d150631225525e23

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 ea5e25378591a698ae5076c582a0135db2cb43270fb2866737ab4cb6fcc34474
MD5 caf42543bc15a164bb0a87785c1d0cf3
BLAKE2b-256 3c820240ca8ffc1d84da2f594aaa01743378da33a63ff89c94c50f1065cb3b22

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 41e98b3cebfa3e720186eeab37e6c0565895edf848fd958c34ab94c39e743311
MD5 8a3c51e5f6e9dc546fd96cdd37e7ea6c
BLAKE2b-256 3681db2ae4e9118275d5b4c112a188567252b0af83f7367a14cc9f5813fd22aa

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4a94fe0a42da816e4a6279ac4c23e4ba6de86a529b61b08d5e8e2633b29c781b
MD5 cc04883606e3ebb3ee9f71f56d711ea5
BLAKE2b-256 616202c94a2d5f2270f07e7bb9c6fee904cd1d329a46eb8bdc6c674103c1a37b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d24054843f4cfbb86df608ec1209e6a29b0d2635230577a94e38a9cfa3880d18
MD5 7baf28f3e50efbbb45aacc20b24cd782
BLAKE2b-256 00a1e1ac4ed3dcee2ccdf90ea62a0ca9d37af4611d0a20817788a2daf78841ef

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 35506d04429440333224c3711dfdb4195d34eff733cb48648d0c89a9b99faf14
MD5 f38c8d719ba699570c531d4d11f8b651
BLAKE2b-256 0c0fa165b3a75ed9b036f2f4c6e19c49c7467f7cce70ab88bebe616e118d9937

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 351df02889ac3da9f3f7b10e6812740927cfab9def453079da94f83697b03f2f
MD5 1c5653d203d1fbbb87e4645dc5ac7da8
BLAKE2b-256 15691bfc5f1548c9ff3f5ee0091da40d415597f7ebf88b254d99b0d6b9a595ff

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.0.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for rapidfuzz-3.0.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0f7041c550b69d35675e04dc3f0690d0c26499039e942a0b1604c6547951e6fc
MD5 d7c01c8bfa0433314dde408fb1314cf2
BLAKE2b-256 622fc8c912e62fc63b585f98224f1ea93fe0520637dbcc174a03b7711f2f6fb8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.0.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 932.0 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for rapidfuzz-3.0.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 bc593306faa6c73e50cb31b81efbb580957272b14c5cf6bcf0233adf8a7e118d
MD5 260f3e0db42dc11a583f89a1e118e1cb
BLAKE2b-256 64475bd9a3eaa48f35b4c4b4d21720fb1a2edcf283c47b3d26e4866e36614704

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d128f615da9a198cd9b33be658a0c26fabe06a6d28fa4652953853e8d174c2c6
MD5 066361dcfb0e8f26eee00dfd4b7e16a2
BLAKE2b-256 6c0f092cc77aadff14e98eb1806af45420796a66dc0bc7073b063ede464dde8a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 35e21f0718fd1c1853f8f433f2f84f618f6d4a6d9d96bb7c42e39797be600b58
MD5 d419e036cfca3f5f556c21f07c8356cc
BLAKE2b-256 a8be144a7f4f450752b5e020bc9b8387ec38176a5273ebbfeaddd17e08a16a66

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 e058ecfd8edb04b221d1b2d005f17be932075a16f75b100b275de1d3d220da5f
MD5 fc2764ff5aac9f17727eda27d05ab391
BLAKE2b-256 1039d0722403b4fa24e0bf96193ed1f0281dfa45c1474b64ffa34dbc4909ae28

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f00a8b3d0b21884ea972d5430797b1a25b9d2c715b3eaf03366903aac5d8398c
MD5 3e81f1beccc84f5a17f4d10ea798b5e2
BLAKE2b-256 4cd6fc005902388eb7f9417aaeedfaeba28d65126eedf6a14295e48863bb4931

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 2b50f2d429d81a65910f5ee9b14e172e300a09b8b2ecb91d3e4efc5d2583915c
MD5 5f73f7782e767b2a3455b014d13870ad
BLAKE2b-256 7fea3661d039295dcc1de67d2bb7c9bbb3b22ddde8797a7756d4cdda0d3d6743

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 76da6c8972acd58c31efdd09c4c85263ba3b4394d2c2929be4c171a22293bab3
MD5 9d62a205305f030dbb49d9e77af39a4a
BLAKE2b-256 3a9653043d25b9c823f0b04484f325b4eb2b0ad6da91bb6880d1e9bba06bca2d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 d25555297466ab5ded3875913fc0bfa78b89b0a32d79bd65ffbd32ae71f07c2d
MD5 6f5758438ed1ce6e850e2e4a5ae34505
BLAKE2b-256 d49f9d51c4791f236bee0da609dc344f34950c2083bef9416c04f3f57a26e3e8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 dc39af05cdf89be426d96fce579c812948a324b022fb11dfea1e99e180d4f68b
MD5 559e78d2aca051815a97fe0197a77cf8
BLAKE2b-256 bced00dcf5d93990594b9e5b54d36b55e60c781b5816a30e226aac032fbd8c2f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 dd2ad4160d8ad9a2abdad1c765fd29e4d9b6b8ce6a707ee48eb2869e7dff0f89
MD5 0273e3d535730bd0c0af6b3bf3da36d4
BLAKE2b-256 8f0430259ec8a5cf9d557a640a045cb4b6c23d7814acd88db14207ff90c98ac9

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bf5ddf48f63895f949355a1c4d643e0a531c9317d52901f80d5a6299d967b766
MD5 061ae9890b8b2455958676ee09f2e2c6
BLAKE2b-256 8ce22a625e93c45f3ce1ec1cfa4ee55dc117fb107afe1bf2f7e9f1d257d08250

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 69270e0cd850984f562b2239d07cde2213e5c3642cd8d550d5ac9a0fcd0882df
MD5 11a57c41ed01d0a73307004a81c87fda
BLAKE2b-256 2730d302a4e1ae9b09705ac613446cc5d0c58a7679bd740923cc7d116348dec5

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c50825de43442c4625a2ca1d948c911d116cf9007ad7f29cd27561c99b16947c
MD5 9d0d5d306fa730ac53aac7fb6a9e53e8
BLAKE2b-256 2bee0027e727079523e655674c50223ea2edc516abd5e6b23cdc1ea9f053f2d8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 4e1da3dce34d742567da0722b9c8dc2b51554ab5a22fdaf763b60209445a7b37
MD5 234db6c8c95ffc3508916412642e1b09
BLAKE2b-256 08d7751b07fa67a1f589695cb48268ca0d60af6af60b7894094465f4f24e7698

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 54fb70b667b882f9939bc6f581957fcb47fec2e7ad652259835c80e9e30230c9
MD5 c17b2d069ad7030aaf51ad0a8416ac92
BLAKE2b-256 bb91b60494c090b24242645f496384dc4142db7400298d96acdfeed8a6caf945

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.0.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 927.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for rapidfuzz-3.0.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 b85dfb6f0c353c4b37499529f9831620a7bdc61c375e07f8c38b595f93e906e5
MD5 2d01de0a4c427eaa21de68241579ed0a
BLAKE2b-256 a2643edbf070f0513e8116dd3c3a9270617345c98efee9aa5d0a74329af639e5

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 24d77723bb20030a91b096326d14b673d2ff1f0c7bbc64ed519992ed8eb5b869
MD5 49c227204fa6fe88a94126117d68b504
BLAKE2b-256 9189dac1e9bcc546ea1ba2aa27663bf96a558c1facb459d4e29805d83bbd095a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp37-cp37m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp37-cp37m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 1a5eb2d1844f375f34e3c83b1a03094293d894472fdd1a095cf35e4dfa2ecf01
MD5 f3afe9a4995d324b3b2a8101c623cf58
BLAKE2b-256 6103e949a92a5a88ede83aa3c5bde1b38e6277222b526ee851479f1329eaf292

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp37-cp37m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp37-cp37m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 738ae2d59ab254c4f173b40b00a9c1f092697949284c59e0879e6e3beb337a69
MD5 666cba14b7a4b7c8bf18c2d7dd7b0e4f
BLAKE2b-256 24095d1f4137844d3ae7771d79051699baea479b2eb34af8ef4c540ffa37beae

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 fa098429af4e17fb5bacb0c39f1f8349891356ba7ca540521515b5708fec4a76
MD5 3e0417dd2cf428327a8f3d60ad480e72
BLAKE2b-256 980bd49624a21adfd03135ac0531bcf88cc05cd093af10675e6e9134bb92c305

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 5d8664d6f844ea9018b4866e8a8dbf49c87f703668b1b3265de83aa3c9941272
MD5 5aa4e3ece5849235c5e27c1c5593f7d3
BLAKE2b-256 9e591042d476a54dc7abcc7be30ae210ba34a06497ad37a849e051bdde2d3090

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1a8c372dc278d1d5ced7cdc99ad8cc1d3de0b245e769a6b327c462b98873e5d4
MD5 5efb1e3612aa6113982ea99db587f23d
BLAKE2b-256 33a6a77d1fad5042e02e828813fd64c230c2faafc2291561712acf4464e7c7b0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 f5767b0e8220b6f8afcc1fe77529e5678470f9e94a1cfc9e29f5b0721dc1496c
MD5 23c5da17cae977883e889cab2937d0c5
BLAKE2b-256 eb8a2f3142fc03d0ebec915e110c57fbf9c88429ca04045f7cc9c6dd37c42416

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 82a4ea0742b9e375d4856714ef59241007765edbce34fd2f7d76c552ed93a7d2
MD5 a01a05d8418443059c0c3aa88d9f5ee3
BLAKE2b-256 8109082dcf67398830c49e9be543fe29704bc2374dee336c2f26599d0ce0aad2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6ff8835a3ba17f3baf3838f2612e3758d7b1ca09eb16c9a382df3bec5bb9bda3
MD5 80c94218305de98a23f679a54613b886
BLAKE2b-256 b0bfcd2198eecae4b2400b022343008f4001bb8f41ad1139d831cfb7a0668b00

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0b81d15da16e97c288c645eb642d8a08d0ab98b827efb2682cab282a45893efe
MD5 625b521d58c6f7bbe8109c9ad3dbf385
BLAKE2b-256 90bcfb2488ac23b6af79c61368665c4ef8a1ba224c8b333ade89d72159c7c782

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.0.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.0.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6dfd138dcc0920b71c1d1bc017413b032286a1f33488613dce9e254c454abaf2
MD5 c3d4bc7f6c08b32e88bd8b11380fa3f5
BLAKE2b-256 e75751beb82b37db5d4d817224f8091f0e6332aeff5b4e60902b6363755c36be

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page